Chapter 14. Attention and Higher Cognition

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.

Links 1 - 20 of 1698

By Dan Falk In 2022, researchers at the Bee Sensory and Behavioral Ecology Lab at Queen Mary University of London observed bumblebees doing something remarkable: The diminutive, fuzzy creatures were engaging in activity that could only be described as play. Given small wooden balls, the bees pushed them around and rotated them. The behavior had no obvious connection to mating or survival, nor was it rewarded by the scientists. It was, apparently, just for fun. The study on playful bees is part of a body of research that a group of prominent scholars of animal minds cited today, buttressing a new declaration that extends scientific support for consciousness to a wider suite of animals than has been formally acknowledged before. For decades, there’s been a broad agreement among scientists that animals similar to us — the great apes, for example — have conscious experience, even if their consciousness differs from our own. In recent years, however, researchers have begun to acknowledge that consciousness may also be widespread among animals that are very different from us, including invertebrates with completely different and far simpler nervous systems. The new declaration, signed by biologists and philosophers, formally embraces that view. It reads, in part: “The empirical evidence indicates at least a realistic possibility of conscious experience in all vertebrates (including all reptiles, amphibians and fishes) and many invertebrates (including, at minimum, cephalopod mollusks, decapod crustaceans and insects).” Inspired by recent research findings that describe complex cognitive behaviors in these and other animals, the document represents a new consensus and suggests that researchers may have overestimated the degree of neural complexity required for consciousness. © 2024the Simons Foundation.

Keyword: Consciousness; Evolution
Link ID: 29264 - Posted: 04.20.2024

By Meghan Willcoxon In the summer of 1991, the neuroscientist Vittorio Gallese was studying how movement is represented in the brain when he noticed something odd. He and his research adviser, Giacomo Rizzolatti, at the University of Parma were tracking which neurons became active when monkeys interacted with certain objects. As the scientists had observed before, the same neurons fired when the monkeys either noticed the objects or picked them up. But then the neurons did something the researchers didn’t expect. Before the formal start of the experiment, Gallese grasped the objects to show them to a monkey. At that moment, the activity spiked in the same neurons that had fired when the monkey grasped the objects. It was the first time anyone had observed neurons encode information for both an action and another individual performing that action. Those neurons reminded the researchers of a mirror: Actions the monkeys observed were reflected in their brains through these peculiar motor cells. In 1992, Gallese and Rizzolatti first described the cells in the journal Experimental Brain Research and then in 1996 named them “mirror neurons” in Brain. The researchers knew they had found something interesting, but nothing could have prepared them for how the rest of the world would respond. Within 10 years of the discovery, the idea of a mirror neuron had become the rare neuroscience concept to capture the public imagination. From 2002 to 2009, scientists across disciplines joined science popularizers in sensationalizing these cells, attributing more properties to them to explain such complex human behaviors as empathy, altruism, learning, imitation, autism and speech. Then, nearly as quickly as mirror neurons caught on, scientific doubts about their explanatory power crept in. Within a few years, these celebrity cells were filed away in the drawer of over-promised, under-delivered discoveries. Vittorio Gallese wears round glasses.

Keyword: Attention; Vision
Link ID: 29242 - Posted: 04.04.2024

By Markham Heid The human hand is a marvel of nature. No other creature on Earth, not even our closest primate relatives, has hands structured quite like ours, capable of such precise grasping and manipulation. But we’re doing less intricate hands-on work than we used to. A lot of modern life involves simple movements, such as tapping screens and pushing buttons, and some experts believe our shift away from more complex hand activities could have consequences for how we think and feel. “When you look at the brain’s real estate — how it’s divided up, and where its resources are invested — a huge portion of it is devoted to movement, and especially to voluntary movement of the hands,” said Kelly Lambert, a professor of behavioral neuroscience at the University of Richmond in Virginia. Dr. Lambert, who studies effort-based rewards, said that she is interested in “the connection between the effort we put into something and the reward we get from it” and that she believes working with our hands might be uniquely gratifying. In some of her research on animals, Dr. Lambert and her colleagues found that rats that used their paws to dig up food had healthier stress hormone profiles and were better at problem solving compared with rats that were given food without having to dig. She sees some similarities in studies on people, which have found that a whole range of hands-on activities — such as knitting, gardening and coloring — are associated with cognitive and emotional benefits, including improvements in memory and attention, as well as reductions in anxiety and depression symptoms. These studies haven’t determined that hand involvement, specifically, deserves the credit. The researchers who looked at coloring, for example, speculated that it might promote mindfulness, which could be beneficial for mental health. Those who have studied knitting said something similar. “The rhythm and repetition of knitting a familiar or established pattern was calming, like meditation,” said Catherine Backman, a professor emeritus of occupational therapy at the University of British Columbia in Canada who has examined the link between knitting and well-being. © 2024 The New York Times Company

Keyword: Learning & Memory; Stress
Link ID: 29231 - Posted: 04.02.2024

By Ingrid Wickelgren You see a woman on the street who looks familiar—but you can’t remember how you know her. Your brain cannot attach any previous experiences to this person. Hours later, you suddenly recall the party at a friend’s house where you met her, and you realize who she is. In a new study in mice, researchers have discovered the place in the brain that is responsible for both types of familiarity—vague recognition and complete recollection. Both, moreover, are represented by two distinct neural codes. The findings, which appeared on February 20 in Neuron, showcase the use of advanced computer algorithms to understand how the brain encodes concepts such as social novelty and individual identity, says study co-author Steven Siegelbaum, a neuroscientist at the Mortimer B. Zuckerman Mind Brain Behavior Institute at Columbia University. The brain’s signature for strangers turns out to be simpler than the one used for old friends—which makes sense, Siegelbaum says, given the vastly different memory requirements for the two relationships. “Where you were, what you were doing, when you were doing it, who else [was there]—the memory of a familiar individual is a much richer memory,” Siegelbaum says. “If you’re meeting a stranger, there’s nothing to recollect.” The action occurs in a small sliver of a brain region called the hippocampus, known for its importance in forming memories. The sliver in question, known as CA2, seems to specialize in a certain kind of memory used to recall relationships. “[The new work] really emphasizes the importance of this brain area to social processing,” at least in mice, says Serena Dudek, a neuroscientist at the National Institute of Environmental Health Sciences, who was not involved in the study. © 2024 SCIENTIFIC AMERICAN,

Keyword: Attention; Learning & Memory
Link ID: 29222 - Posted: 03.28.2024

By Robert D. Hershey Jr. Daniel Kahneman, who never took an economics course but who pioneered a psychologically based branch of that field that led to a Nobel in economic science in 2002, died on Wednesday. He was 90. His death was confirmed by his partner, Barbara Tversky. She declined to say where he died. Professor Kahneman, who was long associated with Princeton University and lived in Manhattan, employed his training as a psychologist to advance what came to be called behavioral economics. The work, done largely in the 1970s, led to a rethinking of issues as far-flung as medical malpractice, international political negotiations and the evaluation of baseball talent, all of which he analyzed, mostly in collaboration with Amos Tversky, a Stanford cognitive psychologist who did groundbreaking work on human judgment and decision-making. (Ms. Tversky, also a professor of psychology at Stanford, had been married to Professor Tversky, who died in 1996. She and Professor Kahneman became partners several years ago.) As opposed to traditional economics, which assumes that human beings generally act in fully rational ways and that any exceptions tend to disappear as the stakes are raised, the behavioral school is based on exposing hard-wired mental biases that can warp judgment, often with counterintuitive results. “His central message could not be more important,” the Harvard psychologist and author Steven Pinker told The Guardian in 2014, “namely, that human reason left to its own devices is apt to engage in a number of fallacies and systematic errors, so if we want to make better decisions in our personal lives and as a society, we ought to be aware of these biases and seek workarounds. That’s a powerful and important discovery.” © 2024 The New York Times Company

Keyword: Attention
Link ID: 29218 - Posted: 03.28.2024

By Jyoti Madhusoodanan When the Philadelphia-based company Bioquark announced a plan in 2016 to regenerate neurons in brain-dead people, their proposal elicited skepticism and backlash. Researchers questioned the scientific merits of the planned study, which sought to inject stem cells and other materials into recently deceased subjects. Ethicists said it bordered on quackery and would exploit grieving families. Bioquark has since folded. But quietly, a physician who was involved in the controversial proposal, Himanshu Bansal, has continued the research. Bansal recently told Undark that he has been conducting work funded by him and his research team at a private hospital in Rudrapur, India, experimenting mostly with young adults who have succumbed to traffic accidents. He said he has data for 20 subjects for the first phase of the study and 11 for the second — some of whom showed glimmers of renewed electrical activity — and he plans to expand the study to include several more. Bansal said he has submitted his results to peer-reviewed journals over the past several years but has yet to find one that would publish them. Bansal may be among the more controversial figures conducting research with people who have been declared brain dead, but not by any stretch is he the only one. In recent years, high-profile experiments implanting non-human organs into human bodies, a procedure known as xenotransplantation, have fueled rising interest in using brain-dead subjects to study procedures that are too risky to perform on living people. With the support of a ventilator and other equipment, a person’s heart, kidneys, immune system, and other body parts can function for days, sometimes weeks or more, after brain death. For researchers who seek to understand drug delivery, organ transplantation, and other complexities of human physiology, these bodies can provide a more faithful simulacrum of a living human being than could be achieved with animals or lab-grown cells and tissues.

Keyword: Consciousness
Link ID: 29217 - Posted: 03.26.2024

By Anna Gibbs Imagine a person’s face. Now imagine that whenever you looked at that face, there was a chance it would appear distorted. That’s what life is like for a person with prosopometamorphopsia, or PMO. Now, thanks to a new study, you can see through the eyes of someone with this rare condition. Relying on feedback from a 58-year-old man who has had PMO for nearly three years, researchers at Dartmouth College altered photos of faces to mimic the “demonic” distortions he experienced. This is believed to be the first time that images have been created to so closely replicate what a patient with the condition is seeing, psychologist Antônio Mello and colleagues report in the March 23 Lancet. “We hope this has a big impact in the way people think about PMO, especially for them to be able to understand how severe PMO can be,” Mello says. For instance, he says, this particular patient didn’t like to go to the store because fellow shoppers looked like “an army of demons.” PMO is poorly understood, with fewer than 100 cases cited since 1904. Patients report a wide variety of facial distortions. While the patient in this study sees extremely stretched features with deep grooves on the face, others may see distortions that cause features to move position or change size. Because of that, this visualization is patient-specific and wouldn’t apply for everyone with PMO, says Jason Barton, a neurologist at the University of British Columbia in Vancouver who has worked with the researchers before but was not involved in this study. Still, “I think it’s helpful for people to understand the kinds of distortions people can see.” © Society for Science & the Public 2000–2024.

Keyword: Attention
Link ID: 29211 - Posted: 03.23.2024

By Julian E. Barnes New studies by the National Institutes of Health failed to find evidence of brain injury in scans or blood markers of the diplomats and spies who suffered symptoms of Havana syndrome, bolstering the conclusions of U.S. intelligence agencies about the strange health incidents. Spy agencies have concluded that the debilitating symptoms associated with Havana syndrome, including dizziness and migraines, are not the work of a hostile foreign power. They have not identified a weapon or device that caused the injuries, and intelligence analysts now believe the symptoms are most likely explained by environmental factors, existing medical conditions or stress. The lead scientist on one of the two new studies said that while the study was not designed to find a cause, the findings were consistent with those determinations. The authors said the studies are at odds with findings from researchers at the University of Pennsylvania, who found differences in brain scans of people with Havana syndrome symptoms and a control group Dr. David Relman, a prominent scientist who has had access to the classified files involving the cases and representatives of people suffering from Havana syndrome, said the new studies were flawed. Many brain injuries are difficult to detect with scans or blood markers, he said. He added that the findings do not dispute that an external force, like a directed energy device, could have injured the current and former government workers. The studies were published in The Journal of the American Medical Association on Monday alongside an editorial by Dr. Relman that was critical of the findings. © 2024 The New York Times Company

Keyword: Learning & Memory; Depression
Link ID: 29196 - Posted: 03.19.2024

By Meghan Rosen Leakiness in the brain could explain the memory and concentration problems linked to long COVID. In patients with brain fog, MRI scans revealed signs of damaged blood vessels in their brains, researchers reported February 22 in Nature Neuroscience. In these people, dye injected into the bloodstream leaked into their brains and pooled in regions that play roles in language, memory, mood and vision. It’s the first time anyone’s shown that long COVID patients can have leaky blood brain barriers, says study coauthor Matthew Campbell, a geneticist at Trinity College Dublin in Ireland. That barrier, tightly knit cells lining blood vessels, typically keeps riffraff out of the brain, like bouncers guarding a nightclub. If the barrier breaks down, bloodborne viruses, cells and other interlopers can sneak into the brain’s tissues and wreak havoc, says Avindra Nath, a neurologist at the National Institutes of Health in Bethesda, Md. It’s too early to say definitively whether that’s happening in people with long COVID, but the new study provides evidence that “brain fog has a biological basis,” says Nath, who wasn’t involved with the work. That alone is important for patients, he says, because their symptoms may be otherwise discounted by physicians. For some people, brain fog can feel like a slowdown in thinking or difficulty recalling short-term memories, Campbell says. For example, “patients will go for a drive, and forget where they’re driving to.” That might sound trivial, he says, but it actually pushes people into panic mode. © Society for Science & the Public 2000–2024.

Keyword: Attention; Learning & Memory
Link ID: 29192 - Posted: 03.16.2024

By Meghan Bartels No matter how much trouble your pet gets into when they’re awake, few sights are as peaceful as a dog curled up in their bed or a cat stretched out in the sun, snoring away. But their experience of sleep can feel impenetrable. What fills the dreams of a dog or cat? That’s a tricky question to answer. Snowball isn’t keeping a dream journal, and there’s no technology yet that can translate the brain activity of even a sleeping human into a secondhand experience of their dream world, much less a sleeping animal. “No one has done research on the content of animals’ dreams,” says Deirdre Barrett, a dream researcher at Harvard University and author of the book The Committee of Sleep. But Rover’s dreamscape isn’t entirely impenetrable, at least to educated guesses. First of all, Barrett says, only your furrier friends appear to dream. Fish, for example, don’t seem to display rapid eye movement (REM), the phase of sleep during which dreams are most common in humans. “I think it’s a really good guess that they don’t have dreams in the sense of anything like the cognitive activity that we call dreams,” she says. Whether birds experience REM sleep is less clear, Barrett says. And some marine mammals always keep one side of their brain awake even while the other sleeps, with no or very strange REM sleep involved. That means seals and dolphins likely don’t dream in anything like the way humans do. But the mammals we keep as pets are solidly REM sleepers. “I think it’s a very safe, strong guess that they are having some kind of cognitive brain activity that is as much like our dreams as their waking perceptions are like ours,” she says. That doesn’t mean that cats and dogs experience humanlike dreams. “It would be a mistake to assume that other animals dream in the same way that we do, just in their nonhuman minds and bodies,” says David Peña-Guzmán, a philosopher at San Francisco State University and author of the book When Animals Dream. For example, humans rarely report scents when recounting dreams; however, we should expect dogs to dream in smells, he says, given that olfaction is so central to their waking experience of the world. © 2024 SCIENTIFIC AMERICAN

Keyword: Sleep; Consciousness
Link ID: 29176 - Posted: 03.05.2024

By Pam Belluck Long Covid may lead to measurable cognitive decline, especially in the ability to remember, reason and plan, a large new study suggests. Cognitive testing of nearly 113,000 people in England found that those with persistent post-Covid symptoms scored the equivalent of 6 I.Q. points lower than people who had never been infected with the coronavirus, according to the study, published Wednesday in The New England Journal of Medicine. People who had been infected and no longer had symptoms also scored slightly lower than people who had never been infected, by the equivalent of 3 I.Q. points, even if they were ill for only a short time. The differences in cognitive scores were relatively small, and neurological experts cautioned that the results did not imply that being infected with the coronavirus or developing long Covid caused profound deficits in thinking and function. But the experts said the findings are important because they provide numerical evidence for the brain fog, focus and memory problems that afflict many people with long Covid. “These emerging and coalescing findings are generally highlighting that yes, there is cognitive impairment in long Covid survivors — it’s a real phenomenon,” said James C. Jackson, a neuropsychologist at Vanderbilt Medical Center, who was not involved in the study. He and other experts noted that the results were consistent with smaller studies that have found signals of cognitive impairment. The new study also found reasons for optimism, suggesting that if people’s long Covid symptoms ease, the related cognitive impairment might, too: People who had experienced long Covid symptoms for months and eventually recovered had cognitive scores similar to those who had experienced a quick recovery, the study found. © 2024 The New York Times Company

Keyword: Attention; Learning & Memory
Link ID: 29171 - Posted: 02.29.2024

By Kevin Mitchell It is often said that “the mind is what the brain does.” Modern neuroscience has indeed shown us that mental goings-on rely on and are in some sense entailed by neural goings-on. But the truth is that we have a poor handle on the nature of that relationship. One way to bridge that divide is to try to define the relationship between neural and mental representations. The basic premise of neuroscience is that patterns of neural activity carry some information — they are about something. But not all such patterns need be thought of as representations; many of them are just signals. Simple circuits such as the muscle stretch reflex or the eye-blink reflex, for example, are configured to respond to stimuli such as the lengthening of a muscle or a sudden bright light. But they don’t need to internally represent this information — or make that information available to other parts of the nervous system. They just need to respond to it. More complex information processing, by contrast, such as in our image-forming visual system, requires internal neural representation. By integrating signals from multiple photoreceptors, retinal ganglion cells carry information about patterns of light in the visual stimulus — particularly edges where the illumination changes from light to dark. This information is then made available to the thalamus and the cortical hierarchy, where additional processing goes on to extract higher- and higher-order features of the entire visual scene. Scientists have elucidated the logic of these hierarchical systems by studying the types of stimuli to which neurons are most sensitively tuned, known as “receptive fields.” If some neuron in an early cortical area responds selectively to, say, a vertical line in a certain part of the visual field, the inference is that when such a neuron is active, that is the information that it is representing. In this case, it is making that information available to the next level of the visual system — itself just a subsystem of the brain. © 2024 Simons Foundation

Keyword: Consciousness; Vision
Link ID: 29148 - Posted: 02.13.2024

By Benjamin Breen When I began researching Tripping on Utopia in 2018, I was aware that many midcentury scientists and psychiatrists had shown a keen interest in the promise of psychedelics. But what I didn’t realize was how remarkably broad-based this interest was. As I dug deeper into the archival record, I was struck by the public enthusiasm for the use of substances like LSD and mescaline in therapy—as manifested not just in scientific studies, but in newspaper articles and even television specials. (My favorite is this remarkable 1957 broadcast which shows a woman taking LSD on camera, then uttering memorable lines like “I’ve never seen such infinite beauty in my life” and “I wish I could talk in Technicolor.”) Above all, I was surprised by the public response to the Hollywood actor Cary Grant’s reveal that he was regularly using LSD in psychedelic therapy sessions. In a series of interviews starting in 1959—the same year he starred in North by Northwest—Grant went public as an unlikely advocate for psychedelic therapy. It was the surprisingly positive reaction to Grant’s endorsement that most struck me. As recounted in my book, the journalist who broke the story was overwhelmed by phone calls and letters. “Psychiatrists called, complaining that their patients were now begging them for LSD,” he remembered. “Every actor in town under analysis wanted it.” Nor was this first wave of legal psychedelic therapy restricted to Hollywood. Two other very prominent advocates of psychedelic therapy in the late 1950s were former Congresswoman Clare Boothe Luce and her husband Henry Luce, the founder of Time and Life magazines. It is not an exaggeration to say that this married couple dominated the media landscape of the 20th century. Nor is it an exaggeration to say that psychedelics profoundly influenced Clare Boothe Luce’s life in the late 1950s. She credited LSD with transformative insights that helped her to overcome lasting trauma associated with her abusive childhood and the death of her only daughter in a car accident. © 2024 NautilusNext Inc.,

Keyword: Drug Abuse; Consciousness
Link ID: 29142 - Posted: 02.10.2024

By Nora Bradford Whenever you’re actively performing a task — say, lifting weights at the gym or taking a hard exam — the parts of your brain required to carry it out become “active” when neurons step up their electrical activity. But is your brain active even when you’re zoning out on the couch? The answer, researchers have found, is yes. Over the past two decades they’ve defined what’s known as the default mode network, a collection of seemingly unrelated areas of the brain that activate when you’re not doing much at all. Its discovery has offered insights into how the brain functions outside of well-defined tasks and has also prompted research into the role of brain networks — not just brain regions — in managing our internal experience. In the late 20th century, neuroscientists began using new techniques to take images of people’s brains as they performed tasks in scanning machines. As expected, activity in certain brain areas increased during tasks — and to the researchers’ surprise, activity in other brain areas declined simultaneously. The neuroscientists were intrigued that during a wide variety of tasks, the very same brain areas consistently dialed back their activity. It was as if these areas had been active when the person wasn’t doing anything, and then turned off when the mind had to concentrate on something external. Researchers called these areas “task negative.” When they were first identified, Marcus Raichle, a neurologist at the Washington University School of Medicine in St. Louis, suspected that these task-negative areas play an important role in the resting mind. “This raised the question of ‘What’s baseline brain activity?’” Raichle recalled. In an experiment, he asked people in scanners to close their eyes and simply let their minds wander while he measured their brain activity. All Rights Reserved © 2024

Keyword: Attention; Consciousness
Link ID: 29135 - Posted: 02.06.2024

By Ashley Juavinett In the 2010 award-winning film “Inception,” Leonardo DiCaprio’s character and others run around multiple layers of someone’s consciousness, trying to implant an idea in the person’s mind. If you can plant something deep enough, the film suggests, you can make them believe it is their own idea. The film was billed as science fiction, but three years later, in 2013, researchers actually did this — in a mouse, at least. The work focused on the hippocampus, along with its closely interconnected structures, long recognized by scientists to hold our dearest memories. If you damage significant portions of just one region of your hippocampus, the dentate gyrus, you’ll lose the ability to form new memories. How these memories are stored, however, is still up for debate. One early but persistent idea posits that enduring changes in our neural circuitry, or “engrams,” may represent the physical traces of specific memories. An engram is sometimes thought of as a group of cells, along with their synaptic weights and connections throughout the brain. In sum, the engram is what DiCaprio’s character would have had to discreetly manipulate in his target. In 2012, a team in Susumu Tonegawa’s lab at the Massachusetts Institute of Technology (MIT) showed that you could mark the cells of a real memory engram and reactivate them later. Taking that work one step further, Steve Ramirez, Xu Liu and others in Tonegawa’s lab demonstrated the following year that you can implant a memory of something that never even happened. In doing so, they turned science fiction into reality, one tiny foot shock at a time. Published in Science, Ramirez and Liu’s study is a breath of fresh air, scientifically speaking. The abstract starts with one of the shortest sentences you’ll ever find in a scientific manuscript: “Memories can be unreliable.” The entire paper is extremely readable, and there is no shortage of related papers and review articles that you could give your students to read for additional context. © 2024 Simons Foundation

Keyword: Learning & Memory
Link ID: 29131 - Posted: 02.06.2024

By Erin Garcia de Jesús Bruce the kea is missing his upper beak, giving the olive green parrot a look of perpetual surprise. But scientists are the astonished ones. The typical kea (Nestor notabilis) sports a long, sharp beak, perfect for digging insects out of rotten logs or ripping roots from the ground in New Zealand’s alpine forests. Bruce has been missing the upper part of his beak since at least 2012, when he was rescued as a fledgling and sent to live at the Willowbank Wildlife Reserve in Christchurch. The defect prevents Bruce from foraging on his own. Keeping his feathers clean should also be an impossible task. In 2021, when comparative psychologist Amalia Bastos arrived at the reserve with colleagues to study keas, the zookeepers reported something odd: Bruce had seemingly figured out how to use small stones to preen. “We were like, ‘Well that’s weird,’ ” says Bastos, of Johns Hopkins University. Over nine days, the team kept a close eye on Bruce, quickly taking videos if he started cleaning his feathers. Bruce, it turned out, had indeed invented his own work-around to preen, the researchers reported in 2021 in Scientific Reports. First, Bruce selects the proper tool, rolling pebbles around in his mouth with his tongue and spitting out candidates until he finds one that he likes, usually something pointy. Next, he holds the pebble between his tongue and lower beak. Then, he picks through his feathers. “It’s crazy because the behavior was not there from the wild,” Bastos says. When Bruce arrived at Willowbank, he was too young to have learned how to preen. And no other bird in the aviary uses pebbles in this way. “It seems like he just innovated this tool use for himself,” she says. © Society for Science & the Public 2000–2024.

Keyword: Intelligence; Evolution
Link ID: 29117 - Posted: 01.27.2024

By Christian Guay & Emery Brown What does it mean to be conscious? People have been thinking and writing about this question for millennia. Yet many things about the conscious mind remain a mystery, including how to measure and assess it. What is a unit of consciousness? Are there different levels of consciousness? What happens to consciousness during sleep, coma and general anesthesia? As anesthesiologists, we think about these questions often. We make a promise to patients every day that they will be disconnected from the outside world and their inner thoughts during surgery, retain no memories of the experience and feel no pain. In this way, general anesthesia has enabled tremendous medical advances, from microscopic vascular repairs to solid organ transplants. In addition to their tremendous impact on clinical care, anesthetics have emerged as powerful scientific tools to probe questions about consciousness. They allow us to induce profound and reversible changes in conscious states—and study brain responses during these transitions. But one of the challenges that anesthesiologists face is measuring the transition from one state to another. That’s because many of the approaches that exist interrupt or disrupt what we are trying to study. Essentially, assessing the system affects the system. In studies of human consciousness, determining whether someone is conscious can arouse the person being studied—confounding that very assessment. To address this challenge, we adapted a simple approach we call the breathe-squeeze method. It offers us a way to study changes in conscious state without interrupting those shifts. To understand this approach, it helps to consider some insights from studies of consciousness that have used anesthetics. For decades researchers have used electroencephalography (EEG) to observe electrical activity in the brains of people receiving various anesthetics. They can then analyze that activity with EEG readings to characterize patterns that are specific to various anesthetics, so-called anesthetic signatures. © 2024 SCIENTIFIC AMERICAN

Keyword: Consciousness; Sleep
Link ID: 29116 - Posted: 01.27.2024

By Kenna Hughes-Castleberry Crows, ravens and other birds in the Corvidae family have a head for numbers. Not only can they make quantity estimations (as can many other animal species), but they can learn to associate number values with abstract symbols, such as “3.” The biological basis of this latter talent stems from specific number-associated neurons in a brain region called the nidopallium caudolaterale (NCL), a new study shows. The region also supports long-term memory, goal-oriented thinking and number processing. Discovery of the specialized neurons in the NCL “helps us understand the origins of our counting and math capabilities,” says study investigator Andreas Nieder, professor of animal physiology at the University of Tübingen. Until now, number-associated neurons — cells that fire especially frequently in response to an animal seeing a specific number — had been found only in the prefrontal cortex of primates, which shared a common ancestor with corvids some 300 million years ago. The new findings imply that the ability to form number-sign associations evolved independently and convergently in the two lineages. “Studying whether animals have similar concepts or represent numerosity in ways that are similar to what humans do helps us establish when in our evolutionary history these abilities may have emerged and whether these abilities emerge only in species with particular ecologies or social structures,” says Jennifer Vonk, professor of psychology at Oakland University, who was not involved in the new study. Corvids are considered especially intelligent birds, with previous studies showing that they can create and use tools, and may even experience self-recognition. Nieder has studied corvids’ and other animals’ “number sense,” or the ability to understand numerical values, for more than a decade. His previous work revealed specialized neurons in the NCL that recognize and respond to different quantities of items — including the number zero. But he tested the neurons only with simple pictures and signs that have inherent meaning for the crows, such as size. © 2023 Simons Foundation.

Keyword: Intelligence; Evolution
Link ID: 29111 - Posted: 01.23.2024

By Mariana Lenharo Neuroscientist Lucia Melloni didn’t expect to be reminded of her parents’ divorce when she attended a meeting about consciousness research in 2018. But, much like her parents, the assembled academics couldn’t agree on anything. The group of neuroscientists and philosophers had convened at the Allen Institute for Brain Science in Seattle, Washington, to devise a way to empirically test competing theories of consciousness against each other: a process called adversarial collaboration. Devising a killer experiment was fraught. “Of course, each of them was proposing experiments for which they already knew the expected results,” says Melloni, who led the collaboration and is based at the Max Planck Institute for Empirical Aesthetics in Frankfurt, Germany. Melloni, falling back on her childhood role, became the go-between. The collaboration Melloni is leading is one of five launched by the Templeton World Charity Foundation, a philanthropic organization based in Nassau, the Bahamas. The charity funds research into topics such as spirituality, polarization and religion; in 2019, it committed US$20 million to the five projects. The aim of each collaboration is to move consciousness research forward by getting scientists to produce evidence that supports one theory and falsifies the predictions of another. Melloni’s group is testing two prominent ideas: integrated information theory (IIT), which claims that consciousness amounts to the degree of ‘integrated information’ generated by a system such as the human brain; and global neuronal workspace theory (GNWT), which claims that mental content, such as perceptions and thoughts, becomes conscious when the information is broadcast across the brain through a specialized network, or workspace. She and her co-leaders had to mediate between the main theorists, and seldom invited them into the same room. Their struggle to get the collaboration off the ground is mirrored in wider fractures in the field. © 2024 Springer Nature Limited

Keyword: Consciousness
Link ID: 29106 - Posted: 01.18.2024

By Conor Feehly A decade ago, when I was starting my first year of university in New Zealand, I attended a stage hypnosis. It was one of a number of events the university offered to incoming students during orientation week. From the stage of a campus auditorium, the hypnotist-for-hire asked an audience of some 200 students to close their eyes and listen to his voice. Then he directed us to clasp our hands tightly together, and to imagine an invisible thread wrapping around them—over and under, over and under—until it was impossible to pull them apart. After a few minutes of this, he told us to try to separate our hands. Those who could not, he said, should come on down to the stage. I instantly pulled my hands apart, but to my surprise, a close friend sitting next to me made his way to the front of the auditorium with roughly 20 others from the audience. Once on stage, the hypnotist tried to bring them deeper into a hypnotic trance, directing them to focus on his calm, authoritative voice. He then asked a few of them to role-play scenarios for our entertainment: a supermarket checkout clerk ringing up shopping items, a lifeguard scanning for lives to save. After a short time, I saw the hypnotist whisper something into the ear of my friend. He sheepishly made his way back to the seat next to me. “What did he say to you?” I asked. He replied, “I can tell you’re acting, mate, get off the stage.” In the more than 200 years since the practice of contemporary hypnosis was described by German physician Franz Mesmer, public perception of it has see-sawed between skepticism and credulity. Today hypnotherapy is used to provide therapeutic remedy for depression, pain, substance use disorders, and certain traumas, uses that are supported to a certain extent by research evidence. But many still consider hypnosis more of a cheap magician’s trick than legitimate clinical medicine. © 2024 NautilusNext Inc.,

Keyword: Attention
Link ID: 29094 - Posted: 01.13.2024