Chapter 1. An Introduction to Brain and Behavior

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1155

By David Grimm More than 3 years after it hosted a workshop on the science and ethics of biomedical studies on monkeys, the National Institutes of Health (NIH) this week convened another workshop on nonhuman primate research. And much like the previous event, the meeting is drawing sharply divergent reactions from biomedical and animal advocacy groups. “It was a very good look at the opportunities and challenges of doing this type of research,” says Alice Ra’anan, director of government relations and science policy at the American Physiological Society, a group that represents nearly 10,000 scientists, doctors, and veterinarians. It was “an excellent and robust discussion around fostering rigorous research in nonhuman primates,” adds Matthew Bailey, president of that National Association for Biomedical Research. But Emily Trunnell, a research associate at People for the Ethical Treatment of Animals, an animal rights group, counters that the event was a wasted opportunity to talk about the ethics of using nonhuman primates in the first place. “It was just a bunch of scientists clamoring for more money and more monkeys.” The workshop comes at a time when scientists are using a near-record number of rhesus macaques, marmosets, and other nonhuman primates in biomedical research. The animals, many researchers say, have become increasingly important in revealing how the human brain works and in developing treatments for infectious diseases. There’s been a particular surge in demand for marmosets, which are being genetically engineered to serve as models for autism, Parkinson’s, and other neurological disorders. © 2020 American Association for the Advancement of Science.

Keyword: Animal Rights
Link ID: 27059 - Posted: 02.21.2020

Alison Abbott The use of animals in scientific research seems to be declining in the European Union, according to statistics gathered by the European Commission. The figures come from the first report on the state of animal research in the bloc since the introduction of tougher regulations 7 years ago. The report — published on 6 February — reviews the impact of an animal-research directive, legislation that was designed to reduce the use of animals in research and minimize their suffering. The directive, which came into effect in 2013, is widely considered to be one of the world’s toughest on animal research. According to the report, 9.39 million animals were used for scientific purposes in 2017 — the most recent year for which data have been collated — compared with 9.59 million in 2015. From 2015 to 2016, however, there was a slight increase, to 9.82 million. The report acknowledges that this prevents the confirmation of a clear decrease. But it concludes that, when compared with figures from before the directive came into force, the numbers suggest “a clear positive development”. In 2017, more than two-thirds of animals were used in basic or applied research (45% and 23%, respectively), and around one-quarter (23%) were involved in the testing of drugs and other chemicals to meet regulatory requirements. Other uses included the routine production of biological agents such as vaccines; teaching; and forensic investigations (see ‘Animals in science’). More than 60% of the animals used in 2017 were mice, 12% were rats, 13% were fish and 6% were birds. Dogs, cats and non-human primates made up just 0.3% of the total. © 2020 Springer Nature Limited

Keyword: Animal Rights
Link ID: 27039 - Posted: 02.14.2020

By Kelly Servick Since its launch in 2013, the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative has doled out about $1.3 billion in grants to develop tools that map and manipulate the brain. Until now, it has operated with no formal director. But last week, the National Institutes of Health (NIH), which manages the initiative and is a key funder, announced that neurobiologist John Ngai would take the helm starting in March. Ngai, whose lab at the University of California, Berkeley, focuses on the neural underpinnings of the sense of smell, has helped lead BRAIN-funded efforts to classify the brain’s dizzying array of cell types with RNA sequencing. Ngai told ScienceInsider about how the initiative is evolving and how he hopes to influence it. The interview has been edited for clarity and brevity. Q: Why is the BRAIN Initiative getting a director now? A: The initiative has been run day to day by a terrific team of senior program directors and staff with oversight from the 10 NIH institutes and centers that are involved in BRAIN. Walter Koroshetz [director of the National Institute of Neurological Disorders and Stroke] and Josh Gordon [director of the National Institute of Mental Health] have been overseeing the activities of BRAIN … kind of in addition to their “day jobs.” I think as enterprises emerge from their startup phase, which is typically the first 5 years, the question is how do you translate this into a sustainable enterprise, and yet maintain this cutting-edge innovation? … How do we leverage all the accomplishments that have been made, not just within BRAIN, but in molecular biology, in engineering, in chemistry and computer science, in data science. The initiative really will benefit from somebody thinking about this 24/7. © 2019 American Association for the Advancement of Science.

Keyword: Brain imaging; Chemical Senses (Smell & Taste)
Link ID: 27020 - Posted: 02.05.2020

Jordana Cepelewicz Part of the brain’s allure for scientists is that it is so deeply personal — arguably the core of who we are and what makes us human. But that fact also renders a large share of imaginable experiments on it monstrous, no matter how well intended. Neuroscientists have often had to swallow their frustration and settle for studying the brains of experimental animals or isolated human neurons kept alive in flat dishes — substitutes that come with their own ethical, practical and conceptual limitations. A new world of possibilities opened in 2008, however, when researchers learned how to create cerebral organoids — tiny blobs grown from human stem cells that self-organize into brainlike structures with electrically active neurons. Though no bigger than a pea, organoids hold enormous promise for improving our understanding of the brain: They can replicate aspects of human development and disease once thought impossible to observe in the laboratory. Scientists have already used organoids to make discoveries about schizophrenia, autism spectrum disorders and the microcephaly caused by the Zika virus. Yet the study of brain organoids can also be fraught with ethical dilemmas. “In order for it to be a good model, you want it to be as human as possible,” said Hank Greely, a law professor at Stanford University who specializes in ethical and legal issues in the biosciences. “But the more human it gets, the more you’re backing into the same sorts of ethics questions that are the reasons why you can’t just use living humans.” In the popular imagination, fueled by over-the-top descriptions of organoids as “mini-brains,” these questions often center on whether the tissue might become conscious and experience its unnatural existence as torture. The more immediate, realistic concerns that trouble experts are less sensational but still significant. It also doesn’t help that the study of organoids falls into an odd gap between other areas of research, complicating formal ethical oversight. Still, no one wants to see brain organoids’ potential discarded lightly. All Rights Reserved © 2020

Keyword: Development of the Brain
Link ID: 27007 - Posted: 01.29.2020

By Gretchen Vogel A prominent neuroscientist whose German lab was targeted by animal rights activists is heading to China, where he says he will be freer to pursue his work on macaques and other monkeys. Nikos Logothetis, a director at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany, told colleagues last week that the first members of his lab would move in the coming months to a new International Center for Primate Brain Research (ICPBR) in Shanghai, which he will co-direct with neuroscientist Poo Mu-Ming, scientific director of the Chinese Academy of Sciences’s Center for Excellence in Brain Science and Intelligence Technology. Logothetis says he will follow as soon as remaining lab members have finished their projects, likely by late 2020 or early 2021. The Chinese institute is building a new facility in Shanghai’s Songjiang district, which will house as many as 6000 nonhuman primates, including many transgenic monkeys. “Scientifically it’s incredible,” he says. “They have excellent groups working with CRISPR and genetic engineering.” And, he adds, the acceptance of nonhuman primate research by authorities and the public in China is much higher than in Europe. They “know that no other brain (besides that of humans themselves) can be a true help in making progress.” The move is another sign that China’s investment in neuroscience research, especially involving primates, is paying off, says Stefan Treue, a neuroscientist and director of the German Primate Center. “China has made incredible progress in an unbelievably short period of time. That is the positive side of a political system that is able to move very quickly,” he says. “The combination of political will and necessary resources mean that they have put together an impressive collection of neuroscientists.” © 2019 American Association for the Advancement of Science.

Keyword: Animal Rights
Link ID: 27000 - Posted: 01.28.2020

Suzana Herculano-Houzel Here’s something new to consider being thankful for at the dinner table: the long evolutionary journey that gave you your big brain and your long life. Courtesy of our primate ancestors that invented cooking over a million years ago, you are a member of the one species able to afford so many cortical neurons in its brain. With them come the extended childhood and the pushing century-long lifespan that together make human beings unique. All these bequests of your bigger brain cortex mean you can gather four generations around a meal to exchange banter and gossip, turn information into knowledge and even practice the art of what-not-to-say-when. You may even want to be thankful for another achievement of our neuron-crammed human cortices: all the technology that allows people spread over the globe to come together in person, on screens, or through words whispered directly into your ears long distance. I know I am thankful. But then, I’m the one proposing that we humans revise the way we tell the story of how our species came to be. Back when I had just received my freshly minted Ph.D. in neuroscience and started working in science communication, I found out that 6 in 10 college-educated people believed they only used 10% of their brains. I’m glad to say that they’re wrong: We use all of it, just in different ways at different times. The myth seemed to be supported by statements in serious textbooks and scientific articles that “the human brain is made of 100 billion neurons and 10 times as many supporting glial cells.” I wondered if those numbers were facts or guesses. Did anyone actually know that those were the numbers of cells in the human brain? No, they didn’t. © 2010–2019, The Conversation US, Inc.

Keyword: Intelligence; Neurogenesis
Link ID: 26857 - Posted: 11.29.2019

Lateshia Beachum A Chinese man sought medical attention for seizures and a headache that lasted nearly a month. Doctors found that tapeworms from undercooked meat were causing his pain. Researchers at the First Affiliated Hospital of Zhejiang University published a paper last week that details the plight of 46-year-old construction worker Zhu (an alias for the patient) in the eastern Zhejiang province of China who bought pork and mutton about a month ago for a spicy hot pot broth. Days later, the man started feeling dizzy, having headaches and experiencing epilepsy-like symptoms such as limb twitching and mouth foaming while trying to sleep at night, according to the report. Co-workers witnessed one of Zhu’s episodes and dialed for emergency help. He was seen at a hospital where scans and tests showed that he had multiple intracranial calcifications, abnormal deposits of calcium in blood vessels to the brain; and multiple intracranial lesions, according to researchers. Medical staff wanted to examine him further, but he dismissed their concerns because he didn’t want to spend more money, according to the report. The symptoms that sent Zhu to the hospital persisted after he left, researchers reported. He became frightened. He spoke with his relatives about seeking medical treatment before deciding on care at the First Affiliated Hospital of Zhejiang University Medical College. Huang Jianrong, the hospital’s chief doctor, consulted Zhu and learned that he had eaten pork and mutton not too long ago, according to the report.

Keyword: Miscellaneous
Link ID: 26855 - Posted: 11.29.2019

By Gary Stix Sigmund Freud never uttered the word neuroscience. Neither did Santiago Ramón y Cajal. It was biophysicist Francis Schmitt who grafted “neuro” with “science” in 1962 when he established the Neurosciences Research Program at MIT. The new moniker was intended to encompass a merging of relevant neuro disciplines, ranging as far afield as physiology, psychology, immunology, physics and chemistry. Brains and behaviors have been scrutinized for millennia. But as psychology blogger Vaughn Bell has pointed out, the 1960s marked a shift in perspective. Neuroscience was the formal name given by Schmitt. But the period represented the beginnings of a “neuroculture,” that put brain science on a pedestal —even leading to the familiar meme proclaiming “my brain made me do it.” One example was rooted in pharmaceutical companies’ development of psychiatric drugs that resulted in their investing “millions both into divining the neurochemistry of experience and into massive marketing campaigns that linked brain functions to the psyche,” Bell notes. The field received an adrenaline boost precisely 50 years ago with the founding of the Society for Neuroscience, allowing Schmitt’s collaborative vision to be globally shared. SFN’s first annual meeting in 1971 drew 1,395 attendees to Washington, D.C. This year’s wrapped up on October 23, bringing more than 27,500 to Chicago—and the annual numbers have occasionally topped 30,000. SFN now boasts 37,000 members from more than 95 countries. © 2019 Scientific American

Keyword: Miscellaneous
Link ID: 26766 - Posted: 10.30.2019

By Carl Zimmer Evolutionary biologists retrace the history of life in all its wondrous forms. Some search for the origin of our species. Others hunt for the origin of birds. On Thursday, a team of researchers reported an important new insight into the origin of zombies — in this case, ants zombified by a fungus. Here’s how it works: Sometimes an ant, marching about its business outdoors, will step on a fungal spore. It sticks to the ant’s body and slips a fungal cell inside. The fungus, called Ophiocordyceps, feeds on the ant from within and multiplies into new cells. But you wouldn’t know it, because the ant goes on with its life, foraging for food to bring back to the nest. All the while, the fungus keeps growing until it makes up nearly half of the ant’s body mass. When Ophiocordyceps is finished feeding on its host, the fungal cells gather inside the ant’s body. They form a mat and push needlelike projections into the ant’s muscle cells. The fungal cells also send chemical signals to the ant’s brain, causing the host to do something strange. The ant departs its nest and climbs a nearby plant. In the tropics, where many species of Ophiocordyceps live, the fungus drives ants upward, to a leaf above the ground. The ant bites down, its jaws locking as it dies. The fungus sends out sticky threads that glue the corpse to the leaf. And now it is ready to take the next step in its life cycle: Out of the ant’s head bursts a giant stalk, which showers spores onto the ant trails below. “The ants are walking over a minefield,” said David Hughes, an expert on Ophiocordyceps at Pennsylvania State University. © 2019 The New York Times Company

Keyword: Evolution
Link ID: 26754 - Posted: 10.25.2019

Diana Kwon A few years ago, officials at Switzerland’s Federal Food Safety and Veterinary Office approached Hanno Würbel, the head of the animal welfare division at the University of Bern, with the task of examining the quality of experimental design in the country’s animal research. Growing public awareness of the reproducibility crisis in science—which has emerged as researchers discover that a large proportion of scientific results cannot be replicated in subsequent experiments—had put pressure on the government authority to examine this issue, Würbel says. “They wanted to know, what is the situation in Switzerland . . . and is there anything that we need to improve?” To address this question, Würbel and his colleagues examined scientific protocols in 1,277 applications for licenses to conduct animal research that were submitted to and approved by the Swiss Food Safety and Veterinary Office (FSVO). Their analysis, published in PLOS Biology in 2016, concluded that most of the experiments described in approved applications lacked scientific rigor. Only a fraction of the protocols included important measures against bias, such as blinding, randomization, or a clear plan for statistical analysis. It’s now one of several studies that have pointed to critical flaws in the way animal experiments are designed—and many researchers argue that these flaws are major contributors to the reproducibility crisis plaguing published pre-clinical research. In 2011, for example, scientists at the pharmaceutical company Bayer reported that they were unable to reproduce the findings from 43 of 67 projects on potential drug targets in oncology, cardiology, and women’s health. Meanwhile, a 2015 PLOS Biology paper reported that more than 50 percent of preclinical research is not reproducible. The latter study’s authors highlighted poor experimental design as one of the main causes of the problem and estimated that, in the United States alone, approximately $28 billion is spent each year on preclinical experiments that cannot be replicated. © 1986–2019 The Scientist.

Keyword: Animal Rights
Link ID: 26606 - Posted: 09.13.2019

Nell Greenfieldboyce The Environmental Protection Agency says it will aggressively reduce the use of animals in toxicity testing, with a goal of eliminating all routine safety tests on mammals by 2035. Chemicals such as pesticides typically get tested for safety on animals like mice and rats. Researchers have long been trying to instead increase the use of alternative safety tests that rely on lab-grown cells or computer modeling. The EPA's administer, Andrew Wheeler, has now set some specific deadlines to try to speed up that transition. Federal Watchdog Warns EPA Is Failing To Enforce Lead Paint Abatement Rules Shots - Health News Federal Watchdog Warns EPA Is Failing To Enforce Lead Paint Abatement Rules In a signed memo made public Tuesday, he's directed the agency to reduce all requests for, and funding of, studies with live mammals by 30 percent by 2025. He says he wants the agency to essentially eliminate all mammal study requests and funding by 2035, with the use of live mammals only allowed after that with special permission. "I really do think that with the lead time that we have in this — 16 years before we completely eliminate animal testing — that we have enough time to come up with alternatives," says Wheeler. He notes that he wrote an op-ed for his college newspaper on the need to reduce animal testing back in 1987. © 2019 npr

Keyword: Animal Rights
Link ID: 26598 - Posted: 09.11.2019

Randi Hagerman When I visited Ricaurte, Colombia, in 2016, I was surrounded by men with long faces and prominent ears. As we spoke, they would ask repetitive questions while mumbling and failing to maintain eye contact, and when they shook my hand, they turned their body away from me. They were interested in me but were too shy to interact. This type of anxiety-related approach-withdrawal behavior is typical of those with fragile X syndrome (FXS), a well-characterized genetic disease that is the most common inherited form of intellectual disability and the most common single-gene cause of autism. Even many of the Ricaurte women, who usually have at least one good copy of the X chromosome, showed similar social deficits. I had never seen so many individuals with FXS all together. I thought to myself: This is ground zero for FXS. Likely because the founding families of this small village had one or more carriers of the causative mutation, Ricaurte has the highest known prevalence of FXS in the world. Last year, our team published the results of genetic testing of almost all of the inhabitants in this village. We found that nearly 5 percent of male and more than 3 percent of female inhabitants of Ricaurte have FXS,1 compared to around 0.02 percent of people living in the US and in Europe. In Ricaurte, the residents are supportive of these individuals, who work in the community and are well accepted. Their behavior does not seem unusual to those living in the village. Relatives who have moved away from Ricaurte and then subsequently have had a child with FXS will move back to this town for the acceptance and support they find there. This pattern further enhances the genetic cluster of FXS-causing mutations in this area. © 1986–2019 The Scientist.

Keyword: Development of the Brain; Epigenetics
Link ID: 26582 - Posted: 09.06.2019

By Alison Abbott Marco Tamietto was aware that animal rights activists might target him after his team won ethical approval for an experiment in monkeys on blindness. But he hadn’t anticipated the threats of violence. “I found photographs of my face, my mobile phone number, and home address on Facebook posts,” he says, “with messages like: ‘We will find you and kill you.’” Tamietto, a neuroscientist at the University of Turin in Italy, is under police protection. Now, his colleagues may face similar threats. He learned this month that the Italian Ministry of Health, which approved the experiment in October 2018, has released the names and university affiliations of others involved in the study to Lega Anti Vivisezione (LAV), an animal rights group in Rome. “It’s unpleasant that a public office would do such a thing,” says Roberto Caminiti, a neuroscientist at Sapienza University of Rome whose monkey lab was filmed by undercover activists in 2014. “And paradoxical that the ministry that authorized the research would actually expose those doing the research to danger.” Lawyers at the University of Turin and University of Parma—where the monkey experiments will be carried out—say they are considering civil proceedings in relation to the leak of sensitive information and intellectual property associated with the experimental protocols. Animal research regulations in Italy are already the strictest in Europe. Yet in the past few years, activists have pressed their advantage. Tamietto’s case is a sign that they have a sympathetic ear in government: Minister of Health Giulia Grillo, a member of the populist Five Star party and a declared friend of animal rights groups. © 2019 American Association for the Advancement of Science

Keyword: Animal Rights; Vision
Link ID: 26529 - Posted: 08.22.2019

By Kate Murphy Maybe it was because when the waiter asked, “Still or sparkling?” you chose sparkling. It could have also been that you were ravenous and ate a little too much. Or, possibly, it was your ex, who happened to be dining at the same restaurant and stood a little too long over your table making awkward small talk. All of these things, hic, might cause spasms, hic, in your diaphragm, hic. Referred to in the medical literature as singultus (from the Latin singult, which means gasp or sob), hiccups are familiar to anyone who has ever taken a breath. In fact, you begin to hiccup while still in the womb. Most people hiccup the most during childhood, with the bouts becoming less frequent over time, but even in adulthood, hiccups are still a common, and annoying, occurrence. Just as we all have our own particular way of sneezing, we all have a unique way of hiccuping that can range from four to 60 hiccups per minute. Most hiccups are benign and last only a few minutes or hours. But sometimes hiccups are indicative of a more serious health issue, particularly when they recur or don’t go away for days, weeks or years. Beyond being embarrassing, the muscle contractions can be physically exhausting. They can interrupt sleep and make it hard to eat. Approximately 4,000 people in the United States are admitted to the hospital every year for hiccups. The patient with the longest recorded case, according to Guinness World Records, was Charles Osborne of Anthon, Iowa, who hiccuped for 68 years straight. He claimed it started while attempting to weigh a hog before slaughtering it. Doctors say there are as many causes for hiccups as there are crazy remedies, including tugging on your tongue, standing on your head and swallowing granulated sugar. Some actually work. Others are more likely just entertainment for friends and family who watch while you try to cure yourself. © 2019 The New York Times Company

Keyword: Miscellaneous
Link ID: 26503 - Posted: 08.15.2019

By Jennifer Leman, Liz Tormes Art and neuroscience have been intertwined for centuries. Early surgeons and scientists who poked and prodded inside cranial cavities—such as Santiago Ramón y Cajal—often drew what they saw. These artistic renderings played a critical role in helping researchers grapple with the mysteries of our most vital organ. (Cajal even shared the Nobel Prize in Physiology or Medicine in 1906 for his drawings.) Methods for exploring the brain have (thankfully) changed, and our understanding has evolved. The desire to visualize what we discover, however, has persisted. For the ninth year in a row, the Netherlands Institute for Neuroscience in Amsterdam has published the winners of its annual Art of Neuroscience competition. The contest celebrates artists and scientists who strive to illustrate the brain’s complexities. This year’s entrants questioned the origins of imagination, imaged collagen fiber, modeled starlike brain cells called astrocytes and explored other intricacies. Presented below—selected from 87 submissions representing 25 countries—are the winning entry, four honorable mentions and five works selected by Scientific American’s editors.* This video employs three artificial-intelligence-based computing systems inspired by human brain networks. The resulting three neural networks simulate the brain’s ability to generate abstract images, sounds and concepts inspired by prior experiences, a phenomenon better known as imagination. In the winning video, produced by members of the pt9 art group at Far Eastern Federal University in Russia, one neural network produces a string of jarring images prompted by a catalogue of existing photographs; a second neural network generates image descriptions; and the third neural network reads the descriptions aloud. © 2019 Scientific American

Keyword: Miscellaneous
Link ID: 26466 - Posted: 07.30.2019

By Jacey Fortin A man in North Carolina died on Monday after he went swimming in a lake and was infected by Naegleria fowleri, a single-celled organism known as the “brain-eating amoeba.” The man, Eddie Gray, 59, fell ill after he visited the Fantasy Lake Water Park in Cumberland County July 12, the North Carolina Department of Health and Human Services said in a statement on Thursday. Naegleria fowleri infections are rare, but deadly. There were 145 known infected people in the United States from 1962 through 2018, and all but four cases were fatal. The amoeba is typically found in warm freshwater, and the majority of cases in the United States have occurred in Florida and Texas. “Mr. Gray’s death was tragic and untimely,” Justin Plummer, a lawyer representing his estate, said in a statement. “The family is currently asking for privacy and respect during this difficult time.” According to his obituary, Mr. Gray was an active member of the Sedge Garden United Methodist Church who enjoyed kayaking, camping, hunting, fishing and NASCAR. “Our sympathies are with the family and loved ones,” Zack Moore, North Carolina’s state epidemiologist, said in a statement. “People should be aware that this organism is present in warm freshwater lakes, rivers and hot springs across North Carolina, so be mindful as you swim or enjoy water sports.” According to the North Carolina health department, Naegleria fowleri “does not cause illness if swallowed but can be fatal if forced up the nose, as can occur during diving, water-skiing or other water activities.” © 2019 The New York Times Company

Keyword: Miscellaneous
Link ID: 26454 - Posted: 07.26.2019

By Knvul Sheikh A tropical parasite transmitted through rats and snails has caught the attention of health officials in Hawaii. But few scientists have studied the infection once it makes its way into humans, and researchers can’t say for certain whether the disease is becoming more widespread. The parasite, Angiostrongylus cantonensis, typically resides in a rat’s pulmonary arteries and is commonly known as “rat lungworm.” When its eggs hatch, tiny larvae are shed in the animals’ feces and eaten by snails or slugs. Those slugs, in turn, are often mistakenly eaten by people, on unwashed produce or in drinks that have been left uncovered. Although the larvae can’t grow into adult worms in a human host, they still can cause various complications, including flulike symptoms, headaches, stiff necks and bursts of nerve pain that seem to shift from one part of the body to another. M.R.I. scans suggest that the worms can also wriggle into the brain, leading to eosinophilic meningitis, which in rare cases can cause paralysis. Doctors in the state have noted cases of rat lungworm disease since at least 1959. But it is difficult to diagnose. To better track it, and to identify areas that prevention efforts should target, the Hawaii Department of Health began monitoring rat lungworm infections about a decade ago. From 2007 to 2017, officials tallied 82 cases, two of which resulted in death. Another 10 cases were reported in 2018, and six more have been reported among visitors and residents already this year. From the team at NYT Parenting: Get the latest news and guidance for parents. We'll celebrate the little parenting moments that mean a lot — and share stories that matter to families. The east side of the Big Island, in particular, has become a hot spot for infections, according to a review of cases published Monday in the American Journal of Tropical Medicine and Hygiene. Researchers are not sure why. Rats may be more numerous there, or more heavily infected, or more likely to cross paths with humans and infect them. Increased awareness about the disease may also have led to more infections being recognized than in the past. © 2019 The New York Times Company

Keyword: Pain & Touch
Link ID: 26416 - Posted: 07.13.2019

Sandeep Ravindran In 2012, computer scientist Dharmendra Modha used a powerful supercomputer to simulate the activity of more than 500 billion neurons—more, even, than the 85 billion or so neurons in the human brain. It was the culmination of almost a decade of work, as Modha progressed from simulating the brains of rodents and cats to something on the scale of humans. The simulation consumed enormous computational resources—1.5 million processors and 1.5 petabytes (1.5 million gigabytes) of memory—and was still agonizingly slow, 1,500 times slower than the brain computes. Modha estimates that to run it in biological real time would have required 12 gigawatts of energy, about six times the maximum output capacity of the Hoover Dam. “And yet, it was just a cartoon of what the brain does,” says Modha, chief scientist for brain-inspired computing at IBM Almaden Research Center in northern California. The simulation came nowhere close to replicating the functionality of the human brain, which uses about the same amount of power as a 20-watt lightbulb. Since the early 2000s, improved hardware and advances in experimental and theoretical neuroscience have enabled researchers to create ever larger and more-detailed models of the brain. But the more complex these simulations get, the more they run into the limitations of conventional computer hardware, as illustrated by Modha’s power-hungry model. © 1986–2019 The Scientist

Keyword: Robotics
Link ID: 26269 - Posted: 05.28.2019

Sara Reardon The US National Institutes of Health (NIH) would be required to reduce its use of non-human primates in research, under a spending bill approved on 8 May by a committee in the US House of Representatives. The bill would direct the NIH “to accelerate efforts to reduce and replace the use of nonhuman primates with alternative research models” in its laboratories. It would apply to the 2020 budget year, which begins on 1 October, 2019. The agency would also be required to produce a report on the number and purpose of primates it uses in research, the amount of pain they feel and a timeline for replacing and retiring the animals. To become law, the bill would need to win approval from the full House, the Senate and President Donald Trump. Representative Lucille Roybal-Allard (Democrat, California), who has worked for years to curb and regulate animal research, added the provision to the spending legislation for the Department of Health and Human Services (HHS), the NIH’s parent. Roybal-Allard and three other members of Congress requested a bioethical review of experiments involving baby monkeys at an NIH lab in 2014. The review resulted in adjustments to some of the procedures involving the animals. The agency ended those studies in late 2015.

Keyword: Animal Rights
Link ID: 26223 - Posted: 05.10.2019

By Joe Lindsey In the final episode of Season 7 of Game of Thrones, the Night King uses a terrifying weapon—the recently deceased dragon Viserion, now reanimated—to destroy the massive, magic-infused Wall that has for millennia stopped the White Walkers from invading Westeros. As the Army of the Dead lumbers through the gap, it’s pretty clear: Winter is here. We’ve only seen the Army of the Dead in action a few times now: Hardhome, in Season 5, and Season 7’s epic Wight Hunt, but it seems like Episode 3 of Game of Thrones’ final season is setting us up for an absolutely titanic clash at the Stark’s ancestral home of Winterfell. But wights—or zombies to use a more common parlance—aren’t just a well-worn trope for fantasy writers. The possibility of reanimating dead tissue—including braaaaains—has challenged neurobiologists around the world. So what are the wights, how do they work, and why does an entire army psychically linked together seem to be controlled by just one mind—the Night King? First off, are wights zombies at all? There are actually two types of zombies, the shambling dead—as representing George A. Romero’s classics—and the zombies of Haitian legend. “There’s the socio-cultural definition of zombie from tales in Haitian voodoo, where someone was put into a state similar to death and then ‘brought back to life,’” says Bradley Voytek, avid Game of Thrones fan, neuroscientist at the University of California-San Diego, and co-author of Do Zombies Dream of Undead Sheep, which uses zombies as the basis for an introduction to serious neuroscience. ©2019 Hearst Magazine Media, Inc.

Keyword: Miscellaneous
Link ID: 26175 - Posted: 04.27.2019