Links for Keyword: Animal Communication

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 262

By Virginia Morell Like members of a street gang, male dolphins summon their buddies when it comes time to raid and pillage—or, in their case, to capture and defend females in heat. A new study reveals they do this by learning the “names,” or signature whistles, of their closest allies—sometimes more than a dozen animals—and remembering who consistently cooperated with them in the past. The findings indicate dolphins have a concept of team membership—previously seen only in humans—and may help reveal how they maintain such intricate and tight-knit societies. “It is a ground-breaking study,” says Luke Rendell, a behavioral ecologist at the University of St. Andrews who was not involved with the research. The work adds evidence to the idea that dolphins evolved large brains to navigate their complex social environments. Male dolphins typically cooperate as a pair or trio, in what researchers call a “first-order alliance.” These small groups work together to find and corral a fertile female. Males also cooperate in second-order alliances comprised of as many as 14 dolphins; these defend against rival groups attempting to steal the female. Some second-order alliances join together in even larger third-order alliances, providing males in these groups with even better chances of having allies nearby should rivals attack. © 2021 American Association for the Advancement of Science

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27785 - Posted: 04.24.2021

By Nikk Ogasa Honey bees can’t speak, of course, but scientists have found that the insects combine teamwork and odor chemicals to relay the queen’s location to the rest of the colony, revealing an extraordinary means of long distance, mass communication. The research is “really nice, and really careful,” says Gordon Berman, a biologist at Emory University who was not involved in the study. It shows once again, he says, that insects are capable of “exquisite and complex behaviors.” Honey bees communicate with chemicals called pheromones, which they sense through their antennae. Like a monarch pressing a button, the queen emits pheromones to summon worker bees to fulfill her needs. But her pheromones only travel so far. Busy worker bees, however, roam around, and they, too, can call to each other by releasing a pheromone called Nasanov, through a gesticulation known as “scenting; they raise their abdomens to expose their pheromone glands and fan their wings to direct the smelly chemicals backward (seen in the video above, and close-up in the video below). Scientists have long known individual bees scented, but just how these individual signals work together to gather tens of thousands of bees around a queen, such as when the colony leaves the hive to swarm, has remained a mystery. © 2021 American Association for the Advancement of Science.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27767 - Posted: 04.10.2021

By Jake Buehler Watch a group of lions yawn, and it may seem like nothing more than big, lazy cats acting sleepy, but new research suggests that these yawns may be subtly communicating some important social cues. Yawning is not only contagious among lions, but it appears to help the predators synchronize their movements, researchers report March 16 in Animal Behaviour. The discovery was partially made by chance, says Elisabetta Palagi, an ethologist at the University of Pisa in Italy. While studying play behavior in spotted hyenas in South Africa, she and colleagues often had the opportunity to watch lions (Panthera leo) at the same time. And she quickly noticed that lions yawn quite frequently, concentrating these yawns in short time periods. Yawning is ubiquitous among vertebrates, possibly boosting blood flow to the skull, cooling the brain and aiding alertness, especially when transitioning in and out of rest (SN: 9/8/15). Fish and reptiles will yawn, but more social vertebrates such as birds and mammals appear to have co-opted the behavior for purposes conducive to group living. In many species — like humans, monkeys, and even parakeets (SN: 6/1/15) — yawners can infect onlookers with their “yawn contagion,” leading onlookers to yawn shortly afterwards. Seeing the lions yawn reminded Palagi of her own work on contagious yawning in primates. Curious if the lions’ prodigious yawning was socially linked, Palagi and her team started recording videos of the big cats, analyzing when they were yawning and any behaviors around those times. © Society for Science & the Public 2000–2021

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 11: Emotions, Aggression, and Stress
Link ID: 27759 - Posted: 04.08.2021

By Jake Buehler A light crackling sound floats above a field in northern Switzerland in late summer. Its source is invisible, tucked inside a dead, dried plant stem: a dozen larval mason bees striking the inner walls of their herbaceous nest. While adult bees and wasps make plenty of buzzy noises, their young have generally been considered silent. But the babies of at least one bee species make themselves heard, playing percussion instruments growing out of their faces and rear ends, researchers report February 25 in the Journal of Hymenoptera Research. The larvae’s chorus of tapping and rasping may be a clever strategy to befuddle predatory wasps. Unlike honeybees, the mason bee (Hoplitis tridentata) lives a solitary life. Females chew into dead plant stems and lay their eggs inside, often in a single row of chambers lined up along its length. After hatching, the larvae feed on a provision of pollen left by the mom, spin a cocoon and overwinter as a pupa inside the stem. Andreas Müller, an entomologist at the nature conservation research agency Natur Umwelt Wissen GmbH in Zurich, has been studying bees in the Osmiini tribe, which includes mason bees and their close relatives, for about 20 years. Noticing that H. tridentata populations have been declining in northern Switzerland, he and colleague Martin Obrist tried to help the bees. “We offered the bees bundles of dry plant stems as nesting sites, and when we checked the bundles we heard the larval sounds for the first time,” says Müller. “This is a new phenomenon not only in the osmiine bees, but in bees in general.” He and Obrist, a biologist at the Swiss Federal Institute for Forest, Snow and Landscape Research in Birmensdorf, gathered stem nests from the field and subjected them to various types of physical disturbance, trying to determine what kinds of pestering triggers the bee larvae to drum. In some nests, the duo cut windows into the stems to observe larvae through the translucent cocoon walls, unveiling the secret of how the insects were creating the noises. © Society for Science & the Public 2000–2021.

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27737 - Posted: 03.17.2021

By Christa Lesté-Lasserre If you’ve ever counted to three before jumping into the pool with a friend, you’ve got something in common with dolphins. The sleek marine mammals use coordinated clicks and whistles to tell each other the precise moment to perform a backflip or push a button, according to new research. That makes them the only animals besides humans known to cooperate with vocal cues. The new work is “fascinating,” says Richard Connor, a cetacean biologist at the University of Massachusetts, Dartmouth, who was not involved with the research. “We just see so much cooperation and synchrony [among dolphins] in the wild. This helps us understand how they accomplish that.” Free-roaming dolphins are often in sync. They hunt in large groups and drive away rivals with coordinated displays. They can even match others’ movements down to their breathing patterns. But how do they achieve such synchronicity? Scientists have long suspected the cetaceans coordinate their actions through vocal cues. Underwater microphones, called hydrophones, have been picking up their whistles and clicks for decades. But dolphins don’t open their mouths when they “talk,” and tracking underwater sound has long been a technical challenge. So scientists have been developing ways to capture those sounds. In France, researchers recently combined five hydrophones to set up a star-shaped pattern that can pinpoint which dolphin in a group is “speaking,” says ethologist Juliana Lopez-Marulanda of Paris-Saclay University who co-developed the approach. © 2021 American Association for the Advancement of Science.

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27736 - Posted: 03.17.2021

By Jake Buehler During the summer feeding season in high latitudes, male blue whales tend to sing at night. But shortly before migrating south to their breeding grounds, the whales switch up the timing and sing during the day, new research suggests. This is not the first time that scientists have observed whales singing at a particular time of day. But the finding appears to be the first instance of changes in these daily singing patterns throughout the yearly feeding and mating cycle, says William Oestreich, a biological oceanographer at Stanford University. In the North Pacific, blue whales (Balaenoptera musculus) spend summers off North America’s coast gorging on krill before traveling to the tropics to breed in winter. Data collected by an underwater microphone dropped into Monterey Bay in California to record the region’s soundscape for five years allowed Oestreich and his colleagues to eavesdrop on whales that visited the bay. When the team separated daytime and nighttime whale songs, it stumbled upon a surprising pattern: In the summer and early fall, most songs occurred at night, but as winter breeding season approached, singing switched mostly to the daytime. “This was a very striking signal to observe in such an enormous dataset,” says Oestreich. The instrument has been collecting audio since July 2015, relaying nearly 2 terabytes of data back to shore every month. The researchers also tagged 15 blue whales with instruments and from 2017 to 2019, recorded the whales’ movements, diving and feeding behavior, as well as their singing — nearly 4,000 songs’ worth. Whales that were feeding and hadn’t yet started migrating to the breeding grounds sang primarily at night — crooning about 10 songs per hour on average at night compared with three songs per hour in the day, or roughly three times as often. But those that had begun their southward trip sang mostly in the day, with the day-night proportions roughly reversed, the team reports October 1 in Current Biology. © Society for Science & the Public 2000–2020.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27504 - Posted: 10.03.2020

Researchers say mother bats use baby talk to communicate with their pups. Experts say that it helps bats learn the language. MARY LOUISE KELLY, HOST: You know how scientists are always curious? Well, one scientist started wondering if bats do something that humans do. AHANA AURORA FERNANDEZ: When we humans talk to a baby, we automatically change our voices. Hello, my baby. You are so cute. My voice goes up. SACHA PFEIFFER, HOST: That's Ahana Aurora Fernandez. She's in Berlin but did her bat study in Panama. And she found that, as many humans do, mommy bats talk to baby bats in a similar way. There's a word for this way of talking. It's motherese (ph). Experts say that in humans - and, apparently, also in bats - it helps with language learning. KELLY: Ahana Fernandez sent us recordings she made to illustrate her findings. They are slowed down so we can better hear the differences between adult bats talking to each other and the motherese used on bat pups. First, here's two adult bats talking to each other. KELLY: OK, and now here's a mother bat with her pup. PFEIFFER: It took patience for Ahana Hernandez to record bat conversation. She sat in the jungle in a chair for hour after hour, waiting for bat conversations to happen. She even brought along books to pass the time. Scientific research is not always riveting. KELLY: No. All told, Ahana Fernandez and her colleagues conducted their research for these last five years, and they found something else along the way. Baby bats babble. FERNANDEZ: They use sort of a vocal practice behavior which is reminiscent of babbling in infants. KELLY: Bat baby talk. PFEIFFER: Her team's report was published this month, and it shows that in the first three months of life, these bat pups experiment with their speech. FERNANDEZ: They learn a part of their adult vocal repertoire through vocal imitation as we humans do. © 2020 npr

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 27444 - Posted: 09.02.2020

By Joshua Sokol A beast calls in the distance. Hearing a low rumble, you might imagine the source will be an unholy cross between a wild boar and a chain saw. The message is unmistakable: I’m here, I’m huge and you can either come mate with me or stay out of my way. Surprise! It’s just a cuddly little koala. Like online dating, the soundscape of the animal world is rife with exaggerations about size, which animals use to scare off rivals and attract mates. Gazelles, howler monkeys, bats and many more creatures have evolved to create calls with deep sonic frequencies that sound as if they come from a much larger animal. Now scientists have proposed this same underlying pressure to exaggerate size might be linked to an even deeper mystery. It could have spurred mammals toward developing the ability to make a wider array of possible calls, to mimic sounds after hearing them and maybe even speech, what scientists call vocal learning. “We are offering one possible way for vocal learning to have evolved,” says Maxime Garcia, a biologist at the University of Zurich in Switzerland who suggested the relationship with his colleague, Andrea Ravignani, in the journal Biology Letters this month. Their idea builds off previous studies on vocal learning in humans. Beyond just opera singers, beatboxers and Michael Winslow from the “Police Academy” movies, we all have some level of control over the frequencies of our voices. “I can tell you to lower your pitch or try to sound big, and you can soound like thissss,” said Katarzyna Pisanski at the University of Lyon in France, affecting a deep voice. © 2020 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 8: Hormones and Sex
Link ID: 27393 - Posted: 07.31.2020

Masakazu (Mark) Konishi, the Bing Professor of Behavioral Biology, Emeritus, passed away on July 23. He was 87 years old. Renowned for his work on the neuroscience underlying the behavior of owls and songbirds, Konishi joined the Caltech faculty as a professor of biology in 1975, becoming the Bing Professor of Behavioral Biology in 1980. Since the early 1960s, Konishi was a leader in the field of avian neuroethology—the neurobiological study of natural behavior, such as prey capture by owls and singing in songbirds. In his laboratory at Caltech, Konishi advised dozens of graduate students and postdoctoral scholars. His team worked extensively on the auditory systems of barn owls, which use their acute hearing to home in on prey on the ground, even in total darkness. Konishi was the first to theorize that young birds initially remember a tutor song and use the memory as a template to guide the development of their own song. Konishi was born in Kyoto, Japan, on February 17, 1933. He attended Hokkaido University in Sapporo, Japan, for his bachelor and master of science degrees, after which he attended the UC Berkeley for his PhD. Under Berkeley professor Peter Marler, Konishi focused his doctoral research on the idea of central coordination. Konishi began a full professorship at Caltech in 1975. He was the Bing Professor of Behavioral Biology until his retirement in 2013. From 1977 to 1980, Konishi served as the division's executive officer for biology.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27383 - Posted: 07.27.2020

By Cara Giaimo Even if you’re not a bird person, you probably know the jaunty song of the white-throated sparrow. It plays on loop in North America’s boreal forests, a classic as familiar as the chickadee’s trill and the mourning dove’s dirge. It even has its own mnemonic, “Old Sam Peabody-Peabody-Peabody.” But over the past half-century, the song’s hook — its triplet ending — has changed, replaced by a new, doublet-ended variant, according to a paper published Thursday in Current Biology. It seems the sparrows want to sing something new. The study, which took 20 years, is “the first to track the cultural evolution of birdsong at the continental scale,” said Mason Youngblood, a doctoral candidate in animal behavior at the CUNY Graduate Center who was not involved in the research. It describes a much broader and more rapid shift in birdsong than was previously thought to occur. Scott Ramsay, a behavioral ecologist at Wilfrid Laurier University in Ontario, was the first to notice that the forest sounded a little off during a visit to western Canada with Ken Otter, a professor at the University of Northern British Columbia. “He said, ‘Your birds are singing something weird,’” Dr. Otter recalled. Dr. Otter recorded some white-throated sparrow songs and turned them into spectrograms — visualizations that lay birdsongs out, so they can be more easily compared. The classic “Old Sam Peabody-Peabody-Peabody” songs ended in a triplet pattern: repeated sets of three notes. The new songs ended in doublets, like the record got stuck: “Old Sam Peabuh-Peabuh-Peabuh-Peabuh.” It was “a different kind of syncopation pattern,” Dr. Otter said. “They were kind of stuttering it.” Like many birds, male white-throated sparrows use songs to signal where their territory is, and to attract mates. Each individual sparrow has his own way of starting the song, but they all converge on a shared ending. © 2020 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27346 - Posted: 07.06.2020

By Katherine Kornei Imagine a frog call, but with a metallic twang—and the intensity of a chainsaw. That’s the “boing” of a minke whale. And it’s a form of animal communication in danger of being drowned out by ocean noise, new research shows. By analyzing more than 42,000 minke whale boings, scientists have found that, as background noise intensifies, the whales are losing their ability to communicate over long distances. This could limit their ability to find mates and engage in important social contact with other whales. Tyler Helble, a marine acoustician at the Naval Information Warfare Center Pacific, and colleagues recorded minke whale boings over a 1200-square-kilometer swathe of the U.S. Navy’s Pacific Missile Range Facility near the Hawaiian island of Kauai from 2012 to 2017. By measuring when a single boing arrived at various underwater microphones, the team pinpointed whale locations to within 10 to 20 meters. The researchers then used these positions, along with models of how sound propagates underwater, to calculate the intensity of each boing when it was emitted. The team compared these measurements with natural ambient noise, including waves, wind, and undersea earthquakes (no military exercises were conducted nearby during the study period). They found that minke whale boings grew louder in louder conditions. That’s not surprising—creatures across the animal kingdom up their volume when there’s background noise. (This phenomenon, dubbed the Lombard effect, holds true for humans, too—think of holding a conversation at a loud concert.) © 2019 American Association for the Advancement of Science.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 27051 - Posted: 02.19.2020

Nicola Davis Squirrels eavesdrop on the chatter of songbirds to work out whether the appearance of a predator is cause for alarm, researchers have found. Animals including squirrels have previously been found to tune in to cries of alarm from other creatures, while some take note of “all-clear” signals from another species with which they co-exist to assess danger. But the latest study suggests animals may also keep an ear out for everyday chitchat among other species as a way to gauge whether there is trouble afoot. “This study suggests that eavesdropping on public information about safety is more widespread and broader than we originally thought,” said Prof Keith Tarvin, co-author of the study from Oberlin College, Ohio. “It may not require tight ecological relationships that allow individuals to carefully learn the cues provided by other species,” he added, noting that the grey squirrels and songbirds in the study moved from place to place without regard for the other. Writing in the journal Plos One, Tarvin and colleagues reported on how they made their discovery by observing 67 grey squirrels as they pottered about different areas in the parks and residential regions of Oberlin. After 30 seconds of observing a squirrel, researchers played it a recording of the call of a red-tailed hawk, which lasted a couple of seconds – and their behaviour in the next 30 seconds was monitored. © 2019 Guardian News & Media Limited

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 26573 - Posted: 09.05.2019

Cristina Robinson, Kate Snyder, Nicole Creanza Bonjour! Ni hao! Merhaba! If you move to a new country as an adult, you have to work much harder to get past that initial “hello” in the local language than if you’d moved as a child. Why does it take so much effort to learn a new language later in life? Our human ability to learn language slows down as we get older, but scientists are not sure how or why this happens. An unexpected way to understand this learning process might come from listening to birds sing. After all, songbirds have a lot to learn. They don’t hatch knowing what songs to sing, or how to sing them. Instead, they must learn their species’ song. Young birds listen to adult birds and then practice copying the adult’s song syllables until they sound right. If they fail to learn an appropriate song, male birds will have difficulty attracting mates or defending their territories. How do birds learn to sing? This process of vocal learning is remarkably similar to how humans learn language: Babies listen to their parents speaking and then practice making the same sounds by babbling. Because these processes are so similar, birds have long been used to study vocal learning. However, while these learning processes are similar, the functions of speech and song are quite different. Human speech is complex and made up of many sounds that we use to convey an infinite number of ideas to each other. Birds only need to announce their presence to mates and rivals, yet their song can also be made of a repertoire of hundreds or thousands of unique syllables. What benefit could these more elaborate songs offer males? © 2010–2019, The Conversation US, Inc.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 13: Memory and Learning
Link ID: 26570 - Posted: 09.04.2019

By Knvul Sheikh On Sálvora Island, off the coast of Spain, thousands of yellow-legged gulls dot the grassy cliffs from April to late July. It is a riot of white wings and plaintive calls. Occasionally, the chorus changes as the seabirds engage in courtship and chick-feeding. And when the adults notice a predator, such as a dusky-coated mink, the chorus shifts again, to a characteristic alarm call — ha-ha-ha. These acoustic cues reach not just young and adult gulls but unhatched embryos, too. In 2018, researchers found that when gull eggs hatch, the ones that were exposed to alarm calls were able to crouch and hide from predators a couple of seconds faster than others. A few other bird species, including quails, fairywrens and zebra finches, are known to relay similar cues about the environment to their unhatched young, to prepare hatchlings to fend for themselves. But embryos aren’t receiving wisdom only from their parents. A new study, published Monday in the journal Nature Ecology & Evolution, suggests that they’re also receiving cues from nearby unhatched siblings. “Paying attention to cues from the outside is important for survival,” said Jose C. Noguera, an evolutionary ecologist at the University of Vigo in Spain, who led the study. Embryos that do so develop traits that provide an advantage in avoiding predators, identifying other species of birds or building their own nests in warmer temperatures later in life, he said. © 2019 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 4: Development of the Brain
Link ID: 26442 - Posted: 07.23.2019

Laura Sanders When animals are together, their brain activity aligns. These simpatico signals, described in bats and mice, bring scientists closer to understanding brains as they normally exist — enmeshed in complex social situations. Researchers know that neural synchrony emerges in people who are talking, taking a class together and even watching the same movie. But scientists tend to study human brains in highly constrained scenarios, in part because it’s technologically difficult to capture brain activity as people experience rich social interactions (SN: 5/11/19, p. 4). Now two studies published June 20 in Cell offer more details about how synced brains might influence social behavior. In one study, researchers monitored a pair of Egyptian fruit bats in a dark chamber for more than an hour. Neural implants recorded brain activity as the bats groomed themselves, fought, rested and performed other behaviors. The brain activity of the two bats was highly coordinated. When one bat’s neural activity oscillated in a fast rhythm, for example, the other bat’s brain was likely to do the same thing. This coordination continued even when the bats weren’t directly interacting with each other, the team found. But when the bats were separated into two chambers in the same room, this correlated activity fell away, suggesting that the bats had to be sharing the same social context for their brains to link up. |© Society for Science & the Public 2000 - 2019.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 26345 - Posted: 06.22.2019

Helen Thompson Whether practical, dramatical or pragmatical, domestic cats appear to recognize the familiar sound of their own names and can distinguish them from other words, researchers report April 4 in Scientific Reports. While dog responses to human behavior and speech have received much attention (SN: 10/1/16, p. 11), researchers are just scratching the surface of human-cat interactions. Research has shown that domestic cats (Felis catus) appear to respond to human facial expressions, and can distinguish between different human voices. But can cats recognize their own names? “I think many cat owners feel that cats know their names, or the word ‘food,’” but until now, there was no scientific evidence to back that up, says Atsuko Saito, a psychologist at Sophia University in Tokyo and a cat owner. So Saito and her colleagues pounced on that research question. They asked cat owners to say four nouns of similar length followed by the cat’s name. Cats gradually lost interest with each noun, but then reacted strongly to their names — moving their ears, head or tail, shifting their hind paw position or, of course, meowing. The results held up with cats living alone, with other cats and at a cat café, where customers can hang out with cats. And when someone other than the owner said the name, the cats still responded to their names more than to other nouns. One finding did give the team pause. Cat café cats almost always reacted to their names and those of other cats living there. Housecats did so much less frequently. Lots of humans visit cat cafés, and cats’ names are frequently called together, so it may be harder for cats to associate their own names with positive reinforcement in these environments, the researchers write. As for whether or not a cat understands what a name is, well, only the cat knows that. |© Society for Science & the Public 2000 - 2019

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 26115 - Posted: 04.06.2019

By Malia Wollan “If you’re talking to a puppy, increase the pitch of your voice and slow the tempo,” says Mario Gallego-Abenza, a cognitive biologist and an author of a recent study analyzing canine response to human speech. People tend to use that high-register, baby-talk tone with all dogs, but it’s really only puppies under a year old that seem to like it. “With older dogs, just use your normal voice,” he says. Dogs can learn words. One well-studied border collie named Rico knew 200 objects by name and, like a toddler, could infer the names of novel objects by excluding things with labels he already knew. Use facial expressions, gestures and possibly food treats while you talk. “Maintain eye contact,” Gallego-Abenza says. Research shows that even wolves are attuned to the attention of human faces and that dogs are particularly receptive to your gaze and pointing gestures. Scientists disagree about whether dogs are capable of full-blown empathy, but studies suggest canines feel at least a form of primitive empathy known as “emotional contagion.” In one study, dogs that heard recordings of infants crying experienced the same spike in cortisol levels and alertness as their human counterparts. You might find yourself wondering: Is this dog even listening to me? Does it care? Look for the sorts of social cues you would seek in an attentive human listener. “Is the dog looking at you?” Gallego-Abenza says. “Is it getting closer?” You are a social animal; connection with other social animals can make you feel better about the world. Gallego-Abenza, no longer studying dogs, is now working on a doctorate at the University of Vienna focused on vocalizations between ravens. Last year, a couple contacted him, sure that they were able to converse with the birds in their garden. “Humans have this rich language, and we really want to communicate,” he says. “We think that every other animal is the same, but they’re not.” Go ahead and talk to dogs, but consider letting wild creatures alone to their own intraspecies squeaks, howls and whispers. © 2019 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 26077 - Posted: 03.26.2019

Jef Akst A robot interacting with young honey bees in Graz, Austria, exchanged information with a robot swimming with zebrafish in Lausanne, Switzerland, and the robots’ communication influenced the behavior of each animal group, according to a study published in Science Robotics today (March 20). “It’s the first time that people are using this kind of technology to have two different species communicate with each other,” says Simon Garnier, a complex systems biologist at New Jersey Institute of Technology who did not participate in the study. “It’s a proof of concept that you can have robots mediate interactions between distant groups.” He adds, however, that the specific applications of such a setup remains to be seen. As robotics technology has advanced, biologists have sought to harness it, building robots that look and behave like animals. This has allowed researchers to control one side of social interactions in studies of animal behavior. Robots that successfully integrate into animal populations also provide scientists with a means to influence the groups’ behavior. “The next step, we were thinking . . . [is] adding features to the group that the animals cannot do because they don’t have the capabilities to do so,” José Halloy, a physicist at Paris Diderot University who has been working on developing robots to interact intelligently with animals for more than a decade, writes in an email. “The simple and striking thing is that robots can use telecommunication or the Internet and animals cannot do that.” © 1986 - 2019 The Scientist.

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 26060 - Posted: 03.22.2019

Laura Sanders In the understory of Central American cloud forests, musical mice trill songs to one another. Now a study of the charismatic creatures reveals how their brains orchestrate these rapid-fire duets. The results, published in the March 1 Science, show that the brains of singing mice split up the musical work. One brain system directs the patterns of notes that make up songs, while another coordinates duets with another mouse, which are carried out with split-second precision. The study suggests that “a quirky animal from the cloud forest of Costa Rica could give us a brand new insight,” into the rapid give-and-take in people’s conversations, says study coauthor Michael Long, a neuroscientist at New York University’s School of Medicine. Quirks abound in these mice, known as Alston’s singing mice (Scotinomys teguina). Like famous singers with extreme green room demands, these mice are “kind of divas,” Long says, requiring larger terrariums, exercise equipment and a very special diet. In the lab, standard mouse chow doesn’t cut it; instead, singing mice feast on fresh meal worm, dry cat food and fresh fruits and berries, says Bret Pasch. The biologist at Northern Arizona University in Flagstaff has studied these singing mice for years but wasn’t involved in this study. The mice are also, of course, loud. “They’re very vocal,” particularly in the confines of a lab, Pasch says. “Once an animal calls, it’s like a symphony that goes off,” with repeating calls. In the wild, these duets are thought to attract mates and stake out territory. |© Society for Science & the Public 2000 - 2019.

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 15: Language and Lateralization
Link ID: 25998 - Posted: 03.01.2019

By Virginia Morell It’s hard to imagine a teen asking their mother for approval on anything. But a new study shows that male zebra finches—colorful songbirds with complex songs—learn their father’s tune better when mom “fluffs up” to signal her approval. This is the first time the songbirds, thought to be mere memorization machines, have been shown to use social cues for learning—putting them in an elite club that includes cowbirds, marmosets, and humans. The finding suggests other songbirds might also learn their tunes this way, and that zebra finches are better models for studying language development than thought. “Female zebra finches play an important role in male learning, in some ways even rivaling that of the male tutors,” says Karl Berg, an avian ecologist at the University of Texas in Brownsville, who was not involved in the new study. Previously, scientists knew only that the nonsinging females played some role in song acquisition, because males raised with deaf females develop incorrect songs. Researchers have long known that female brown-headed cowbirds make quick, lateral wing strokes to approve the songs of juvenile males (as in finches, only male cowbirds learn to sing). Most scientists discounted the cowbirds’ social cues as an isolated oddity, because the birds are brood parasites. But cowbirds’ similarities to zebra finches—both are highly social and use their songs to attract mates rather than claim territories—led Cornell University developmental psychobiologists Samantha Carouso-Peck and Michael Goldstein to wonder whether female finches also use social cues to help young males learn the best, mate-attracting songs. © 2018 American Association for the Advancement of Science.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 8: Hormones and Sex
Link ID: 25922 - Posted: 02.01.2019