Chapter 5. The Sensorimotor System

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 3124

By Sam Roberts Chris Pendergast, a Long Island teacher who defied the odds by surviving 27 years with Lou Gehrig’s disease, leading marathon “rides for life” for hundreds of miles from his motorized wheelchair to publicize the plight of fellow patients and raise $10 million for research, died on Oct. 14 at his home in Miller Place, N.Y. He was 71. His wife, Christine Pendergast, said the cause was complications of amyotrophic lateral sclerosis, the medical term for the disease that ended the career of Gehrig, the Yankee first baseman who, after playing in 2,130 consecutive games, proclaimed himself “the luckiest man on the face of the earth.” Gehrig died two years later, shortly before his 38th birthday. Mr. Pendergast was a 44-year-old teacher of gifted students at Dickinson Avenue elementary school in East Northport, on Long Island, when his eyes and hands began twitching and he started getting muscle spasms. On Oct. 13, 1993, he received the diagnosis: He had A.L.S., a degenerative disease, which diminishes muscle function and eventually the ability to breathe. The prognosis: He had three to five years to live. But Mr. Pendergast proved to be indomitable. He recast himself as the disease’s self-described squeaky wheel — “Since there’s no surviving constituency for A.L.S., there’s no squeaky wheel,” he told The New York Times in 2008. He founded the A.L.S. Ride for Life in 1997. The following year it mounted a 350-mile, two-week cavalcade from Yankee Stadium in the Bronx to Washington, with Mr. Pendergast leading it from his wheelchair. Subsequent annual rides went from Long Island’s East End to Manhattan with a small group of fellow patients. “We are dying men riding for life,” he told The Baltimore Sun in 2000. © 2020 The New York Times Company

Keyword: ALS-Lou Gehrig's Disease
Link ID: 27557 - Posted: 10.31.2020

By Lisa Sanders, M.D. The 61-year-old woman put on her reading glasses to try to decipher the tiny black squiggles on the back of the package of instant pudding. Was it two cups of milk? Or three? The glasses didn’t seem to help. The fuzzy, faded marks refused to become letters. The right side of her head throbbed — as it had for weeks. The constant aggravation of the headache made everything harder, and it certainly wasn’t helping her read this label. She rubbed her forehead, then brought her hand down to cover her right eye. The box disappeared into darkness. She could see only the upper-left corner of the instructions. Everything else was black. She quickly moved her hand to cover her left eye. The tiny letters sprang into focus. She moved back to the right: blackness. Over to the left: light and letters. That scared her. For the past few months, she’d had one of the worst headaches she had ever experienced in her lifetime of headaches. One that wouldn’t go away no matter how much ibuprofen she took. One that persisted through all the different medications she was given for her migraines. Was this terrible headache now affecting her vision? The neurologists she saw over the years always asked her about visual changes. She’d never had them, until now. “Should I take you to the hospital?” her husband asked anxiously when she told him about her nearly sightless left eye. “This could be serious.” She thought for a moment. No, tomorrow was Monday; her neurologist’s office would be open, and the doctor would see her right away. She was always reliable that way. The patient had bad headaches for most of her adult life. They were always on the right side. They were always throbbing. They could last for days, or weeks, or sometimes months. Loud noises were always bothersome. With really bad headaches, her eye would water and her nose would run, just on that side. Bending over was agony. For the past few weeks, her headache had been so severe that if she dropped something on the floor, she had to leave it there. When she bent down, the pounding was excruciating. © 2020 The New York Times Company

Keyword: Pain & Touch; Vision
Link ID: 27553 - Posted: 10.28.2020

By Perri Klass, M.D. In a new report on pediatric pain in the British medical journal The Lancet, a commission of experts, including scientists, doctors, psychologists, parents and patients, challenged those who take care of children to end what they described as the common undertreatment of pain in children, starting at birth. Isabel Jordan, of Squamish, British Columbia, took part as a parent partner, along with her son Zachary, 19, who has a genetic condition, and lives with chronic pain. “Pain matters with every child and at every intersection with the health care system,” she said. But for her son, “it didn’t matter with many providers, doctors, nurses, phlebotomists, and that made for worse outcomes.” “The professionals had a wealth of knowledge and experience, but what they lacked was the knowledge of what was really impacting patients in day-to-day life, they didn’t know how impactful poorly managed procedural pain was to patients,” especially children like her son who have ongoing medical issues, Ms. Jordan said. “He’s got a rare disease and has had a lifetime of chronic pain and also procedure pain.” Although we often pride ourselves, in pediatrics, on taking a kinder and gentler approach to our patients, pain experts feel that children’s pain is often taken for granted, and that simple and reliable strategies to mitigate it are disregarded; such as, for example, the 2015 World Health Organization recommendations that infants should be held by parents and perhaps breastfed during immunizations, and that distraction techniques should be used with older children. Christopher Eccleston, a professor of pain science and medical psychology at the University of Bath, where he directs the Centre for Pain Research, was the lead author on the report. He became interested in pediatric pain through working with adults with chronic pain, he said, and realizing that many of them had pain going back into adolescence, which had not been treated. © 2020 The New York Times Company

Keyword: Pain & Touch
Link ID: 27548 - Posted: 10.26.2020

By Pam Belluck A potential therapy for amyotrophic lateral sclerosis, a fatal neurological disorder, may allow patients to live several months longer than they otherwise would have, according to a study published Friday. The two-drug combination, dreamed up by two college students, is one of several potential treatments raising the hopes of patients with A.L.S., also known as Lou Gehrig’s disease. The paralytic condition steals people’s ability to walk, speak, eat and ultimately breathe, typically causing death within two to five years. There are only two approved A.L.S. medications, neither tremendously effective. But advocacy efforts by patients and organizations, along with the Ice Bucket Challenge, a highly successful fundraising campaign, have galvanized research into more than 20 therapies that are currently in clinical trials. The two-drug combination, called AMX0035, was conceived seven years ago by Joshua Cohen and Justin Klee, then a junior and senior at Brown University, with the goal of preventing the destruction of neurons that occurs in many brain disorders. It is a combination of an existing supplement and a medication for a pediatric urea disorder. Last month, a study of 137 patients reported that AMX0035 slowed progression of A.L.S. paralysis by about 25 percent more than a placebo. Measuring patients using a scale of physical function, researchers found that those receiving a placebo declined in 18 weeks to a level that patients receiving the treatment didn’t reach until 24 weeks, according to the study’s principal investigator, Dr. Sabrina Paganoni. But because that trial was conducted for only 24 weeks, it left unanswered a crucial question of whether the treatment extended survival for the patients receiving the therapy. After that study ended, 98 of the participants, who had not been told whether they had received placebo or therapy, were given the option of taking the therapy for up to 30 months, a format called an open-label extension study. © 2020 The New York Times Company

Keyword: ALS-Lou Gehrig's Disease
Link ID: 27533 - Posted: 10.19.2020

By Gunjan Sinha Light therapy can help lift moods, heal wounds, and boost the immune system. Can it improve symptoms of Parkinson’s disease, too? A first-of-its-kind trial scheduled to launch this fall in France aims to find out. In seven patients, a fiber optic cable implanted in their brain will deliver pulses of near-infrared (NIR) light directly to the substantia nigra, a region deep in the brain that degenerates in Parkinson’s disease. The team, led by neurosurgeon Alim- Louis Benabid of the Clinatec Institute—a partnership between several government-funded research institutes and industry—hopes the light will protect cells there from dying. The study is one of several set to explore how Parkinson’s patients might benefit from light. “I am so excited,” says neuropsychologist Dawn Bowers of the University of Florida College of Medicine, who is recruiting patients for a trial in which NIR will be beamed into the skull instead of delivered with an implant. Small tests in people with Parkinson’s and animal models of the disease have already suggested benefits, but some mainstream Parkinson’s researchers are skeptical. No one has shown exactly how light might protect the key neurons—or why it should have any effect at all on cells buried deep in the brain that never see the light of day. Much or all of the encouraging hints seen so far in people may be the result of the placebo effect, skeptics say. Because there are no biomarkers that correlate well with changes in Parkinson’s symptoms, “we are reliant on observing behavior,” says neurobiologist David Sulzer of Columbia University Irving Medical Center, an editor of the journal npj Parkinson’s Disease. “It’s not easy to guard against placebo effects.” © 2020 American Association for the Advancement of Science

Keyword: Parkinsons
Link ID: 27482 - Posted: 09.19.2020

By Laura J. Snyder I’m an inveterate storyteller,” confesses the celebrated neurologist and writer Oliver Sacks at the start of Oliver Sacks: His Own Life. “I tell many stories, some comic, some tragic.” Tales of both types abound in this elegiac yet lighthearted film based on director Ric Burns’s interviews with Sacks and his friends, colleagues, family members, and patients in the months before and after the physician’s death in 2015 at the age of 82. The result is a vivid portrait of an ebullient, provocative, brilliant man who transformed the practice of medicine and spearheaded the neurodiversity movement. Born into an upper-middle-class Jewish family in northwest London in 1933, Sacks was the youngest of four sons. He was an outsider: one of only three Jews at his elite prep school; a gay adolescent at a time when gay sex was illegal; an introverted, dreamy, chemistry-obsessed boy in a family of accomplished physicians. His father was a general practitioner who made house calls, and his mother was one of the first female surgeons in England. His two eldest brothers were already studying medicine when he was in high school. Sacks dutifully followed his expected career path and was drawn to neurology when his third brother, Michael, developed schizophrenia. But after completing medical training, Sacks fled the homophobic confines of his nation and family—his mother had called him “an abomination.” Paul Theroux tells Burns that Sacks’s “great luck” was ending up in Los Angeles in 1960, where he found ample “guys, weights, drugs, and hospitals.” © 2020 American Association for the Advancement of Science

Keyword: Parkinsons
Link ID: 27477 - Posted: 09.19.2020

By Lisa Sanders, M.D. The pain woke the 52-year-old physician from a dead sleep. It was as if all the muscles in his right leg, from those in the buttock down his thigh to the very bottom of his calf, were on fire. He shifted slightly to see if he could find a more comfortable position. There was a jag of pain, and he almost cried out. He glanced at the clock: 4 a.m. In just three hours he would have to get up. He had a full day of patients to see. Massage didn’t help. He couldn’t get comfortable lying flat, so finally he moved to the living room, to a recliner. Only then, and only by lying completely still, did he manage to get the pain to abate. He drifted off, but never for long. The searing pain in his leg and buttock slowly eased, and by the time his alarm went off, he could stand and walk — though his muscles still ached and he had to baby his right leg, causing a limp. Between patients, he arranged to see his own doctor. He’d had pain off and on in his buttocks, one side or the other, for more than a year. The pain was in the middle of each cheek and was worse when he was sitting and at the end of the day. Walking to and from his car on the way home was brutal. And then, as mysteriously as it came, it would disappear — only to come back a week or two later. When he first told his doctor about his pain, the exam didn’t show much. He was a little tender at the bottom of the bones you sit on, called the ischia. His doctor thought it was ischial bursitis. Between the tips of the ischia and the largest muscles of the buttocks, there are little pads called bursae. Sometimes these pads become inflamed. The man’s doctor recommended stretching exercises for the muscles around the bursae. He did them regularly, though he wasn’t sure they helped. The pain he had that night, though, was different, and a whole lot worse. Again, his doctor couldn’t find much. Maybe it was a kind of nerve pain, like sciatica, the patient suggested. The doctor agreed and ordered an M.R.I. to look for a pinched nerve. The result was normal. © 2020 The New York Times Company

Keyword: Pain & Touch; Neuroimmunology
Link ID: 27474 - Posted: 09.16.2020

By Gretchen Reynolds Exercise makes it easier to bounce back from too much stress, according to a fascinating new study with mice. It finds that regular exercise increases the levels of a chemical in the animals’ brains that helps them remain psychologically resilient and plucky, even when their lives seem suddenly strange, intimidating and filled with threats. The study involved mice, but it is likely to have implications for our species, too, as we face the stress and discombobulation of the ongoing pandemic and today’s political and social disruptions. Stress can, of course, be our ally. Emergencies and perils require immediate responses, and stress results in a fast, helpful flood of hormones and other chemicals that prime our bodies to act. “If a tiger jumps out at you, you should run,” says David Weinshenker, a professor of human genetics at Emory University School of Medicine in Atlanta and the senior author of the new study. The stress response, in that situation, is appropriate and valuable. But if, afterward, we “jump at every little noise” and shrink from shadows, we are overreacting to the original stress, Dr. Weinshenker continues. Our response has become maladaptive, because we no longer react with appropriate dread to dreadful things but with twitchy anxiety to the quotidian. We lack stress resilience. In interesting past research, scientists have shown that exercise seems to build and amplify stress resilience. Rats that run on wheels for several weeks, for instance, and then experience stress through light shocks to their paws, respond later to unfamiliar — but safe — terrain with less trepidation than sedentary rats that also experience shocks. But the physiological underpinnings of the animals’ relative buoyancy after exercise remain somewhat mysterious. And, rats are just one species. Finding similar relationships between physical activity and resilience in other animals would bolster the possibility that a similar link exists in people. © 2020 The New York Times Company

Keyword: Stress; Hormones & Behavior
Link ID: 27461 - Posted: 09.09.2020

By Amanda Loudin Last summer while out on a bike ride, 35-year-old Andrew Bernstein of Boulder, Colo., was hit by a van that knocked him off the road and kept on going. A passing driver spotted Bernstein lying, unmoving, in a ditch and called 911. Bernstein’s injuries were life threatening. After multiple surgeries, 10 weeks recovering in the hospital and more than three weeks in inpatient rehab, Bernstein has spent the better part of every week since then working with a number of practitioners to help him progress to where he is today — in a wheelchair and walking with the assistance of a full-length leg brace and crutches. But almost all of that effort came to a complete halt when the coronavirus pandemic hit in March and all of his physical therapy facilities either closed or dramatically reduced their patient contact. “I typically worked with a variety of therapists nine or 10 times a week at four different facilities,” Andrew Bernstein says. He was given a home-based plan but “the disruptions to my therapies was challenging. It was frustrating to do without supervision, because my condition changes from one week to the next, something my therapists might notice even if I don’t.”“I typically worked with a variety of therapists nine or 10 times a week at four different facilities,” Andrew Bernstein says. He was given a home-based plan but “the disruptions to my therapies was challenging. It was frustrating to do without supervision, because my condition changes from one week to the next, something my therapists might notice even if I don’t.”

Keyword: Pain & Touch
Link ID: 27460 - Posted: 09.09.2020

By Tanya Lewis During Musk’s demonstration, he strolled near a pen containing several pigs, some of which had Neuralink implants. One animal, named Gertrude, had hers for two months. The device’s electrodes were situated in a part of Gertrude’s cortex that connected to neurons in her snout. And for the purposes of the demo, her brain signals were converted to audible bleeps that became more frequent as she sniffed around the pen and enjoyed some tasty treats. Musk also showed off a pig whose implant had been successfully removed to show that the surgery was reversible. Some of the other displayed pigs had multiple implants. Neuralink implantable device Neuralink implantable device, v0.9. Credit: Neuralink Neuralink, which was founded by Musk and a team of engineers and scientists in 2016, unveiled an earlier, wired version of its implant technology in 2019. It had several modules: the electrodes were connected to a USB port in the skull, which was intended to be wired to an external battery and a radio transmitter that were located behind the ear. The latest version consists of a single integrated implant that fits in a hole in the skull and relays data through the skin via a Bluetooth radio. The wireless design makes it seem much more practical for human use but limits the bandwidth of data that can be sent, compared with state-of-the-art brain-computer interfaces. The company’s goal, Musk said in the demo, is to “solve important spine and brain problems with a seamlessly implanted device”—a far cry from his previously stated, much more fantastic aim of allowing humans to merge with artificial intelligence. This time Musk seemed more circumspect about the device’s applications. As before, he insisted the demonstration was purely intended as a recruiting event to attract potential staff. Neuralink’s efforts build on decades of work from researchers in the field of brain-computer interfaces. Although technically impressive, this wireless brain implant is not the first to be tested in pigs or other large mammals.] © 2020 Scientific American,

Keyword: Robotics; Movement Disorders
Link ID: 27457 - Posted: 09.07.2020

By Pam Belluck Seven years ago, Joshua Cohen, then a junior at Brown University majoring in biomedical engineering, was captivated by the question of why people develop brain disorders. “How does a neuron die?” he wondered. After poring over scientific studies, he sketched out his ideas for a way to treat them. “I was sitting in my dorm room and I had kind of written out the research on these crazy-looking diagrams,” he recalled. A study published on Wednesday in the New England Journal of Medicine reported that the experimental treatment he and another Brown student, Justin Klee, conceived might hold promise for slowing progression of amyotrophic lateral sclerosis, the ruthless disease that robs people of their ability to move, speak, eat and ultimately breathe. More than 50 clinical trials over 25 years have failed to find effective treatments for A.L.S., also called Lou Gehrig’s disease, which often causes death within two to five years. But now, scientific advances and an influx of funding are driving clinical trials for many potential therapies, generating hope and intense discussion among patients, doctors and researchers. The new study reported that a two-drug combination slowed progression of A.L.S. paralysis by about six weeks over about six months, approximately 25 percent more than a placebo. On average, patients on a placebo declined in 18 weeks to a level that patients receiving the treatment didn’t reach until 24 weeks, said the principal investigator, Dr. Sabrina Paganoni, a neuromuscular medicine specialist at Massachusetts General Hospital’s Healey & AMG Center for A.L.S. “It’s such a terrible disease and as you can imagine, for the folks who have it or the family members, it’s just desperation that something’s going to work,” said Dr. Walter Koroshetz, director of the National Institute of Neurological Disorders and Stroke, who wasn’t involved in the new study. “Any kind of slowing of progression for a patient with A.L.S. might be valuable even though it’s not a big effect.” © 2020 The New York Times Company

Keyword: ALS-Lou Gehrig's Disease
Link ID: 27455 - Posted: 09.05.2020

Ian Sample Science editor Brain scans of cosmonauts have revealed the first clear evidence of how the organ adapts to the weird and often sickness-inducing challenge of moving around in space. Analysis of scans taken from 11 cosmonauts, who spent about six months each in orbit, found increases in white and grey matter in three brain regions that are intimately involved in physical movement. The changes reflect the “neuroplasticity” of the brain whereby neural tissue, in this case the cells that govern movement or motor activity, reconfigures itself to cope with the fresh demands of life in orbit. “With the techniques we used, we can clearly see there are microstructural changes in three major areas of the brain that are involved in motor processing,” said Steven Jillings, a neuroscientist at the University of Antwerp in Belgium. Visitors to the International Space Station face a dramatic shock to the system for a whole host of reasons, but one of the most striking is weightlessness. While the space station and its occupants are firmly in the grip of gravity – they are constantly falling around the planet – the body must recalibrate its senses to cope with the extreme environment. Images of the cosmonauts’ brains, taken before and after missions lasting on average 171 days, and again seven months later, confirmed that the cerebrospinal fluid that bathes the brain redistributes itself in orbit, pushing the brain up towards the top of the skull. This also expands fluid-filled cavities called ventricles, which may be linked to a loss of sharpness in the cosmonauts’ vision, a condition called spaceflight-associated neuro-ocular syndrome or Sans. © 2020 Guardian News & Media Limited

Keyword: Learning & Memory
Link ID: 27453 - Posted: 09.05.2020

By Gillian R. Brassil and Jeré Longman A restrictive Idaho law — temporarily blocked by a federal judge Monday night — has amplified a charged debate about who should be allowed to compete in women’s sports, as transgender athletes have become increasingly accepted on the playing field while still facing strong resistance from some competitors and lawmakers. While scientific and societal views of sex and gender identity have changed significantly in recent decades, a vexing question persists regarding athletes who transition from male to female: how to balance inclusivity, competitive fairness and safety. There are no uniform guidelines — in fact the existing rules that govern sports often conflict — to determine the eligibility of transgender women and girls (policy battles have so far primarily centered on regulating women’s sports). And there is scant research on elite transgender athletes to guide sports officials as they attempt to provide equitable access to sports while reconciling any residual physiological advantages that may carry on from puberty. Dr. Eric Vilain, a geneticist specializing in sexual development who has advised the N.C.A.A. and the International Olympic Committee on policies for transgender athletes, said that sports leaders were confronted with “two almost irreconcilable positions” in setting eligibility standards — one relying on an athlete’s declared gender and the other on biological litmus tests. Politics, too, have entered the debate in a divided United States. While transgender people have broadly been more accepted across the country, the Trump administration and some states have sought to roll back protections for transgender people in health care, the military and other areas of civil rights, fueling a rise in hate crimes, according to the Human Rights Campaign. In March, Idaho became the first state to bar transgender girls and women from participating in women’s sports. © 2020 The New York Times Company

Keyword: Sexual Behavior
Link ID: 27426 - Posted: 08.20.2020

Abby Carney Shortly after relocating to Texas from California three years ago, Cheryl Webster started hosting a game night at her home as a way of meeting new people. They stopped meeting due to Covid-19, and Webster has only heard from one person in the group in the months since they were able to play. Eventually, she decided to pick up the phone herself – but nobody called back. “I think that’s the hardest part about loneliness,” she said. “Is it my fault? Am I not a very nice person? Or is there something wrong with me?” End of the office: the quiet, grinding loneliness of working from home Read more Webster, 65, is a proactive doer who volunteers regularly and has even helped finance the education of several friends’ children. She sits on the board of the Austin housing authority and the chamber of commerce, and is sure the Christian business leaders’ group she meets with monthly would say flattering things about her. Though divorced and childless, Webster is not a Havisham spinster – putting herself “out there” comes naturally. And so she supposes many people in her life would be surprised to learn that she’s lonely. Despite following the advice of experts to ward off the feeling, her heart still aches. Advertisement Webster is not alone. A growing number of people share her affliction – so much so that some governments are incorporating loneliness into their health public policy. To help people like her, a number of scientists are researching medical solutions, such as pills and nasal sprays. But will treating loneliness like a disease, rather than an existential question, work to ease their pain? © 2020 Guardian News & Media Limited

Keyword: Pain & Touch; Hormones & Behavior
Link ID: 27405 - Posted: 08.06.2020

Lenny Bernstein The Centers for Disease Control and Prevention warned parents and caregivers Tuesday to watch out for an uncommon, polio-like condition that mostly strikes children, usually between August and November. Acute flaccid myelitis, which may be caused by any of several viruses, is marked by a sudden weakness or paralysis of the limbs. Since surveillance began in 2014, prevalence of the ­syndrome has spiked in even-numbered years, often afflicting children about 5 years old. The disease is very rare, but a quick response is critical once the weakness sets in; the disease can progress over hours or days and lead to permanent paralysis or respiratory failure, according to a report issued Tuesday by the CDC. Among 238 cases in 2018 reviewed by the CDC, 98 percent of patients were hospitalized, 54 percent required intensive care, and 23 percent were placed on ventilators to help them breathe. Most patients were hospitalized within a day of experiencing weakness, but about 10 percent were not hospitalized until four or more days later, possibly because of failure to recognize the syndrome, the report said. Limb weakness, difficulty walking and limb pain are often preceded by fever or respiratory illness, usually by about six days, the CDC said. Hundreds of U.S. children have been affected, and many do not fully recover. A number of viruses — including West Nile virus, adenovirus and non-polio enteroviruses — are known to produce the symptoms in a small number of people who become infected by those pathogens. But enterovirus, particularly one dubbed EV-D68, appears to be the most common cause, the CDC said. The National Institute of Allergy and Infectious Diseases is working on a vaccine for EV-D68. © 1996-2020 The Washington Post

Keyword: Movement Disorders; Muscles
Link ID: 27403 - Posted: 08.06.2020

By Abdul-Kareem Ahmed “He doesn’t look like himself,” his wife said. It was midnight, and I was consulting on a patient in the emergency room. He was 48 years old and complaining of a headache. Ten years ago my attending had partially removed a benign tumor growing in his cerebellum, part of the hindbrain that controls movement, coordination and speech. Our team had also placed a shunt in his brain. The brain is buoyed and bathed by cerebrospinal fluid. This clear fluid is made in large cavities, called ventricles, and is eventually absorbed by veins. The tumor’s inoperable remnant had blocked the fluid’s natural escape, causing it to build up, a condition known as hydrocephalus. A shunt is a thin rubber tube that is placed in the ventricles of the brain and tunneled under the skin, into the abdomen. It can have a programmable pressure valve, a gauge that sits under the scalp. His shunt had been siphoning excess fluid to his abdomen for years where it was absorbed, preventing life-threatening high pressure in the brain. Today, however, something was wrong, and I thought it was revealed on his new head CT. His ventricles were very large, suggesting high pressure. “I get a bad headache when I sit up,” he mumbled. “Sometimes I vomit. I feel better when I lie flat.” His wife, a strong and kindhearted woman, corroborated his complaint. “He’s also having memory problems, and he’s losing his balance when he walks,” she added. His symptoms were the opposite of what I expected. He was describing a low-pressure headache. He was relieved by lying down but worsened when sitting up.

Keyword: Pain & Touch
Link ID: 27397 - Posted: 08.03.2020

Jon Hamilton This is the story of a fatal genetic disease, a tenacious scientist and a family that never lost hope. Conner Curran was 4 years old when he was diagnosed with Duchenne Muscular Dystrophy, a genetic disease that causes muscles to waste away. Conner's mother, Jessica Curran, remembers some advice she got from the doctor who made that 2015 diagnosis: "Take your son home, love him, take him on trips while he's walking, give him a good life and enjoy him because there are really not many options right now." Five years later, Conner is not just walking, but running faster than ever, thanks to an experimental gene therapy that took more than 30 years to develop. Conner was the first child to receive the treatment — a single infusion designed to fix the genetic mutation that was gradually causing his muscles cells to die. The treatment can't bring back the cells he's lost (he remains smaller and weaker than his twin brother, Kyle), but it has allowed the muscle cells he still has to function better. Since Conner's treatment, eight other boys with Duchenne have received two different doses of the gene therapy. Preliminary results on six of them, tested a year after treatment, showed they, too, had improved strength and endurance at an age when boys with Duchenne usually become weaker. © 2020 npr

Keyword: Muscles; Movement Disorders
Link ID: 27387 - Posted: 07.27.2020

Ewen Callaway Despite their rough and tumble existence, Neanderthals had a biological predisposition to a heightened sense of pain, finds a first-of-its kind genome study published in Current Biology on 23 July1. Evolutionary geneticists found that the ancient human relatives carried three mutations in a gene encoding the protein NaV1.7, which conveys painful sensations to the spinal cord and brain. They also showed that in a sample of British people, those who had inherited the Neanderthal version of NaV1.7 tend to experience more pain than others. “It’s a first example, to me, about how we begin to perhaps get an idea about Neanderthal physiology by using present-day people as transgenic models,” says Svante Pääbo at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, who led the work with Hugo Zeberg at the Karolinska Institute in Stockholm. Pain-sensing protein Researchers have access to only a few Neanderthal genomes, and most of those have been sequenced at a low resolution. This has made it hard to identify mutations that evolved after their lineage split from that of humans some 500,000–750,000 years ago. But in the past few years, Pääbo and his team have generated three high-quality Neanderthal genomes from DNA found in caves in Croatia and Russia. This allows them to confidently identify mutations that were probably common in Neanderthals, yet very rare in humans. Mutations in a gene called SCN9A — which encodes the NaV1.7 protein — stood out because all of the Neanderthals had three mutations that alter the shape of the protein. The mutated version of the gene was found on both sets of chromosomes in all three Neanderthals, hinting that it was common across their populations. © 2020 Springer Nature Limited

Keyword: Pain & Touch; Evolution
Link ID: 27382 - Posted: 07.25.2020

Laura P.W. Ranum An FDA-approved diabetes drug shows early signs of promise against the most common genetic form of amyotrophic lateral sclerosis, a devastating neurological condition that causes paralysis. ALS is a progressive disease that affects neurons in the brain and spinal cord. Motor neurons transmit signals from our brain to our muscles and allow us to move. ALS causes these motor neurons to die, resulting in the loss of a patient’s ability to speak, eat, move and breathe. Notable ALS patients include New York Yankees baseball star Lou Gehrig (the disease is often called Lou Gehrig’s disease), physicist Stephen Hawking and New Orleans Saints football star Steve Gleason. There are currently more than 30,000 cases of ALS in the United States, and life expectancy after diagnosis is typically 2 to 5 years. There is currently no cure for ALS. I am a scientist who studies neurological diseases that run in families, and I have been working hard to find a treatment to stop ALS. Our team has made a discovery, detailed in a scientific study, that paves the way for further research for improving disease in a genetic type of ALS caused by a mutation in a gene with the unwieldy name chromosome 9 open reading frame 72 (C9orf72), based on its location on chromosome 9. In addition to ALS, mutations in this gene can also cause frontotemporal dementia, which can cause apathy, loss of emotional control and cognitive decline. Some patients with the C9orf72 mutation develop ALS, others develop frontotemporal dementia and some develop both. Together, these diseases are referred to here as C9-ALS/FTD. I have been focusing on C9-ALS, which is the most common genetic type of ALS which is caused by a mutation in the C9orf72 gene. The mutation occurs when six letters of DNA that make up part of the gene’s genetic code – GGGGCC – are repeated hundreds of extra times. It is as if a single word is repeated hundreds of times in the same sentence. © 2010–2020, The Conversation US, Inc.

Keyword: ALS-Lou Gehrig's Disease
Link ID: 27379 - Posted: 07.21.2020

By Jane E. Brody Michael Richard Clifford, a 66-year-old retired astronaut living in Cary, N.C., learned before his third spaceflight that he had Parkinson’s disease. He was only 44 and in excellent health at the time, and had no family history of this disabling neurological disorder. What he did have was years of exposure to numerous toxic chemicals, several of which have since been shown in animal studies to cause the kind of brain damage and symptoms that afflict people with Parkinson’s. As a youngster, Mr. Clifford said, he worked in a gas station using degreasers to clean car engines. He also worked on a farm where he used pesticides and in fields where DDT was sprayed. Then, as an aviator, he cleaned engines readying them for test flights. But at none of these jobs was he protected from exposure to hazardous chemicals that are readily inhaled or absorbed through the skin. Now Mr. Clifford, a lifelong nonsmoker, believes that his close contact with these various substances explains why he developed Parkinson’s disease at such a young age. Several of the chemicals have strong links to Parkinson’s, and a growing body of evidence suggests that exposure to them may very well account for the dramatic rise in the diagnosis of Parkinson’s in recent decades. To be sure, the medical literature is replete with associations between people’s habits and exposures and their subsequent risk of developing various ailments, from allergies to heart disease and cancer. Such linkages do not — and cannot by themselves — prove cause and effect. Sometimes, though, the links are so strong and the evidence so compelling that there can be little doubt that one causes the other. The link of cigarette smoking to lung cancer is a classic example. Despite tobacco industry claims that there was no definitive proof, the accumulation of evidence, both experimental and epidemiological, eventually made it impossible to deny that years of smoking can cause cancer even long after a person has quit. © 2020 The New York Times Company

Keyword: Parkinsons; Neurotoxins
Link ID: 27378 - Posted: 07.21.2020