Chapter 5. The Sensorimotor System

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 3124

by Angie Voyles Askham The autism gene SHANK3 is crucial for the development and function of muscles and the motor neurons that control them, according to a new study1. This relationship may explain why some people with mutations in the gene have low muscle tone, says co-lead investigator Maria Demestre, senior researcher at the Institute for Bioengineering of Catalonia in Barcelona. “It opens an avenue for treatment.” Between 1 and 2 percent of people with autism have a mutation in SHANK3. Deletions of the chromosomal region containing SHANK3 lead to Phelan-McDermid syndrome, characterized by intellectual disability, speech delay and, often, autism. One of the earliest signs of the syndrome in infants is hypotonia, or low muscle tone, which can result in difficulty feeding and a delay in reaching developmental milestones such as crawling and walking. SHANK3 encodes a protein that helps neurons communicate throughout the brain. But studies have shown that the gene is also found in other parts of the body and that mutations or deletions of genes in peripheral cells can contribute to autism traits2. SHANK3 is heavily expressed throughout the motor system of both mice and people, the new work shows. Muscle cells derived from people with Phelan-McDermid syndrome fail to mature, and mice deficient in SHANK3 have poor muscle function. The results add to “the growing appreciation of the role of autism-associated genes — in this case, SHANK3 — outside of the brain,” says David Ginty, professor of neurobiology at Harvard Medical School, who was not involved in the study. © 2020 Simons Foundation

Keyword: Autism; Movement Disorders
Link ID: 27375 - Posted: 07.21.2020

By Erik Stokstad Dogs are renowned for their world-class noses, but a new study suggests they may have an additional—albeit hidden—sensory talent: a magnetic compass. The sense appears to allow them to use Earth’s magnetic field to calculate shortcuts in unfamiliar terrain. The finding is a first in dogs, says Catherine Lohmann, a biologist at the University of North Carolina, Chapel Hill, who studies “magnetoreception” and navigation in turtles. She notes that dogs’ navigational abilities have been studied much less compared with migratory animals such as birds. “It’s an insight into how [dogs] build up their picture of space,” adds Richard Holland, a biologist at Bangor University who studies bird navigation. There were already hints that dogs—like many animals, and maybe even humans—can perceive Earth’s magnetic field. In 2013, Hynek Burda, a sensory ecologist at the Czech University of Life Sciences Prague who has worked on magnetic reception for 3 decades, and colleagues showed dogs tend to orient themselves north-south while urinating or defecating. Because this behavior is involved in marking and recognizing territory, Burda reasoned the alignment helps dogs figure out the location relative to other spots. But stationary alignment isn’t the same thing as navigation. In the new study, Burda’s graduate student, Kateřina Benediktová, initially put video cameras and GPS trackers on four dogs and took them on trips into the forest. The dogs would scamper off to chase the scent of an animal for 400 meters on average. The GPS tracks showed two types of behavior during their return trips to their owner (see map, below). In one, dubbed tracking, a dog would retrace its original route, presumably following the same scent. In the other behavior, called scouting, the dog would return along a completely new route, bushwhacking without any backtracking. Benediktová et al., eLife (2020) 10.7554 (CC BY) © 2020 American Association for the Advancement of Science.

Keyword: Animal Migration
Link ID: 27374 - Posted: 07.18.2020

Kayt Sukel A 44-year-old male patient, with no history of cardiovascular disease, arrived at an emergency room in New York City after experiencing difficulty speaking and moving the right side of his body. The on-call physician quickly determined he had suffered a stroke—a condition that normally affects people who are decades older. In Italy, a 23-year-old man sought care for a complete facial palsy and feelings of “pins and needles” in his legs. Doctors discovered axonal sensory-motor damage suggesting Guillain Barré Syndrome, a rare autoimmune neurological disorder where the immune system, sometimes following an infection, mistakes some of the body’s own peripheral nerve cells as foreign invaders and attacks them. A 58-year-old woman in Detroit was rushed to the hospital with severe cognitive impairment, unable to remember anything beyond her own name. MRI scans showed widespread inflammation across the patient’s brain, leading doctors to diagnose a rare but dangerous neurological condition called acute necrotizing hemorrhagic encephalopathy. At first glance, it may seem that these patients have little in common. Yet all three were also suffering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease, better known as Covid-19. While most individuals infected with this new virus exhibit fever, cough, and respiratory symptoms, doctors across the globe are also documenting patients presenting with a handful of neurological manifestations—leading clinicians and researchers to wonder if Covid-19 also has the ability to invade the human nervous system. “As more people are being tested and diagnosed with this virus, physicians are starting to see more uncommon symptoms and complications, including neurological ones,” says Diane Griffin, M.D., Ph.D., a researcher at Johns Hopkins University’s Bloomberg School of Public Health. “But as Covid-19 is a new virus, we aren’t yet sure why these things are happening. Is the virus getting into the brain directly? Is it affecting the brain through other means? These are important questions to answer.” © 2020 The Dana Foundation

Keyword: Movement Disorders; Neuroimmunology
Link ID: 27370 - Posted: 07.16.2020

By Gretchen Reynolds Exercise may help change exercisers’ brains in surprising ways, according to a new study of physical activity and brain health. The study, which included both mice and people, found that exercise prompts the liver to pump out a little-known protein, and that chemically upping the levels of that protein in out-of-shape, elderly animals rejuvenates their brains and memories. The findings raise provocative questions about whether the brain benefits of exercise might someday be available in a capsule or syringe form — essentially “exercise in a pill.” We already have considerable evidence, of course, that physical activity protects brains and minds from some of the declines that otherwise accompany aging. In past rodent studies, animals that ran on wheels or treadmills produced more new neurons and learned and remembered better than sedentary mice or rats. Similarly, older people who took up walking for the sake of science added tissue volume in portions of their brains associated with memory. Even among younger people, those who were more fit than their peers tended to perform better on cognitive tests. But many questions remain unanswered about how, at a cellular level, exercise remodels the brain and alters its function. Most researchers suspect that the process involves the release of a cascade of substances inside the brain and elsewhere in the body during and after exercise. These substances interact and ignite other biochemical reactions that ultimately change how the brain looks and works. But what the substances are, where they originate and how they meet and mingle has remained unclear. So, for the new study, which was published this month in Science, researchers at the University of California, San Francisco, and other institutions decided to look inside the minds and bloodstreams of mice. In past research from the same lab, the scientists had infused blood from young mice into older ones and seen improvements in the aging animals’ thinking. It was like “transferring a memory of youth through blood,” says Saul Villeda, a professor at U.C.S.F., who conducted the study with his colleagues Alana Horowitz, Xuelai Fan and others. © 2020 The New York Times Company

Keyword: Hormones & Behavior
Link ID: 27368 - Posted: 07.16.2020

Amy Fleming Taking a stroll with Shane O’Mara is a risky endeavour. The neuroscientist is so passionate about walking, and our collective right to go for walks, that he is determined not to let the slightest unfortunate aspect of urban design break his stride. So much so, that he has a habit of darting across busy roads as the lights change. “One of life’s great horrors as you’re walking is waiting for permission to cross the street,” he tells me, when we are forced to stop for traffic – a rude interruption when, as he says, “the experience of synchrony when walking together is one of life’s great pleasures”. He knows this not only through personal experience, but from cold, hard data – walking makes us healthier, happier and brainier. We are wandering the streets of Dublin discussing O’Mara’s book, In Praise of Walking, a backstage tour of what happens in our brains while we perambulate. Our jaunt begins at the grand old gates of his workplace, Trinity College, and takes in the Irish famine memorial at St Stephen’s Green, the Georgian mile, the birthplace of Francis Bacon, the site of Facebook’s new European mega-HQ and the salubrious seaside dwellings of Sandymount. O’Mara, 53, is in his element striding through urban landscapes – from epic hikes across London’s sprawl to more sedate ambles in Oxford, where he received his DPhil – and waxing lyrical about science, nature, architecture and literature. He favours what he calls a “motor-centric” view of the brain – that it evolved to support movement and, therefore, if we stop moving about, it won’t work as well. © 2020 Read It Later, Inc.

Keyword: Depression
Link ID: 27364 - Posted: 07.15.2020

For every cell in the body there comes a time when it must decide what it wants to do for the rest of its life. In an article published in the journal PNAS, National Institutes of Health researchers report for the first time that ancient viral genes that were once considered “junk DNA” may play a role in this process. The article describes a series of preclinical experiments that showed how some human endogenous retrovirus (HERV-K) genes inscribed into chromosomes 12 and 19 may help control the differentiation, or maturation, of human stem cells into the trillions of neurons that are wired into our nervous systems. The experiments were performed by researchers in a lab led by Avindra Nath, M.D., clinical director, at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS). Over the course of evolution, the human genome has absorbed thousands of human endogenous retrovirus genes. As a result, nearly eight percent of the DNA that lines our chromosomes includes remnants of these genes. Although once thought to be inactive, or “junk”, recent studies have shown that these genes may be involved in human embryonic development, the growth of some tumors, and nerve damage during multiple sclerosis. Previously, researchers in Dr. Nath’s lab showed that amyotrophic lateral sclerosis (ALS) may be linked to activation of the HERV-K gene. In this study, led by Tongguang (David) Wang, M.D., Ph.D., staff scientist at NINDS, the team showed that deactivation of the gene may free stem cells to become neurons. The researchers performed most of their experiments on blood cells, drawn from healthy volunteers at the NIH’s Clinical Center, that they genetically transformed into induced pluripotent stem cells, which can then turn into any cell type in the body. Surprisingly, they found that the surfaces of the stem cells were lined with high levels of HERV-K, subtype HML-2, an envelope protein, that viruses often use to latch onto and infect cells. These proteins progressively disappeared as the cells were served two rounds of “cocktails.” One round nudged the cells into an intermediate, neural stem cell state followed by a second round that pushed the cells into finally becoming neurons.

Keyword: ALS-Lou Gehrig's Disease ; Development of the Brain
Link ID: 27359 - Posted: 07.14.2020

By Laura Sanders Exercise’s power to boost the brain might require a little help from the liver. A chemical signal from the liver, triggered by exercise, helps elderly mice keep their brains sharp, suggests a study published in the July 10 Science. Understanding this liver-to-brain signal may help scientists develop a drug that benefits the brain the way exercise does. Lots of studies have shown that exercise helps the brain, buffering the memory declines that come with old age, for instance. Scientists have long sought an “exercise pill” that could be useful for elderly people too frail to work out or for whom exercise is otherwise risky. “Can we somehow get people who can’t exercise to have the same benefits?” asks Saul Villeda, a neuroscientist at the University of California, San Francisco. Villeda and colleagues took an approach similar to experiments that revealed the rejuvenating effects of blood from young mice (SN: 5/5/14). But instead of youthfulness, the researchers focused on fitness. The researchers injected sedentary elderly mice with plasma from elderly mice that had voluntarily run on wheels over the course of six weeks. After eight injections over 24 days, the sedentary elderly mice performed better on memory tasks, such as remembering where a hidden platform was in a pool of water, than elderly mice that received injections from sedentary mice. Comparing the plasma of exercised mice with that of sedentary mice showed an abundance of proteins produced by the liver in mice that ran on wheels. The researchers closely studied one of these liver proteins produced in response to exercise, called GPLD1. GPLD1 is an enzyme, a type of molecular scissors. It snips other proteins off the outsides of cells, releasing those proteins to go do other jobs. Targeting these biological jobs with a molecule that behaves like GPLD1 might be a way to mimic the brain benefits of exercise, the researchers suspect. © Society for Science & the Public 2000–2020.

Keyword: Learning & Memory; Development of the Brain
Link ID: 27358 - Posted: 07.11.2020

By Jocelyn Kaiser It’s well established that exercise can sharpen the mind: People and mice who work out do better on cognitive tests, and elderly people who are physically active reduce their risk of dementia. Now, in a surprising finding, researchers report that blood from a mouse that exercises regularly can perk up the brain of a “couch potato” mouse. This effect, traced to a specific liver protein in the blood, could point the way to a drug that confers the brain benefits of exercise to an old or feeble person who rarely leaves a chair or bed. “Can your brain think that you exercised, from just something in your blood?” asks aging researcher Saul Villeda of the University of California, San Francisco (UCSF), who led the rodent research. The study grew out of research in Villeda’s lab and others suggesting blood from a young mouse can rejuvenate the brain and muscles of an old mouse. Some teams have since claimed to find specific proteins that explain the benefits of this “young blood.” Graduate student Alana Horowitz and postdoc Xuelai Fan in Villeda’s group wondered whether exercise—not just youth—could confer similar benefits via the blood. It was easy to enough to test: Put a wheel in a cage full of mice, and the mostly inactive animals will run for miles at night. The researchers collected blood from elderly or middle-aged mice that had an exercise wheel in their cage for 6 weeks and then transfused this blood into old mice without a wheel in their cage. Couch potato mice receiving this blood eight times over 3 weeks did nearly as well on learning and memory tests, such as navigating through a maze, as the exercising mice. A control group of couch potatoes receiving blood from similarly old, nonexercising mice saw no boost. The rodents getting the blood from the active mice also grew roughly twice as many new neurons in the hippocampus, a brain region involved in learning and memory, Villeda’s team reports today in Science. That change is comparable to what’s seen in rodents that directly exercise. © 2020 American Association for the Advancement of Science.

Keyword: Alzheimers; Development of the Brain
Link ID: 27357 - Posted: 07.11.2020

Ian Sample Science editor Doctors may be missing signs of serious and potentially fatal brain disorders triggered by coronavirus, as they emerge in mildly affected or recovering patients, scientists have warned. Neurologists are on Wednesday publishing details of more than 40 UK Covid-19 patients whose complications ranged from brain inflammation and delirium to nerve damage and stroke. In some cases, the neurological problem was the patient’s first and main symptom. The cases, published in the journal Brain, revealed a rise in a life-threatening condition called acute disseminated encephalomyelitis (Adem), as the first wave of infections swept through Britain. At UCL’s Institute of Neurology, Adem cases rose from one a month before the pandemic to two or three per week in April and May. One woman, who was 59, died of the complication. A dozen patients had inflammation of the central nervous system, 10 had brain disease with delirium or psychosis, eight had strokes and a further eight had peripheral nerve problems, mostly diagnosed as Guillain-Barré syndrome, an immune reaction that attacks the nerves and causes paralysis. It is fatal in 5% of cases. “We’re seeing things in the way Covid-19 affects the brain that we haven’t seen before with other viruses,” said Michael Zandi, a senior author on the study and a consultant at the institute and University College London Hospitals NHS foundation trust. “What we’ve seen with some of these Adem patients, and in other patients, is you can have severe neurology, you can be quite sick, but actually have trivial lung disease,” he added. “Biologically, Adem has some similarities with multiple sclerosis, but it is more severe and usually happens as a one-off. Some patients are left with long-term disability, others can make a good recovery.” © 2020 Guardian News & Media Limited

Keyword: Stroke; Movement Disorders
Link ID: 27354 - Posted: 07.08.2020

Sherry H-Y. Chou Aarti Sarwal Neha S. Dangayach The patient in the case report (let’s call him Tom) was 54 and in good health. For two days in May, he felt unwell and was too weak to get out of bed. When his family finally brought him to the hospital, doctors found that he had a fever and signs of a severe infection, or sepsis. He tested positive for SARS-CoV-2, the virus that causes COVID-19 infection. In addition to symptoms of COVID-19, he was also too weak to move his legs. When a neurologist examined him, Tom was diagnosed with Guillain-Barre Syndrome, an autoimmune disease that causes abnormal sensation and weakness due to delays in sending signals through the nerves. Usually reversible, in severe cases it can cause prolonged paralysis involving breathing muscles, require ventilator support and sometimes leave permanent neurological deficits. Early recognition by expert neurologists is key to proper treatment. We are neurologists specializing in intensive care and leading studies related to neurological complications from COVID-19. Given the occurrence of Guillain-Barre Syndrome in prior pandemics with other corona viruses like SARS and MERS, we are investigating a possible link between Guillain-Barre Syndrome and COVID-19 and tracking published reports to see if there is any link between Guillain-Barre Syndrome and COVID-19. Some patients may not seek timely medical care for neurological symptoms like prolonged headache, vision loss and new muscle weakness due to fear of getting exposed to virus in the emergency setting. People need to know that medical facilities have taken full precautions to protect patients. Seeking timely medical evaluation for neurological symptoms can help treat many of these diseases. © 2010–2020, The Conversation US, Inc.

Keyword: Movement Disorders; Neuroimmunology
Link ID: 27353 - Posted: 07.08.2020

Jon Hamilton The same process that causes dew drops to form on a blade of grass appears to play an important role in Alzheimer's disease and other brain diseases. The process, known as phase transition, is what allows water vapor to condense into liquid water, or even freeze into solid ice. That same sort of process allows brain cells to constantly reorganize their inner machinery. But in degenerative diseases that include amyotrophic lateral sclerosis, frontotemporal dementia and Alzheimer's, the phase transitions inside neurons seem to go awry, says Dr. J. Paul Taylor, a neurogeneticist at St. Jude Children's Research Hospital in Memphis, and an investigator with the Howard Hughes Medical Institute. This malfunctioning prompts the interior of the cell to become too viscous, Taylor says. "It's as if you took a jar of honey [and] left it in the refrigerator overnight." In this sticky environment, structures that previously could nimbly disassemble and move around become "irreversibly glommed together," says Clifford Brangwynne, a professor of chemical and biological engineering at Princeton University and an investigator with the Howard Hughes Medical Institute. "And when they're irreversibly stuck like that, they can no longer leave to perform functions elsewhere in the cell." That glitch seems to allow toxins to begin to build up in and around these dysfunctional cells, Taylor says — including the toxins associated with Alzheimer's and other neurodegenerative diseases. The science behind this view of brain diseases has emerged only in the past decade. In 2009, Brangwynne was part of a team that published a study showing that phase transitions are important inside cells — or at least inside the reproductive cells of worms. © 2020 npr

Keyword: ALS-Lou Gehrig's Disease ; Alzheimers
Link ID: 27351 - Posted: 07.08.2020

By Gretchen Reynolds When we start to lift weights, our muscles do not strengthen and change at first, but our nervous systems do, according to a fascinating new study in animals of the cellular effects of resistance training. The study, which involved monkeys performing the equivalent of multiple one-armed pull-ups, suggests that strength training is more physiologically intricate than most of us might have imagined and that our conception of what constitutes strength might be too narrow. Those of us who join a gym — or, because of the current pandemic restrictions and concerns, take up body-weight training at home — may feel some initial disappointment when our muscles do not rapidly bulge with added bulk. In fact, certain people, including some women and most preadolescent children, add little obvious muscle mass, no matter how long they lift. But almost everyone who starts weight training soon becomes able to generate more muscular force, meaning they can push, pull and raise more weight than before, even though their muscles may not look any larger and stronger. Scientists have known for some time that these early increases in strength must involve changes in the connections between the brain and muscles. The process appears to involve particular bundles of neurons and nerve fibers that carry commands from the brain’s motor cortex, which controls muscular contractions, to the spinal cord and, from there, to the muscles. If those commands become swifter and more forceful, the muscles on the receiving end should respond with mightier contractions. Functionally, they would be stronger. But the mechanics of these nervous system changes have been unclear. Understanding the mechanics better could also have clinical applications: If scientists and doctors were to better understand how the nervous system changes during resistance training, they might be better able to help people who lose strength or muscular control after a stroke, for example, or as a result of aging or for other reasons. © 2020 The New York Times Company

Keyword: Muscles
Link ID: 27350 - Posted: 07.08.2020

by Angie Voyles Askham Toddlers with autism have unusually strong connections between sensory areas of the brain, according to a new study1. And the stronger the connections, the more pronounced a child’s autism traits tend to be. Overconnectivity in sensory areas may get in the way of an autistic child’s brain development, says lead investigator Inna Fishman, associate research professor at San Diego State University in California. “Their brain is busy with things it shouldn’t be busy with.” The findings add to a complicated field of research on brain connectivity and autism, which has shown weakened connectivity between some brain areas, strengthened connectivity between others, or no difference in connectivity at all. Previous brain-imaging studies have found that babies and toddlers with autism have altered connectivity in various brain areas and networks, including sensory areas. But most of these data come from ‘baby sibs’ — the younger siblings of autistic children, who are about 20 times more likely to have autism than the general population. “A lot of our early knowledge is from these high-risk samples of infant siblings,” says Benjamin Yerys, assistant professor of psychology in psychiatry at the University of Pennsylvania, who was not involved with the study. “If their behaviors and genetics are different, then all of this early brain work may also be different.” By contrast, the new work focused on autistic children who were newly diagnosed. “There are very, very few studies focused on this age, right around the time the diagnosis can be made,” says Christine Wu Nordahl, associate professor at the University of California, Davis MIND Institute. “I think that is the major strength of the study.” © 2020 Simons Foundation

Keyword: Autism
Link ID: 27345 - Posted: 07.06.2020

By Gretchen Reynolds When we start to lift weights, our muscles do not strengthen and change at first, but our nervous systems do, according to a fascinating new study in animals of the cellular effects of resistance training. The study, which involved monkeys performing the equivalent of multiple one-armed pull-ups, suggests that strength training is more physiologically intricate than most of us might have imagined and that our conception of what constitutes strength might be too narrow. Those of us who join a gym — or, because of the current pandemic restrictions and concerns, take up body-weight training at home — may feel some initial disappointment when our muscles do not rapidly bulge with added bulk. In fact, certain people, including some women and most preadolescent children, add little obvious muscle mass, no matter how long they lift. But almost everyone who starts weight training soon becomes able to generate more muscular force, meaning they can push, pull and raise more weight than before, even though their muscles may not look any larger and stronger. Scientists have known for some time that these early increases in strength must involve changes in the connections between the brain and muscles. The process appears to involve particular bundles of neurons and nerve fibers that carry commands from the brain’s motor cortex, which controls muscular contractions, to the spinal cord and, from there, to the muscles. If those commands become swifter and more forceful, the muscles on the receiving end should respond with mightier contractions. Functionally, they would be stronger. © 2020 The New York Times Company

Keyword: Movement Disorders; Learning & Memory
Link ID: 27343 - Posted: 07.02.2020

By William Schwalbe More than three years ago, I came down with a mysterious illness I thought might be a flu, but turned out to be something entirely different. My blizzard of symptoms began innocuously in November 2016 with terribly cold feet. So cold that even when I got under the covers with a hot water bottle between them, and they were warm to the touch, they still felt like painful ice-blocks. At other times, I had the equally unpleasant sensation that my feet and shins were burning or already burnt. A few weeks later, I started to experience intense throbbing pain in all my toes, as if someone had seconds before stomped on them with heavy boots, which made walking or standing difficult. Often my legs were so heavy that I could barely move them. Occasionally, my feet turned bright red. And every few hours came shooting pains, electric shocks that traveled up my legs. In my 55 years on earth, I’d never felt pain like that — except when a dentist drilled without Novocain. All the symptoms increased at night, so sleep became elusive. I wound up sticking my feet outside the covers because even a sheet brushing against them proved too painful to bear. Before long, the same panoply of pains had moved to my hands and then arms — and occasionally my face and stomach. Heat made the symptoms worse; cold and damp made them much worse. But often these pains flared for no discernible reason. Totally unrelated, or so I thought, were other things that began to go wrong with me over the next few months: I often found myself pouring with sweat from my forehead, but became unable to sweat on my legs and arms; I lost all the hair on my lower legs; I was increasingly faint and dizzy, with my heart racing whenever I changed position or had a shower; and I was experiencing a fatigue and bone-pain so profound that every few hours I needed to stop whatever I was doing and lie down on the floor. © 1996-2020 The Washington Post

Keyword: Pain & Touch
Link ID: 27334 - Posted: 06.29.2020

Ruth Williams Turning off just one factor in the brain’s astrocyte cells is sufficient to convert them into neurons in live mice, according to a paper published in Nature today (June 24) and one this spring by another research team in Cell. By flipping this cellular identity switch, researchers have, to some extent, been able to reverse the neuron loss and motor deficits caused by a Parkinson’s-like illness. Not everyone is entirely convinced by the claims. “I think this is very exciting work,” says Pennsylvania State University’s Gong Chen of the Nature paper. It reaffirms that “using the brain’s internal glial cells to regenerate new neurons is a really new avenue for the treatment of brain disorders,” he continues. Chen, who is also based at Jinan University and is the chief scientific officer for NeuExcell—a company developing astrocyte-to-neuron conversion therapies—has performed such conversions in the living mouse brain by a different method but was not involved in the new study. In Parkinson’s disease, dopaminergic neurons within the brain’s substantia nigra—a region in the midbrain involved in movement and reward—gradually die. This results in a deterioration of motor control, characterized by tremors and other types of dyskinesia, with other faculties such as cognition and mood sometimes affected too, especially at later stages of the disease. While treatments to boost diminishing dopamine levels, such as the drug levodopa, can ameliorate symptoms, none can stop the underlying disease process that relentlessly eats away at the patient’s neurological functions and quality of life. © 1986–2020 The Scientist.

Keyword: Parkinsons; Glia
Link ID: 27324 - Posted: 06.26.2020

As we open computers to connect with each other remotely, motor neurons in our spinal cord are opening synaptic pathways to connect with our muscles physically. We rarely think about these electrical signals passing back and forth between computers or our neurons and muscles, until those signals are lost. Kennedy’s disease, a neuromuscular degenerative disease, affects 1 in 40,000 men every year. Little progress has been made in understanding its biological basis since it was identified in the 1960s, but one promising lead may be a family of proteins known as neurotrophic factors. MSU scientists Cynthia Jordan, professor in the College of Natural Science Neuroscience Program, and Katherine Halievski, former Ph.D. student in Jordan’s Lab and lead author, published a benchmark study in the Journal of Physiology describing the key role of one of these proteins in Kennedy’s disease: Brain-Derived Neurotrophic Factor (BDNF). “There were stories that neurotrophic factors could slow down neurodegenerative diseases, but where they fell short was really understanding how they slow down the disease,” Jordan explained. “Where this paper and Katherine’s work stand alone is in using classic neuroscience techniques to understand how BDNF improved neuromuscular function at the cellular level.” Motor neurons are cells that carry signals from the brain to every muscle in the body — fast twitch muscles that perform quick, high impact movements such as jumping, and slow-twitch muscles that sustain long contractions such as standing. At each step in the pathway — from the neuron, along the synaptic pathway and to the muscle — BDNF supports the process, giving both neurons and muscles what they need to connect, survive and thrive. © Michigan State University

Keyword: Movement Disorders; Hormones & Behavior
Link ID: 27320 - Posted: 06.24.2020

Jon Hamilton A neurologist who encased his healthy right arm in a pink fiberglass cast for two weeks has shown how quickly the brain can change after an injury or illness. Daily scans of Dr. Nico Dosenbach's brain showed that circuits controlling his immobilized arm disconnected from the body's motor system within 48 hours. But during the same period, his brain began to produce new signals seemingly meant to keep those circuits intact and ready to reconnect quickly with the unused limb. Dosenbach, an assistant professor at Washington University School of Medicine in St. Louis, repeated the experiment on two colleagues (their casts were purple and blue) and got the same result. In all three people, the disconnected brain circuits quickly reconnected after the cast was removed. The study, published online in the journal Neuron, shows that "within a few days, we can rearrange some of the most fundamental, most basic functional relationships of the brain," Dosenbach says. It suggests it is possible to reverse brain changes caused by disuse of a limb after a stroke or brain injury. The results of the study appear to support the use of something called constraint-induced movement therapy, or CIMT, which helps people – usually children — regain the use of a disabled arm or hand by constraining the other, healthy limb with a sling, splint or cast. Previous studies of CIMT have produced mixed results, in part because they focused on brain changes associated with increased use of a disabled arm, Dosenbach says. "We looked at the effect of actually not using an arm because we thought that was a much more powerful intervention," he says. © 2020 npr

Keyword: Stroke
Link ID: 27311 - Posted: 06.19.2020

by Tessa van Leeuwen, Rob van Lier Have you ever considered what your favorite piece of music tastes like? Or the color of Tuesday? If the answer is yes, you might be a synesthete. For people with synesthesia, ordinary sensory events, such as listening to music or reading text, elicit experiences involving other senses, such as perceiving a taste or seeing a color. Synesthesia is not to be confused with common metaphors — such as saying someone ‘sees red’ to describe anger. Instead, synesthetic associations are perceptual, highly specific and idiosyncratic, and typically stable beginning in childhood. And many types exist: A taste can have a shape, a word can have a color, the months of the year may be experienced as an array around the body. In the general population, the phenomenon is relatively rare: Only 2 to 4 percent of people have it. But as much as 20 percent of people with autism experience synesthesia1,2. Why would two relatively rare conditions occur together so often? Over the past few years, researchers have found that people with synesthesia or autism share many characteristics. Synesthetes often have sensory sensitivities and attention differences, as well as other autism traits3,4. The two conditions also share brain connectivity patterns and possibly genes, suggesting they have common biological underpinnings. © 2020 Simons Foundation

Keyword: Autism
Link ID: 27304 - Posted: 06.17.2020

By Sam Roberts Oleh Hornykiewicz, a Polish-born pharmacologist whose breakthrough research on Parkinson’s disease has spared millions of patients the tremors and other physical impairments it can cause, died on May 27 in Vienna. He was 93. His death was confirmed by his longtime colleague, Professor Stephen J. Kish of the University of Toronto, where Professor Hornykiewicz (pronounced whor-nee-KEE-eh-vitch) taught from 1967 until his retirement in 1992. Professor Hornykiewicz was among several scientists who were considered instrumental in first identifying a deficiency of the neurotransmitter dopamine as a cause of Parkinson’s disease, and then in perfecting its treatment with L-dopa, an amino acid found in fava beans. The Nobel laureate Dr. Arvid Carlsson and his colleagues had earlier shown that dopamine played a role in motor function. Drawing on that research, Professor Hornykiewicz and his assistant, Herbert Ehringer, discovered in 1960 that the brains of patients who had died of Parkinson’s had very low levels of dopamine. He persuaded another one of his collaborators, the neurologist Walther Birkmayer, to inject Parkinson’s patients with L-dopa, the precursor of dopamine, which could cross the barrier between blood vessels and the brain and be converted into dopamine by enzymes in the body, thus replenishing those depleted levels. The treatment alleviated symptoms of the disease, and patients who had been bedridden started walking. The initial results of this research were published in 1961 and presented at a meeting of the Medical Society of Vienna. The “L-dopa Miracle,” as it was called, inspired Dr. Oliver Sacks’s memoir “Awakenings” (1973) and the fictionalized movie of the same name in 1990. © 2020 The New York Times Company

Keyword: Parkinsons
Link ID: 27299 - Posted: 06.13.2020