Chapter 13. Memory and Learning

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1917

By Laura Sanders What does it feel like to be a rat? We will never know, but some very unusual mice may now have an inkling. In a series of new experiments, bits of rat brain grew inside the brains of mice. Donor stem cells from rats formed elaborate — and functional — neural structures in mice’s brains, despite being from a completely different species, researchers report in two papers published April 25 in Cell. The findings are “remarkable,” says Afsaneh Gaillard, a neuroscientist at INSERM and the University of Poitiers in France. “The ability to generate specific neuronal cells that can successfully integrate into the brain may provide a solution for treating a variety of brain diseases associated with neuronal loss.” These chimeric mice are helping to reveal just how flexible brain development can be (SN: 3/29/23). And while no one is suggesting that human brains could be grown in another animal, the results may help clarify biological details relevant to interspecies organ transplants, the researchers say. The success of these rat-mouse hybrids depended on timing: The rat and mouse cells had to grow into brains together from a very young stage. Stem cells from rats that had the potential to mature into several different cell types were injected into mouse embryos. From there, these rat cells developed alongside mice cells in the growing brain, though researchers couldn’t control exactly where the rat cells ended up. In one set of experiments, researchers first cleared the way for these rat cells to develop in the young mouse brains. Stem cell biologist Jun Wu and colleagues used a form of the genetic tool CRISPR to inactivate a mouse gene that instructs their brain cells to build a forebrain, a large region involved in learning, remembering and sensing the world. This left the mice without forebrains — normally, a lethal problem. © Society for Science & the Public 2000–2024.

Keyword: Development of the Brain; Neurogenesis
Link ID: 29274 - Posted: 04.26.2024

Sofia Quaglia Noise pollution from traffic stunts growth in baby birds, even while inside the egg, research has found. Unhatched birds and hatchlings that are exposed to noise from city traffic experience long-term negative effects on their health, growth and reproduction, the study found. “Sound has a much stronger and more direct impact on bird development than we knew before,” said Dr Mylene Mariette, a bird communication expert at Deakin University in Australia and a co-author of the study, published in the journal Science. “It would be wise to work more to reduce noise pollution.” A growing body of research has suggested that noise pollution causes stress to birds and makes communication harder for them. But whether birds are already distressed at a young age because they are affected by noise, or by how noise disrupts their environment and parental care, was still unclear. Mariette’s team routinely exposed zebra finch eggs for five days to either silence, soothing playbacks of zebra finch songs, or recordings of city traffic noises such as revving motors and cars driving past. They did the same with newborn chicks for about four hours a night for up to 13 nights, without exposing the birds’ parents to the sounds. They noticed that the bird eggs were almost 20% less likely to hatch if exposed to traffic noise. The chicks that did hatch were more than 10% smaller and almost 15% lighter than the other hatchlings. When the team ran analyses on their red blood cells and their telomeres – a piece of DNA that shortens with stress and age – they were more eroded and shorter than their counterparts’. The effects continued even after the chicks were no longer exposed to noise pollution, and carried over into their reproductive age four years later. The birds disturbed by noise during the early stages of their lives produced fewer than half as many offspring as their counterparts. © 2024 Guardian News & Media Limited

Keyword: Hearing; Development of the Brain
Link ID: 29273 - Posted: 04.26.2024

By Sara Reardon Researchers have hailed organoids — 3D clusters of cells that mimic aspects of human organs — as a potential way to test drugs and even eliminate some forms of animal experimentation. Now, in two studies published on 24 April in Nature1,2, biologists have developed gut and brain organoids that could improve understanding of colon cancer and help to develop treatments for a rare neurological disorder. “In the last ten years, people spent a lot of time to develop and understand how to make organoids,” says Shuibing Chen, a chemical biologist at Weill Cornell Medical College in New York City. “But this is the time now to think more about how to use” the models. Organoids — particularly those made from human stem cells — sometimes reveal things that animal models can’t, says Sergiu Pașca, a neuroscientist at Stanford University in California and a co-author of one of the studies1. Pașca’s group studies Timothy syndrome: a genetic disorder involving autism, neurological problems and heart conditions that affects only a few dozen people in the world. Timothy syndrome is caused by a single mutation in a gene called CACNA1C, which encodes a channel through which calcium ions enter cells including neurons. Pașca says that there are no good animal models for Timothy syndrome because the underlying mutation doesn’t always cause the same symptoms in rodents. “It became very clear to us we’d need to find a way of testing in vivo,” he says. © 2024 Springer Nature Limited

Keyword: Development of the Brain
Link ID: 29271 - Posted: 04.26.2024

By Diana Kwon Overall, people in U.S. live longer than they did a hundred years ago. The growing number of people reaching old age has meant an increased proportion are at risk of developing dementia or Alzheimer’s disease, illnesses that typically strike later in life. However, researchers have found that, in the U.S. and elsewhere, dementia risk may actually be decreasing, at least in a subset of the population. A new study provides a potential explanation for this trend: Human brains may be getting larger—and thus more resilient to degeneration—over time. Several large population studies in countries including the U.S. and Great Britain have found that, in recent decades, the number of new cases, or incidence, of dementia has declined. Among these is the Framingham Heart Study, which has been collecting data from individuals living in Framingham, Massachusetts since 1948. Now accommodating a third generation of participants, the study includes data from more than 15,000 people. In 2016, Sudha Seshadri, a neurologist at UT Health San Antonio and her colleagues published findings revealing that while the prevalence—the total number of people with dementia—had increased, the incidence had declined since the late 1970s. “That was a piece of hopeful news,” Seshadri says. “It suggested that over 30 years, the average age at which somebody became symptomatic had gone up.” These findings left the team wondering: What was the cause of this reduced dementia risk? While the cardiovascular health of the Framingham residents and their descendants—which can influence the chances of developing dementia—had also improved over the decades, this alone could not fully explain the decline. On top of that, the effect only appeared in people who had obtained a high school diploma, which, according to Seshadri, pointed to the possibility that greater resilience against dementia may result from changes that occur in early life. © 2024 SCIENTIFIC AMERICAN,

Keyword: Development of the Brain; Learning & Memory
Link ID: 29265 - Posted: 04.20.2024

By Saima S. Iqbal Before becoming a researcher, Aimee Grant worked as a caregiver for six years in Cornwall, England, supporting autistic adults in group homes. But only more than a decade later, after befriending an autistic colleague at a sociology conference, did she realize she was autistic herself. The stereotypical view of autism as a brain impairment more commonly found in men made it difficult for Grant to make sense of her internal world. From an early age, she struggled to pick up on important social cues and found the sounds and scents in her environment distractingly painful. But like many children in her generation, she says, she grew accustomed to either dismissing or disguising her discomfort. It was by listening to some of the stories of her female peers that Grant saw that the label could fit. Receiving a diagnosis in 2019 prompted her to “reframe [my] entire life,” she says. She began working with her mind rather than against it. She no longer felt the same pressure to seem as nonautistic as possible with friends and family members, and she began to make use of accommodations at work, such as a light filter for her computer monitor. Today, as a public health researcher at Swansea University in Wales, Grant aims to uncover the lived experience of autistic people. Many scientists and clinicians see autism as a developmental disorder that hinders a person’s ability to understand and communicate with others. Grant believes that their work often obscures the heterogeneity of autism. And because many studies view autism as a disease, they overlook the reality that autistic people can feel more disabled by widespread misunderstanding and a lack of accommodations than by autistic traits themselves. © Society for Science & the Public 2000–2024.

Keyword: Autism
Link ID: 29261 - Posted: 04.20.2024

By Bob Holmes Like many of the researchers who study how people find their way from place to place, David Uttal is a poor navigator. “When I was 13 years old, I got lost on a Boy Scout hike, and I was lost for two and a half days,” recalls the Northwestern University cognitive scientist. And he’s still bad at finding his way around. The world is full of people like Uttal — and their opposites, the folks who always seem to know exactly where they are and how to get where they want to go. Scientists sometimes measure navigational ability by asking someone to point toward an out-of-sight location — or, more challenging, to imagine they are someplace else and point in the direction of a third location — and it’s immediately obvious that some people are better at it than others. “People are never perfect, but they can be as accurate as single-digit degrees off, which is incredibly accurate,” says Nora Newcombe, a cognitive psychologist at Temple University who coauthored a look at how navigational ability develops in the 2022 Annual Review of Developmental Psychology. But others, when asked to indicate the target’s direction, seem to point at random. “They have literally no idea where it is.” While it’s easy to show that people differ in navigational ability, it has proved much harder for scientists to explain why. There’s new excitement brewing in the navigation research world, though. By leveraging technologies such as virtual reality and GPS tracking, scientists have been able to watch hundreds, sometimes even millions, of people trying to find their way through complex spaces, and to measure how well they do. Though there’s still much to learn, the research suggests that to some extent, navigation skills are shaped by upbringing. Nurturing navigation skills

Keyword: Learning & Memory
Link ID: 29255 - Posted: 04.13.2024

By Joanne Silberner In March, the sons of Gabriel García Márquez, the Nobel Prize-winning Colombian writer, published a posthumous novel against the specific wishes their father expressed before he died in 2014 at the age of 87. García Márquez had struggled through several versions of the book as dementia set in, and, perhaps stung by uncharacteristic negative reviews from his previous novel, didn’t want the new one published. “Until August,” the story of a woman who travels to her mother’s grave once a year and takes a new lover on each visit, got mixed reviews. Some were outright harsh. In The New York Times, Michael Greenberg wrote “It would be hard to imagine a more unsatisfying goodbye.” García Márquez’s decline, he continued, “seems to have been steep enough to prevent him from holding together the kind of imagined world that the writing of fiction demands.” Wendy Mitchell, who was an administrator with England’s National Health Service until her diagnosis of early-onset Alzheimer’s disease in 2014, recalled the moment she learned of the publication plans last year. “I type every day for fear of dementia snatching away that creative skill, which I see as my escape from dementia,” she wrote last October in The Guardian. “Maybe Márquez thought the same?” The novel’s publication raises some vital questions about living with an aging and perhaps ailing brain. What do mild cognitive impairment and dementia do to our creativity? How do these conditions affect our ability to use words, formulate sentences, and craft stories? Neuroscientists have been exploring these questions for several decades. First, a few definitions. People with mild cognitive impairment have lost more of their cognitive functioning than others their age, and often struggle to remember things. But they’re capable of managing daily activities like dressing, eating, bathing, and finding their way around. In dementia, cognitive difficulties have increased enough to interfere with daily life, and personality changes are more likely.

Keyword: Alzheimers
Link ID: 29254 - Posted: 04.13.2024

By Nicole Rust We readily (and reasonably) accept that the causes of memory dysfunction, including Alzheimer’s disease, reside in the brain. The same is true for many problems with seeing, hearing and motor control. We acknowledge that understanding how the brain supports these functions is important for developing treatments for their corresponding dysfunctions, including blindness, deafness and Parkinson’s disease. Applying the analogous assertion to mood—that understanding how the brain supports mood is crucial for developing more effective treatments for mood disorders, such as depression—is more controversial. For brain researchers unfamiliar with the controversy, it can be befuddling. You might hear, “Mental disorders are psychological, not biological,” and wonder, what does that mean, exactly? Experts have diverse opinions on the matter, with paper titles ranging from “Brain disorders? Not really,” to “Brain disorders? Precisely.” Even though a remarkable 21 percent of adults in the United States will experience a mood disorder at some point in their lives, we do not fully understand what causes them, and existing treatments do not work for everyone. How can we best move toward an impactful understanding of mood and mood disorders, with the longer-term goal of helping these people? What, if anything, makes mood fundamentally different from, say, memory? The answer turns out to be complex and nuanced—here, I hope to unpack it. I also ask brain and mind researchers with diverse perspectives to chime in. Among contemporary brain and mind researchers, I have yet to find any whose position is driven by the notion that some force in the universe beyond the brain, like a nonmaterial soul, gives rise to mood. Rather, the researchers generally agree that our brains mediate all mental function. If everyone agrees that both memory and mood disorders follow from things that happen in the brain, why would the former but not the latter qualify as “brain disorders”? © 2024 Simons Foundation

Keyword: Depression; Learning & Memory
Link ID: 29251 - Posted: 04.11.2024

By Helen Bradshaw Walk into a gas station in the United States, and you may see more than just boxes of cigarettes lining the back wall. Colorful containers containing delta-8, a form of the substance THC, are sold in gas stations and shops across the country, and teens are buying them. A recent survey of more than 2,000 U.S. high school seniors found that more than 11 percent of them had used delta-8 in the past year, researchers report March 12 in JAMA. This is the first year the Monitoring the Future study, one of the leading nationally representative surveys of drug use trends among adolescents in the United States, looked at delta-8 use. Because more than 1 in 10 senior students said they used the drug, the survey team plans to monitor delta-8 use every year going forward. “We don’t really want to see any kids being exposed to cannabis, because it potentially increases their risk for developmental harms … and some psychiatric reactions” such as suicidal thoughts, says Alyssa Harlow, a researcher on the survey and an epidemiologist at the University of Southern California Keck School of Medicine in Los Angeles. Despite its prevalence, especially in the South and the Midwest, delta-8 is still new to consumers and research. Science News talked with Harlow and addiction researcher Jessica Kruger of the University of Buffalo in New York to help explain the delta-8 craze and its effects on kids. What is delta-8-THC? Cannabis plants contain over 100 compounds known as cannabinoids. Delta-8 is one of them. The most well-known is delta-9-tetrahydrocannabinol, or delta-9-THC. © Society for Science & the Public 2000–2024.

Keyword: Drug Abuse
Link ID: 29248 - Posted: 04.11.2024

Jon Hamilton Sam and John Fetters, 19, are identical twins at opposite ends of the autism spectrum. Sam is a sophomore at Amherst College who plans to double major in history and political science. In his free time, he runs marathons. John attends a special school, struggles to form sentences, and likes to watch "Teletubbies" and "Sesame Street." Two brothers. Same genes. Different flavors of autism. To scientists, twins like Sam and John pose an important question: How can a disorder that is known to be highly genetic look so different in siblings who share the same genome? "That is one of the greatest mysteries right now in research on autism," says Dr. Stephanie Morris, a pediatric neurologist at the Kennedy Krieger Institute in Baltimore. Solving that mystery could help explain autism's odd mix of nature and nurture, Morris says. It also might help "modify the trajectory" of autistic children experiencing speech and language delays, or difficulty with social communication. Identical twins on separate paths Sam and John are spending the weekend with their mom, Kim Leaird, at the family's apartment in West Tisbury, a small town on Martha's Vineyard. The twins are crowded together on a couch. Even seated, they look tall. Standing, Sam is 6 feet five inches, his brother just an inch shorter. John lets Sam do most of the talking. He frequently touches his brother, who sometimes takes his hand. John has "a truly tremendous amount of empathy," Sam says. "He's able to be very supportive." © 2024 npr

Keyword: Autism; Genes & Behavior
Link ID: 29239 - Posted: 04.04.2024

by Alex Blasdel Patient One was 24 years old and pregnant with her third child when she was taken off life support. It was 2014. A couple of years earlier, she had been diagnosed with a disorder that caused an irregular heartbeat, and during her two previous pregnancies she had suffered seizures and faintings. Four weeks into her third pregnancy, she collapsed on the floor of her home. Her mother, who was with her, called 911. By the time an ambulance arrived, Patient One had been unconscious for more than 10 minutes. Paramedics found that her heart had stopped. After being driven to a hospital where she couldn’t be treated, Patient One was taken to the emergency department at the University of Michigan. There, medical staff had to shock her chest three times with a defibrillator before they could restart her heart. She was placed on an external ventilator and pacemaker, and transferred to the neurointensive care unit, where doctors monitored her brain activity. She was unresponsive to external stimuli, and had a massive swelling in her brain. After she lay in a deep coma for three days, her family decided it was best to take her off life support. It was at that point – after her oxygen was turned off and nurses pulled the breathing tube from her throat – that Patient One became one of the most intriguing scientific subjects in recent history. For several years, Jimo Borjigin, a professor of neurology at the University of Michigan, had been troubled by the question of what happens to us when we die. She had read about the near-death experiences of certain cardiac-arrest survivors who had undergone extraordinary psychic journeys before being resuscitated. Sometimes, these people reported travelling outside of their bodies towards overwhelming sources of light where they were greeted by dead relatives. Others spoke of coming to a new understanding of their lives, or encountering beings of profound goodness. Borjigin didn’t believe the content of those stories was true – she didn’t think the souls of dying people actually travelled to an afterworld – but she suspected something very real was happening in those patients’ brains. In her own laboratory, she had discovered that rats undergo a dramatic storm of many neurotransmitters, including serotonin and dopamine, after their hearts stop and their brains lose oxygen. She wondered if humans’ near-death experiences might spring from a similar phenomenon, and if it was occurring even in people who couldn’t be revived. © 2024 Guardian News & Media Limited

Keyword: Consciousness; Attention
Link ID: 29236 - Posted: 04.02.2024

By Paula Span The phone awakened Doug Nordman at 3 a.m. A surgeon was calling from a hospital in Grand Junction, Colo., where Mr. Nordman’s father had arrived at the emergency room, incoherent and in pain, and then lost consciousness. At first, the staff had thought he was suffering a heart attack, but a CT scan found that part of his small intestine had been perforated. A surgical team repaired the hole, saving his life, but the surgeon had some questions. “Was your father an alcoholic?” he asked. The doctors had found Dean Nordman malnourished, his peritoneal cavity “awash with alcohol.” The younger Mr. Nordman, a military personal finance author living in Oahu, Hawaii, explained that his 77-year-old dad had long been a classic social drinker: a Scotch and water with his wife before dinner, which got topped off during dinner, then another after dinner, and perhaps a nightcap. Having three to four drinks daily exceeds current dietary guidelines, which define moderate consumption as two drinks a day for men and one for women, or less. But “that was the normal drinking culture of the time,” said Doug Nordman, now 63. At the time of his 2011 hospitalization, though, Dean Nordman, a retired electrical engineer, was widowed, living alone and developing symptoms of dementia. He got lost while driving, struggled with household chores and complained of a “slipping memory.” He had waved off his two sons’ offers of help, saying he was fine. During that hospitalization, however, Doug Nordman found hardly any food in his father’s apartment. Worse, reviewing his father’s credit card statements, “I saw recurring charges from the Liquor Barn and realized he was drinking a pint of Scotch a day,” he said. Public health officials are increasingly alarmed by older Americans’ drinking. The annual number of alcohol-related deaths from 2020 through 2021 exceeded 178,000, according to recently released data from the Centers for Disease Control and Prevention: more deaths than from all drug overdoses combined. © 2024 The New York Times Company

Keyword: Drug Abuse; Alzheimers
Link ID: 29234 - Posted: 04.02.2024

By Markham Heid The human hand is a marvel of nature. No other creature on Earth, not even our closest primate relatives, has hands structured quite like ours, capable of such precise grasping and manipulation. But we’re doing less intricate hands-on work than we used to. A lot of modern life involves simple movements, such as tapping screens and pushing buttons, and some experts believe our shift away from more complex hand activities could have consequences for how we think and feel. “When you look at the brain’s real estate — how it’s divided up, and where its resources are invested — a huge portion of it is devoted to movement, and especially to voluntary movement of the hands,” said Kelly Lambert, a professor of behavioral neuroscience at the University of Richmond in Virginia. Dr. Lambert, who studies effort-based rewards, said that she is interested in “the connection between the effort we put into something and the reward we get from it” and that she believes working with our hands might be uniquely gratifying. In some of her research on animals, Dr. Lambert and her colleagues found that rats that used their paws to dig up food had healthier stress hormone profiles and were better at problem solving compared with rats that were given food without having to dig. She sees some similarities in studies on people, which have found that a whole range of hands-on activities — such as knitting, gardening and coloring — are associated with cognitive and emotional benefits, including improvements in memory and attention, as well as reductions in anxiety and depression symptoms. These studies haven’t determined that hand involvement, specifically, deserves the credit. The researchers who looked at coloring, for example, speculated that it might promote mindfulness, which could be beneficial for mental health. Those who have studied knitting said something similar. “The rhythm and repetition of knitting a familiar or established pattern was calming, like meditation,” said Catherine Backman, a professor emeritus of occupational therapy at the University of British Columbia in Canada who has examined the link between knitting and well-being. © 2024 The New York Times Company

Keyword: Learning & Memory; Stress
Link ID: 29231 - Posted: 04.02.2024

By Marta Zaraska The renowned Polish piano duo Marek and Wacek didn’t use sheet music when playing live concerts. And yet onstage the pair appeared perfectly in sync. On adjacent pianos, they playfully picked up various musical themes, blended classical music with jazz and improvised in real time. “We went with the flow,” said Marek Tomaszewski, who performed with Wacek Kisielewski until Wacek’s death in 1986. “It was pure fun.” The pianists seemed to read each other’s minds by exchanging looks. It was, Marek said, as if they were on the same wavelength. A growing body of research suggests that might have been literally true. Dozens of recent experiments studying the brain activity of people performing and working together — duetting pianists, card players, teachers and students, jigsaw puzzlers and others — show that their brain waves can align in a phenomenon known as interpersonal neural synchronization, also known as interbrain synchrony. “There’s now a lot of research that shows that people interacting together display coordinated neural activities,” said Giacomo Novembre, a cognitive neuroscientist at the Italian Institute of Technology in Rome, who published a key paper on interpersonal neural synchronization last summer. The studies have come out at an increasing clip over the past few years — one as recently as last week — as new tools and improved techniques have honed the science and theory. They’re finding that synchrony between brains has benefits. It’s linked to better problem-solving, learning and cooperation, and even with behaviors that help others at a personal cost. What’s more, recent studies in which brains were stimulated with an electric current hint that synchrony itself might cause the improved performance observed by scientists. © 2024 the Simons Foundation.

Keyword: Attention
Link ID: 29229 - Posted: 03.30.2024

By Jake Buehler Much like squirrels, black-capped chickadees hide their food, keeping track of many thousands of little treasures wedged into cracks or holes in tree bark. When a bird returns to one of their many food caches, a particular set of nerve cells in the memory center of their brains gives a brief flash of activity. When the chickadee goes to another stash, a different combination of neurons lights up. These neural combinations act like bar codes, and identifying them may give key insights into how episodic memories — accounts of specific past events, like what you did on your birthday last year or where you’ve left your wallet — are encoded and recalled in the brain, researchers report March 29 in Cell. This kind of memory is challenging to study in animals, says Selmaan Chettih, a neuroscientist at Columbia University. “You can’t just ask a mouse what memories it formed today.” But chickadees’ very precise behavior provides a golden opportunity for researchers. Every time a chickadee makes a cache, it represents a single, well-defined moment logged in the hippocampus, a structure in the vertebrate brain vital for memory. To study the birds’ episodic memory, Chettih and his colleagues built a special arena made of 128 small, artificial storage sites. The team inserted small probes into five chickadees’ brains to track the electrical activity of individual neurons, comparing that activity with detailed recordings of the birds’ body positions and behaviors. A black-capped chickadee stores sunflower seeds in an artificial arena made of 128 different perches and pockets. These birds excel at finding their hidden food stashes. The aim of the setup was to see how their brain stores and retrieves the memory of each hidey-hole. Researchers closely observed five chickadees, comparing their caching behavior with the activity from nerve cells in their hippocampus, the brain’s memory center. © Society for Science & the Public 2000–2024.

Keyword: Learning & Memory
Link ID: 29228 - Posted: 03.30.2024

By Saugat Bolakhe For desert ants, Earth’s magnetic field isn’t just a compass: It may also sculpt their brains. Stepping outside their nest for the first time, young ants need to learn how to forage. The ants train partly by walking a loop near their nests for the first three days. During this stroll, they repeatedly pause and then pirouette to gaze back at the nest entrance, learning how to find their way back home. But when the magnetic field around the nest entrance was disturbed, ant apprentices couldn’t figure out where to look, often gazing in random directions, researchers report in the Feb. 20 Proceedings of the National Academy of Sciences. What’s more, the altered magnetic field seemed to affect connections between neurons in the learning and memory centers in the young ants’ brains. The finding “may make it easier to better understand how magnetic fields are sensed [in animals]” as scientists now know one way that magnetic fields can influence brain development, says Robin Grob, a biologist at the Norwegian University of Science and Technology in Trondheim. For years, scientists have known that some species of birds, fishes, turtles, moths and butterflies rely on Earth’s magnetic field to navigate (SN: 4/3/18). In 2018, Grob and other scientists added desert ants to that list. Young ants first appeared to use the magnetic field as a reference while learning how to use landmarks and the sun as guides to orient themselves in the right direction to gaze back toward the nest with its small, hard-to-see entrance. However, knowing where in the brain magnetic cues are processed has proved challenging. © Society for Science & the Public 2000–2024.

Keyword: Animal Migration; Development of the Brain
Link ID: 29227 - Posted: 03.30.2024

By Angie Voyles Askham For Christopher Zimmerman, it was oysters: After a bout of nausea on a beach vacation, he could hardly touch the mollusks for months. For others, that gut-lurching trigger is white chocolate, margaritas or spicy cinnamon candy. Whatever the taste, most people know the feeling of not being able to stomach a food after it has caused—or seemed to cause—illness. That response helps us learn which foods are safe, making it essential for survival. But how the brain links an unpleasant gastric event to food consumed hours prior has long posed a mystery, says Zimmerman, who is a postdoctoral fellow in Ilana Witten’s lab at Princeton University. The time scale for this sort of conditioned food aversion is an order of magnitude different from other types of learning, which involve delays of only a few seconds, says Peter Dayan, director of computational neuroscience at the Max Planck Institute for Biological Cybernetics, who was not involved in the work. “You need to have something that bridges that gap in time” between eating and feeling ill, he says. A newly identified neuronal circuit can do just that. Neurons in the mouse brainstem that respond to drug-induced nausea reactivate a specific subset of cells in the animals’ central amygdala that encode information about a recently tasted food. And that reactivation happens with novel—but not familiar—flavors, according to work that Zimmerman presented at the annual COSYNE meeting in Lisbon last month. With new flavors, animals seem primed to recall a recent meal if they get sick, Zimmerman says. As he put it in his talk, “it suggests that the common phrase we associate with unexpected nausea, that ‘it must be something I ate,’ is literally built into the brain in the form of this evolutionarily hard-wired prior.” © 2024 Simons Foundation

Keyword: Learning & Memory; Evolution
Link ID: 29226 - Posted: 03.30.2024

By Catherine Offord Bone marrow transplants between mice can transmit symptoms and pathology associated with Alzheimer’s disease, according to a controversial study published today in Stem Cell Reports. Its authors found that healthy mice injected with marrow from a mouse strain carrying an extremely rare, Alzheimer’s-linked genetic mutation later developed cognitive problems and abnormal clumping of proteins in the brain. In claims that other scientists in the field have criticized as overstated, the team says its findings demonstrate “Alzheimer’s disease transmission” and support screening of human bone marrow, organ, and blood donors for mutations related to neurodegeneration. “The findings are not by any means conclusive,” says Lary Walker, a neuroscientist at Emory University. Although the team’s approach offers an interesting way to study potential causes of neurodegeneration, he says, “the mice do not have Alzheimer’s disease,” only certain symptoms that mimic those of the disorder and require further study. He and other scientists stress that the new findings should not deter people who medically need bone marrow or other transplants. Alzheimer’s is partly characterized by so-called plaques of beta amyloid, a fragment of a larger protein called APP, around cells in the brain. Although there are rare, early-onset versions of the disease driven by specific mutations in the gene coding for APP or related proteins, most cases arise in people over age 65 and don’t have a single known cause. Some research hints that in very unusual scenarios, Alzheimer’s could be transmitted via human tissue or medical equipment contaminated with disease-causing proteins. Earlier this year, for example, U.K. scientists described dementia and beta amyloid buildup in several people who had received injections of growth hormone from the brains of deceased donors. (The procedure was once a medical treatment for certain childhood disorders but was abandoned in the 1980s.)

Keyword: Alzheimers; Hormones & Behavior
Link ID: 29225 - Posted: 03.30.2024

By Max Kozlov Neurons (shown here in a coloured scanning electron micrograph) mend broken DNA during memory formation. Credit: Ted Kinsman/Science Photo Library When a long-term memory forms, some brain cells experience a rush of electrical activity so strong that it snaps their DNA. Then, an inflammatory response kicks in, repairing this damage and helping to cement the memory, a study in mice shows. The findings, published on 27 March in Nature1, are “extremely exciting”, says Li-Huei Tsai, a neurobiologist at the Massachusetts Institute of Technology in Cambridge who was not involved in the work. They contribute to the picture that forming memories is a “risky business”, she says. Normally, breaks in both strands of the double helix DNA molecule are associated with diseases including cancer. But in this case, the DNA damage-and-repair cycle offers one explanation for how memories might form and last. It also suggests a tantalizing possibility: this cycle might be faulty in people with neurodegenerative diseases such as Alzheimer’s, causing a build-up of errors in a neuron’s DNA, says study co-author Jelena Radulovic, a neuroscientist at the Albert Einstein College of Medicine in New York City. This isn’t the first time that DNA damage has been associated with memory. In 2021, Tsai and her colleagues showed that double-stranded DNA breaks are widespread in the brain, and linked them with learning2. To better understand the part these DNA breaks play in memory formation, Radulovic and her colleagues trained mice to associate a small electrical shock with a new environment, so that when the animals were once again put into that environment, they would ‘remember’ the experience and show signs of fear, such as freezing in place. Then the researchers examined gene activity in neurons in a brain area key to memory — the hippocampus. They found that some genes responsible for inflammation were active in a set of neurons four days after training. Three weeks after training, the same genes were much less active. © 2024 Springer Nature Limited

Keyword: Learning & Memory; Genes & Behavior
Link ID: 29223 - Posted: 03.28.2024

By Ingrid Wickelgren You see a woman on the street who looks familiar—but you can’t remember how you know her. Your brain cannot attach any previous experiences to this person. Hours later, you suddenly recall the party at a friend’s house where you met her, and you realize who she is. In a new study in mice, researchers have discovered the place in the brain that is responsible for both types of familiarity—vague recognition and complete recollection. Both, moreover, are represented by two distinct neural codes. The findings, which appeared on February 20 in Neuron, showcase the use of advanced computer algorithms to understand how the brain encodes concepts such as social novelty and individual identity, says study co-author Steven Siegelbaum, a neuroscientist at the Mortimer B. Zuckerman Mind Brain Behavior Institute at Columbia University. The brain’s signature for strangers turns out to be simpler than the one used for old friends—which makes sense, Siegelbaum says, given the vastly different memory requirements for the two relationships. “Where you were, what you were doing, when you were doing it, who else [was there]—the memory of a familiar individual is a much richer memory,” Siegelbaum says. “If you’re meeting a stranger, there’s nothing to recollect.” The action occurs in a small sliver of a brain region called the hippocampus, known for its importance in forming memories. The sliver in question, known as CA2, seems to specialize in a certain kind of memory used to recall relationships. “[The new work] really emphasizes the importance of this brain area to social processing,” at least in mice, says Serena Dudek, a neuroscientist at the National Institute of Environmental Health Sciences, who was not involved in the study. © 2024 SCIENTIFIC AMERICAN,

Keyword: Attention; Learning & Memory
Link ID: 29222 - Posted: 03.28.2024