Chapter 8. General Principles of Sensory Processing, Touch, and Pain

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1458

By Amber Dance For Cherise Irons, chocolate, red wine and aged cheeses are dangerous. So are certain sounds, perfumes and other strong scents, cold weather and thunderstorms. Stress and lack of sleep, too. She suspects all of these things can trigger her migraine attacks, which manifest in a variety of ways: pounding pain in the back of her head, exquisite sensitivity to the slightest sound, even blackouts and partial paralysis. Irons, 48, of Coral Springs, Florida, once worked as a school assistant principal. Now, she’s on disability due to her migraine. Irons has tried so many migraine medications she’s lost count — but none has helped for long. Even a few of the much-touted new drugs that have quelled episodes for many people with migraine have failed for Irons. Though not all are as impaired as Irons, migraine is a surprisingly common problem, affecting 14 percent to 15 percent of people. Yet scientists and physicians remain largely in the dark about how triggers like Irons’s lead to attacks. They have made progress nonetheless: The latest drugs, inhibitors of a body signaling molecule called CGRP, have been a blessing for many. For others, not so much. And it’s not clear why. The complexity of migraine probably has something to do with it. “It’s a very diverse condition,” says Debbie Hay, a pharmacologist at the University of Otago in Dunedin, New Zealand. “There’s still huge debate as to what the causes are, what the consequences are.”

Keyword: Pain & Touch
Link ID: 29519 - Posted: 10.16.2024

By Laura Sanders CHICAGO — Big news for fighting sisters: Scientists have found the sensors that signal the painful zing of a hair pull. And this pain message can rip along a nerve fiber at about 100 miles an hour, placing it among the fastest known pain signals. The discovery, presented October 8 at the annual meeting of the Society for Neuroscience, offers insight into the diverse ways our bodies sense and respond to different sorts of pain. Pain can come from many catastrophes — cuts, jabs, pinches, cramps, bites, slaps, stubbing a toe in the dark. And while our bodies can generally tell these insults apart thanks to a variety of biological pathways, they all hurt. “It’s not surprising that we have figured out many, many ways to make [pain] happen,” says neuroscientist Gregory Dussor of the University of Texas at Dallas. “Because when it doesn’t, we don’t live.” Laboratory tests showed a hair pull to be about 10 times as painful as a pinprick, neuroscientist Emma Kindström of Linköping University in Sweden and colleagues found. The pain of the pull relies on a large, propeller-shaped protein called PIEZO2, further tests showed. That sensor was known to detect mechanical forces, including light touches, but wasn’t thought to detect acute pain signals. People who lack this protein don’t feel hair-pull pain. A hair-pull signal moves along nerve fibers much faster than other sorts of pain, Kindström says, traveling in bursts along an insulated conduit called an Aβ nerve fiber. Other kinds of pain signals, such as a burn from a hot stove, travel more slowly along different kinds of fibers. © Society for Science & the Public 2000–2024.

Keyword: Pain & Touch
Link ID: 29512 - Posted: 10.12.2024

By Cassandra Willyard Megan Hodge’s first bout of intense pain arrived when she was in her mid-20s. Hodge and her husband were getting ready to visit family for Thanksgiving. Though Hodge had been dealing with a variety of chronic health issues, her workout had gone well that morning and she finally felt like she was getting a handle on her health. Hodge began packing. As she reached into her closet to grab a sweater, her back gave out. The pain was excruciating, so intense that she felt light-headed and thought she might vomit. As the years passed, Hodge had more frequent and more severe bouts of back pain. Any small movement could be a trigger — grabbing a towel from the linen closet, picking up a toy off the floor, sneezing. In 2021, Hodge experienced a particularly bad flare-up. None of the strategies she had previously used to help her manage seemed to be working. She was afraid to make any movement. She felt hopeless. “I just could not regain footing, metaphorically and physically,” she says. “I truly felt frozen in my chronic pain and chronic health journey.” Hodge is far from alone. In the United States, chronic pain affects tens of millions of people — about 1 in 5 adults and nearly 1 in 3 people ages 65 and older. “The amount of suffering from arthritis and aging that I’ve seen in my pain clinic, it’s overwhelming to me as a pain doctor,” says Antje Barreveld, an anesthesiologist at Mass General Brigham’s Newton-Wellesley Hospital in Massachusetts. What’s more, the mainstay therapy for severe acute and chronic pain — prescription opioids — has helped fuel an epidemic that kills tens of thousands of people each year. “We have to have some better alternatives,” she says. So researchers have doubled down in their quest to find new pain treatments that aren’t as addictive as opioids. “The pain field has really made very rapid and tremendous progress in the last decade,” says D.P. Mohapatra, a former pain scientist who now oversees research at the National Institute of Neurological Disorders and Stroke in Bethesda, Md. © Society for Science & the Public 2000–2024.

Keyword: Pain & Touch; Drug Abuse
Link ID: 29470 - Posted: 09.07.2024

By Marla Broadfoot When doctors ask Sara Gehrig to describe her pain, she often says it is indescribable. Stabbing, burning, aching—those words frequently fail to depict sensations that have persisted for so long they are now a part of her, like her bones and skin. “My pain is like an extra limb that comes along with me every day.” Gehrig, a former yoga instructor and personal trainer who lives in Wisconsin, is 44 years old. At the age of 17 she discovered she had spinal stenosis, a narrowing of the spinal cord that puts pressure on the nerves there. She experienced bursts of excruciating pain in her back and buttocks and running down her legs. That pain has spread over the years, despite attempts to fend it off with physical therapy, anti-inflammatory injections and multiple surgeries. Over-the-counter medications such as ibuprofen (Advil) provide little relief. And she is allergic to the most potent painkillers—prescription opioids—which can induce violent vomiting. Today her agony typically hovers at a 7 out of 10 on the standard numerical scale used to rate pain, where 0 is no pain and 10 is the most severe imaginable. Occasionally her pain flares to a 9 or 10. At one point, before her doctor convinced her to take antidepressants, Gehrig struggled with thoughts of suicide. “For many with chronic pain, it’s always in their back pocket,” she says. “It’s not that we want to die. We want the pain to go away.” Gehrig says she would be willing to try another type of painkiller, but only if she knew it was safe. She keeps up with the latest research, so she was interested to hear earlier this year that Vertex Pharmaceuticals was testing a new drug that works differently than opioids and other pain medications. That drug, a pill called VX-548, blocks pain signals before they can reach the brain. It gums up sodium channels in peripheral nerve cells, and obstructed channels make it hard for those cells to transmit pain sensations. Because the drug acts only on the peripheral nerves, it does not carry the potential for addiction associated with opioids—oxycodone (OxyContin) and similar drugs exert their effects on the brain and spinal cord and thus can trigger the brain’s reward centers and an addiction cycle.

Keyword: Pain & Touch; Drug Abuse
Link ID: 29445 - Posted: 08.21.2024

By Paula Span Mary Peart, 67, a retired nurse in Manchester-by-the-Sea, Mass., began taking gabapentin a year and a half ago to reduce the pain and fatigue of fibromyalgia. The drug helps her climb stairs, walk her dog and take art lessons, she said. With it, “I have a life,” she said. “If I forget to take a dose, my pain comes right back.” Jane Dausch has a neurological condition called transverse myelitis and uses gabapentin as needed when her legs and feet ache. “It seems to be effective at calming down nerve pain,” said Ms. Dausch, 67, a retired physical therapist in North Kingstown, R.I. Amy Thomas, who owns three bookstores in the San Francisco Bay Area, takes gabapentin for rheumatoid arthritis. Along with yoga and physical therapy, “it’s probably contributing to it being easier for me to move around,” Ms. Thomas, 67, said. All three are taking the non-opioid pain drug for off-label uses. The only conditions for which gabapentin has been approved for adult use by the Food and Drug Administration are epileptic seizures, in 1993, and postherpetic neuralgia, the nerve pain that can linger after a bout of shingles, in 2002. But that has not stopped patients and health care providers from turning to gabapentin (whose brand names include Neurontin) for a startling array of other conditions, including sciatica, neuropathy from diabetes, lower back pain and post-surgery pain. Also: Agitation from dementia. Insomnia. Migraines. Itching. Bipolar disorder. Alcohol dependence. Evidence of effectiveness for these conditions is all over the map. The drug appears to provide relief for some patients with diabetic neuropathy but not with some other kinds of neuropathic pain. Several small studies indicate that gabapentin can reduce the itching associated with kidney failure. But the data for its effectiveness against low back pain or a number of psychiatric disorders are limited and show no meaningful impact. “It’s crazy how many indications it’s used for,” said Dr. Michael Steinman, a geriatrician at the University of California, San Francisco, and a co-director of the U.S. Deprescribing Research Network. “It’s become a we-don’t-know-what-else-to-do drug.” © 2024 The New York Times Company

Keyword: Pain & Touch; Drug Abuse
Link ID: 29438 - Posted: 08.19.2024

By Elena Kazamia It was a profound moment of connection. Carlos Casas could feel the elephant probing him, touching him with sound. The grunts emanating from the large male were of a frequency too low to hear, but Casas felt an agitation on his skin and deep inside his chest. “I was being scanned,” he says. At the time of the encounter, Casas was filming a project in Sri Lanka, and was holding a camera. But his interactions with the elephant gave the Catalonian filmmaker and installation artist an idea: What if instead of relying on images alone, he could use sound to create a physical connection between an audience of people and the subjects that fascinate him most, the animals with which we share life on this planet? Bestiari, his audio-visual project, now on display inside a former shipping warehouse at the Venice Biennale, weaves an immersive landscape for visitors. (You can explore some of the project, which was curated by Filipa Ramos, at the Instagram page for the installation.) Audio of the sounds the animals make is accompanied by video collected from remote camera traps set across national parks of Catalonia and Kenya, together with abstract film meant to capture the world as the animals see it, based on a combination of scientific research and artistic license. A series of texts serve as field guides to each animal featured in the installation. Entering the dark warehouse where Bestiari is housed, you are invited to lie on the floor, as if to fall asleep, before communing with seven different species: bees, donkeys, parakeets, snakes, bats, dolphins, and elephants. Each of the chosen species is represented by a speaker, customized to deliver the desired acoustics. Casas calls the speakers, “Trojan horses of meaning and communication.” The pitches and volumes were curated to be authentic to the original animal but perceptible by humans. For example, the echolocation chirps of bats have been slowed down to showcase the tonal progression of the sound. © 2024 NautilusNext Inc.,

Keyword: Hearing; Evolution
Link ID: 29421 - Posted: 08.03.2024

By Hannah Richter Humans aren’t the only animals that lose hearing as they grow older. Almost every mammal studied struggles to pick up some sounds as they age. Some veterinarians even fit dogs for tiny hearing aids. But at least one species of bat appears to be an exception. Reporting this month on the preprint server bioRxiv, scientists have discovered that big brown bats (Eptesicus fuscus) don’t hear any worse as they grow older, possibly because their ability to echolocate is so critical to their survival. “Hearing is kind of their superpower,” says Mirjam Knörnschild, a behavioral ecologist at the Museum of Natural History Berlin who was not involved with the work. The research, she and others say, could lead to new ways to understand—and possibly treat—hearing loss in humans. Bats actually have two superpowers. Not only can most of them echolocate—bouncing sound off objects to hunt and navigate—they also tend to be remarkably long-lived for their size. Most small mammals are short-lived, but compared with mice of similar stature, the big brown bat lives up to five times as long, sometimes topping out at 19 years old. That makes the species a fascinating target for studies of aging, says Grace Capshaw, a postdoctoral researcher at Johns Hopkins University. The bat auditory system is fundamentally the same as that of every other mammal, she says, so “bats can be a really powerful model for comparing how hearing works.” To test whether big brown bats lose their hearing over time, Capshaw and colleagues divided 23 wild-caught bats into groups of young and old, making 6 years—the mean age of the species—the dividing line. The researchers determined the bats’ ages using a precise genetic method that involves comparing each animal’s DNA with the DNA of bats with known ages. They then sedated the animals to conduct a hearing examination similar to those done on human infants.

Keyword: Hearing
Link ID: 29411 - Posted: 07.31.2024

By Miryam Naddaf About one-third of people who suffer from migraines experience a phenomenon known as aura before the headache.Credit: Tunatura/Getty For one billion people worldwide, the symptoms can be debilitating: throbbing head pain, nausea, blurred vision and fatigue that can last for days. But how brain activity triggers these severest of headaches — migraines — has long puzzled scientists. A study1 in mice, published in Science on 4 July, now offers clues about the neurological events that spark migraines. It suggests that a brief brain ‘blackout’ — when neuronal activity shuts down — temporarily changes the content of the cerebrospinal fluid, the clear liquid that surrounds the brain and spinal cord. This altered fluid, researchers suggest, travels through a previously unknown gap in anatomy to nerves in the skull where it activates pain and inflammatory receptors, causing headaches. “This work is a shift in how we think the headaches originate,” says Gregory Dussor, a neuroscientist at the University of Texas at Dallas in Richardson. “A headache might just be a general warning sign for lots of things happening inside the brain that aren’t normal.” “Migraine is actually protective in that way. The pain is protective because it’s telling the person to rest and recover and sleep,” says study co-author Maiken Nedergaard, a neuroscientist at the University of Copenhagen. The brain itself has no pain receptors; the sensation of headaches comes from areas outside the brain that are in the peripheral nervous system. But how the brain, which is not directly linked to the peripheral nervous system, triggers nerves to cause headaches is poorly understood, making them difficult to treat. © 2024 Springer Nature Limited

Keyword: Pain & Touch
Link ID: 29388 - Posted: 07.11.2024

By Rodrigo Pérez Ortega It starts with blind spots, flashing lights, and blurry vision—a warning of what’s to come. About an hour later, the dreadful headache kicks in. This pairing, a shining visual experience called an aura and then a headache, happens in about one-third of people who live with migraine. But researchers haven’t been able to figure out exactly how the two are linked at the molecular level. Now, a new study in mice, published today in Science, establishes a direct mechanism: molecules traveling in the fluid that bathes the brain. The finding could lead to new targets for much-needed migraine treatments. “It’s exciting,” says Rami Burstein, a translational neuroscientist at Harvard Medical School who was not involved in the new study. “It takes a very large step into understanding how something that happened in the brain can alter sensation or perception,” he says. It may also explain why the pain of migraine is experienced only in the head, he adds. Migraine, a debilitating neurological disorder, affects about 148 million people worldwide. Recently developed medications can help reduce headaches but are not effective for everyone. Although exact causes remain elusive, research has shown migraines most likely start with a pathological burst of neural activity. During an aura before a migraine, researchers have observed a seizurelike phenomenon called cortical spreading depression (CSD), in which a wave of abnormal neural firing slowly travels throughout the brain’s outer layer, or cortex. But because the brain itself contains no pain-sensing neurons, signals from the brain would have to somehow reach the peripheral nervous system—the nerves that communicate between the body parts and the brain—to cause a headache. In particular, they’d have to get to the two lumps of neurons below the brain called the trigeminal ganglia, which innervate the two sides of our face and head. Scientists knew that pain fibers from the trigeminal ganglion were nested in the meninges—the thin, delicate membranes that envelop and protect the brain.

Keyword: Pain & Touch
Link ID: 29380 - Posted: 07.06.2024

By Claire Yuan Men and women experience pain differently, and until now, scientists didn’t know why. New research says it may be in part due to differences in male and female nerve cells. Pain-sensing nerve cells from male and female animal tissues responded differently to the same sensitizing substances, researchers report June 3 in Brain. The results suggest that at the cellular level, pain is produced differently between the sexes. The results might allow researchers “to come up with drugs that would be specific to treat female patients or male patients,” says Katherine Martucci, a neuroscientist who studies chronic pain at Duke University School of Medicine and was not involved in the study. “There’s no debate about it. They’re seeing these differences in the cells.” Some types of chronic and acute pain appear more often in one sex, but it’s unclear why. For instance, about 50 million adults in the United States suffer from chronic pain conditions, many of which are more common in women (SN: 5/22/23). Similar disparities exist for acute conditions. Such differences prompted pain researcher Frank Porreca of the University of Arizona Health Sciences in Tucson and colleagues to study nerve cells called nociceptors, which can act like alarm sensors for the body. The cells’ pain sensors, found in skin, organs and elsewhere in the body, can detect potentially dangerous stimuli and send signals to the brain, which then interprets the information as pain. In some cases, the nerve cells can become more sensitive to outside stimulation, registering even gentle sensations — like a shirt rubbing sunburned skin — as pain. © Society for Science & the Public 2000–2024.

Keyword: Pain & Touch; Sexual Behavior
Link ID: 29366 - Posted: 06.24.2024

By Sara Reardon Specific nerve cells on the penis and clitoris detect vibrations and then become activated, causing sexual behaviours such as erections, a study in mice has revealed1. The findings could lead to new treatments for conditions such as erectile dysfunction, or for restoring sexual function in people with lower-body paralysis. Krause corpuscles — nerve endings in tightly wrapped balls located just under the skin — were first discovered in human genitals more than 150 years ago. The structures are similar to touch-activated corpuscles found on people’s fingers and hands, which respond to vibrations as the skin moves across a textured surface. But there is little research into how the genital corpuscles work and how they are involved in sex, probably because the topic is sometimes considered taboo. “It’s been hard to get people to work on this because some people have a hard time talking about it,” says David Ginty, a sensory neurobiologist at Harvard Medical School in Boston, Massachusetts, who led the team that conducted the latest research. “But I don’t, because the biology is so interesting.” Ginty and other sensory biologists have long wanted to study these mysterious neuron balls. But activating and tracking specific neurons was nearly impossible until advanced molecular techniques emerged in the past 20 years. In a 19 June paper in Nature1, Ginty and his collaborators activated the Krause corpuscles in both male and female mice using various mechanical and electrical stimuli. The neurons fired in response to low-frequency vibrations in the range of 40–80 hertz. Ginty notes that these frequencies are generally used in many sex toys; humans, it seems, realized that this was the best way to stimulate Krause corpuscles before any official experiments were published. © 2024 Springer Nature Limited

Keyword: Sexual Behavior; Pain & Touch
Link ID: 29365 - Posted: 06.24.2024

By Emily Underwood You’re driving somewhere, eyes on the road, when you start to feel a tingling sensation in your lower abdomen. That extra-large Coke you drank an hour ago has made its way through your kidneys into your bladder. “Time to pull over,” you think, scanning for an exit ramp. To most people, pulling into a highway rest stop is a profoundly mundane experience. But not to neuroscientist Rita Valentino, who has studied how the brain senses, interprets and acts on the bladder’s signals. She’s fascinated by the brain’s ability to take in sensations from the bladder, combine them with signals from outside of the body, like the sights and sounds of the road, then use that information to act — in this scenario, to find a safe, socially appropriate place to pee. “To me, it’s really an example of one of the beautiful things that the brain does,” she says. Scientists used to think that our bladders were ruled by a relatively straightforward reflex — an “on-off” switch between storing urine and letting it go. “Now we realize it’s much more complex than that,” says Valentino, now director of the division of neuroscience and behavior at the National Institute of Drug Abuse. An intricate network of brain regions that contribute to functions like decision-making, social interactions and awareness of our body’s internal state, also called interoception, participates in making the call. In addition to being mind-bogglingly complex, the system is also delicate. Scientists estimate, for example, that more than 1 in 10 adults have overactive bladder syndrome — a common constellation of symptoms that includes urinary urgency (the sensation of needing to pee even when the bladder isn’t full), nocturia (the need for frequent nightly bathroom visits) and incontinence. Although existing treatments can improve symptoms for some, they don’t work for many people, says Martin Michel, a pharmacologist at Johannes Gutenberg University in Mainz, Germany, who researches therapies for bladder disorders. Developing better drugs has proven so challenging that all major pharmaceutical companies have abandoned the effort, he adds.

Keyword: Miscellaneous
Link ID: 29337 - Posted: 06.02.2024

By Ingrid Wickelgren Ishmail Abdus-Saboor has been fascinated by the variety of the natural world since he was a boy growing up in Philadelphia. The nature walks he took under the tutelage of his third grade teacher, Mr. Moore, entranced him. “We got to interact and engage with wildlife and see animals in their native environment,” he recalled. Abdus-Saboor also brought a menagerie of creatures — cats, dogs, lizards, snakes and turtles — into his three-story home, and saved up his allowance to buy a magazine that taught him about turtles. When adults asked him what he wanted to be when he grew up, “I said I wanted to become a scientist,” he said. “I always raised eyebrows.” Abdus-Saboor did not stray from that goal. Today, he is an associate professor of biological sciences at the Mortimer B. Zuckerman Mind Brain Behavior Institute at Columbia University, where he studies how the brain determines whether a touch to the skin is painful or pleasurable. “Although this question is fundamental to the human experience, it remains puzzling to explain with satisfying molecular detail,” he said. Because the skin is our largest sensory organ and a major conduit to our environment, it may hold clues for treating conditions from chronic pain to depression. To find those clues, Abdus-Saboor probes the nervous system at every juncture along the skin-to-brain axis. He does not focus on skin alone or home in on only the brain as many others do. “We merge these two worlds,” he said. That approach, he added, requires mastering two sets of techniques, reading two sets of literature and attending two sets of scientific meetings. “It gives us a unique leg up,” he said. It has led to a landmark paper published last year in Cell that laid out the entire neural circuit for pleasurable touch. © 2024 Simons Foundation.

Keyword: Pain & Touch; Emotions
Link ID: 29262 - Posted: 04.20.2024

By Joanne Silberner A hug, a handshake, a therapeutic massage. A newborn lying on a mother’s bare chest. Physical touch can buoy well-being and lessen pain, depression and anxiety, according to a large new analysis of published research released on Monday in the journal Nature Human Behaviour. Researchers from Germany and the Netherlands systematically reviewed years of research on touch, strokes, hugs and rubs. They also combined data from 137 studies, which included nearly 13,000 adults, children and infants. Each study compared individuals who had been physically touched in some way over the course of an experiment — or had touched an object like a fuzzy stuffed toy — to similar individuals who had not. For example, one study showed that daily 20-minute gentle massages for six weeks in older people with dementia decreased aggressiveness and reduced the levels of a stress marker in the blood. Another found that massages boosted the mood of breast cancer patients. One study even showed that healthy young adults who caressed a robotic baby seal were happier, and felt less pain from a mild heat stimulus, than those who read an article about an astronomer. Positive effects were particularly noticeable in premature babies, who “massively improve” with skin-to-skin contact, said Frédéric Michon, a researcher at the Netherlands Institute for Neuroscience and one of the study’s authors. “There have been a lot of claims that touch is good, touch is healthy, touch is something that we all need,” said Rebecca Boehme, a neuroscientist at Linkoping University in Sweden, who reviewed the study for the journal. “But actually, nobody had looked at it from this broad, bird’s eye perspective.” © 2024 The New York Times Company

Keyword: Pain & Touch; Emotions
Link ID: 29252 - Posted: 04.11.2024

By Emily Makowski & I spend my days surrounded by thousands of written words, and sometimes I feel as though there’s no escape. That may not seem particularly unusual. Plenty of people have similar feelings. But no, I’m not just talking about my job as a copy editor here at Scientific American, where I edit and fact-check an endless stream of science writing. This constant flow of text is all in my head. My brain automatically translates spoken words into written ones in my mind’s eye. I “see” subtitles that I can’t turn off whenever I talk or hear someone else talking. This same speech-to-text conversion even happens for the inner dialogue of my thoughts. This mental closed-captioning has accompanied me since late toddlerhood, almost as far back as my earliest childhood memories. And for a long time, I thought that everyone could “read” spoken words in their head the way I do. What I experience goes by the name of ticker-tape synesthesia. It is not a medical condition—it’s just a distinctive way of perceiving the surrounding world that relatively few people share. Not much is known about the neurophysiology or psychology of this phenomenon, sometimes called “ticker taping,” even though a reference to it first appeared in the scientific literature in the late 19th century. Ticker taping is considered a form of synesthesia, an experience in which the brain reroutes one kind of incoming sensory information so that it is processed as another. For example, sounds might be perceived as touch, allowing the affected person to “feel” them as tactile sensations. As synesthesia goes, ticker taping is relatively uncommon. “There are varieties of synesthesia which really have just been completely under the radar..., and ticker tape is really one of those,” says Mark Price, a cognitive psychologist at the University of Bergen in Norway. The name “ticker-tape synesthesia” itself evokes the concept’s late 19th-century origins. At that time stock prices transmitted by telegraph were printed on long paper strips, which would be torn into tiny bits and thrown from building windows during parades. © 2024 SCIENTIFIC AMERICAN,

Keyword: Attention; Language
Link ID: 29238 - Posted: 04.04.2024

By Saugat Bolakhe For desert ants, Earth’s magnetic field isn’t just a compass: It may also sculpt their brains. Stepping outside their nest for the first time, young ants need to learn how to forage. The ants train partly by walking a loop near their nests for the first three days. During this stroll, they repeatedly pause and then pirouette to gaze back at the nest entrance, learning how to find their way back home. But when the magnetic field around the nest entrance was disturbed, ant apprentices couldn’t figure out where to look, often gazing in random directions, researchers report in the Feb. 20 Proceedings of the National Academy of Sciences. What’s more, the altered magnetic field seemed to affect connections between neurons in the learning and memory centers in the young ants’ brains. The finding “may make it easier to better understand how magnetic fields are sensed [in animals]” as scientists now know one way that magnetic fields can influence brain development, says Robin Grob, a biologist at the Norwegian University of Science and Technology in Trondheim. For years, scientists have known that some species of birds, fishes, turtles, moths and butterflies rely on Earth’s magnetic field to navigate (SN: 4/3/18). In 2018, Grob and other scientists added desert ants to that list. Young ants first appeared to use the magnetic field as a reference while learning how to use landmarks and the sun as guides to orient themselves in the right direction to gaze back toward the nest with its small, hard-to-see entrance. However, knowing where in the brain magnetic cues are processed has proved challenging. © Society for Science & the Public 2000–2024.

Keyword: Animal Migration; Development of the Brain
Link ID: 29227 - Posted: 03.30.2024

By Alejandra Manjarrez People wear gloves when making a snowman for a reason: Handling cold stuff can hurt. A new mouse study reveals what may be a key player in this response: a protein already known to enable sensory neurons in worms to detect cold. New evidence published this week in Nature Neuroscience confirms that this protein has the same function in mammals. “The paper is exciting,” says Theanne Griffith, a neuroscientist at the University of California, Davis who was not involved in the research. She notes that the protein, called GluK2, is found in the brain and has “traditionally been thought to play a major role in learning and memory.” The new work shows that elsewhere in the body, it has an unsuspected and “completely divergent role.” We perceive touch, pain, and temperature thanks to a system of nerves that extends throughout our bodies. Researchers have identified skin sensors that detect hot and warm stimuli. Cold sensors, though, have proved more challenging to find. Researchers have proposed various candidates but found limited and contradictory evidence for their function. An ion channel named TRPM8 is the exception. Famous for detecting the “cool” sensation of menthol, it also detects cold temperatures and helped earn its discoverers the Nobel Prize in Physiology or Medicine in 2021. “Nobody questions that TRPM8 is a cold sensor,” says sensory neurobiologist Félix Viana of the Institute for Neuroscience in Alicante, Spain. But it could not be the whole story. It works most efficiently at temperatures above roughly 10°C, and mice lacking the gene for TRPM8 can still detect very cold temperatures. A few years ago, University of Michigan neuroscientists Shawn Xu and Bo Duan and their colleagues found another candidate: a protein on certain sensory neurons in the tiny roundworm Caenorhabditis elegans that causes the animals to avoid temperatures between 17°C and 18°C, which are colder than their preferred temperatures. Preliminary data from that study hinted that the equivalent protein in mammals, GluK2, also allowed mice to sense cold.

Keyword: Pain & Touch
Link ID: 29190 - Posted: 03.16.2024

By Regina G. Barber, Anil Oza, Ailsa Chang, Rachel Carlson Neuroscientist Nathan Sawtell has spent a lot of time studying a funky looking electric fish characterized by its long nose. The Gnathonemus petersii, or elephantnose fish, can send and decipher weak electric signals, which Sawtell hopes will help neuroscientists better understand how the brain pieces together information about the outside world. But as Sawtell studied these electric critters, he noticed a pattern he couldn't explain: the fish tend to organize themselves in a particular orientation. "There would be a group of subordinates in a particular configuration at one end of the tank, and then a dominant fish at the other end. The dominant fish would swim in and break up the group, and they would scatter. A few seconds later, the group would coalesce and it would stay there for hours at a time in this stationary configuration," Sawtell, who runs a lab at Columbia University's Zuckerman Institute says. Initially Sawtell and his team couldn't put together why the fish were always hanging out in this configuration. "What could they really be talking to each other about all of this time?" A new study released this week in Nature by Sawtell and colleagues at Columbia University could have one potential answer: the fish are creating an electrical network that is larger than any field an individual fish can muster alone. In this collective field, the whole school of fish get instantaneous information on changes in the water around them, like approaching predators. Rather than being confused by the flurry of electric signals from other fish, "these fish were clever enough to exploit the pulses of group members to sense their environment," Sawtell says. © 2024 npr

Keyword: Pain & Touch
Link ID: 29187 - Posted: 03.09.2024

By Simon Makin A new device makes it possible for a person with an amputation to sense temperature with a prosthetic hand. The technology is a step toward prosthetic limbs that restore a full range of senses, improving both their usefulness and acceptance by those who wear them. A team of researchers in Italy and Switzerland attached the device, called ”MiniTouch,” to the prosthetic hand of a 57-year-old man named Fabrizio, who has an above-the-wrist amputation. In tests, the man could identify cold, cool and hot bottles of liquid with perfect accuracy; tell the difference between plastic, glass and copper significantly better than chance; and sort steel blocks by temperature with around 75 percent accuracy, researchers report February 9 in Med. Thank you for being a subscriber to Science News! Interested in more ways to support STEM? Consider making a gift to our nonprofit publisher, Society for Science, an organization dedicated to expanding scientific literacy and ensuring that every young person can strive to become an engineer or scientist. “It’s important to incorporate these technologies in a way that prosthesis users can actually use to perform functional tasks,” says neuroengineer Luke Osborn of Johns Hopkins University Applied Physics Laboratory in Laurel, Md., who was not involved in the study. “Introducing new sensory feedback modalities could help give users more functionality they weren’t able to achieve before.” The device also improved Fabrizio’s ability to tell whether he was touching an artificial or human arm. His accuracy was 80 percent with the device turned on, compared with 60 percent with it off. “It’s not quite as good as with the intact hand, probably because we’re not giving [information about] skin textures,” says neuroengineer Solaiman Shokur of EPFL, the Swiss Federal Institute of Technology in Lausanne. © Society for Science & the Public 2000–2024.

Keyword: Pain & Touch
Link ID: 29144 - Posted: 02.10.2024

By Holly Barker Sensory issues associated with autism may be caused by fluctuating neuronal noise — the background hum of electrical activity in the brain — according to a new mouse study. Up to 90 percent of autistic people report sensory problems, including heightened sensitivity to sounds or an aversion to certain smells. Yet others barely register sensory cues and may seek out sensations by making loud noises or rocking back and forth. But thinking in terms of hyper- or hyposensitivity may be an oversimplification, says Andreas Frick, lead investigator and research director at INSERM. “It’s becoming clear now that things are a lot more nuanced.” For instance, the brain’s response to visual patterns — measured using electroencephalography (EEG) recordings — varies more between viewings in autistic people than in those without the condition, one study found. And functional MRI has detected similar variability among autistic people, suggesting sensory problems may arise from inconsistent brain responses. In the new study, Frick and his colleagues found variability in the activity of individual neurons in a mouse model of fragile X syndrome, one of the leading causes of autism. That variability in neuronal response maps to fluctuations in the levels of noise in the brain, the study found. Noise within the brain isn’t necessarily a bad thing. In fact, an optimum amount is ideal: a little can give neurons the ‘push’ they might need to fire an action potential, while too much can make it difficult for the brain to distinguish between different stimuli. But in animals modeling fragile X syndrome, noise fluctuates such that they process sensory information less reliably, Frick says. © 2023 Simons Foundation.

Keyword: Autism
Link ID: 29105 - Posted: 01.18.2024