Links for Keyword: Genes & Behavior

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 312

By John Horgan The New York Times "Sunday Review" section has anointed Richard Friedman its go-to guy for touting behavioral genetics--or "gene-whiz science," as I prefer to call it. In March, Friedman, professor of clinical psychiatry at Weill Cornell Medical College, proclaimed that researchers had discovered a "feel-good gene," which "makes some people inherently less anxious, and more able to forget fearful and unpleasant experiences." As I pointed out on this blog, Friedman's claim—like virtually all reported linkages of complex human traits and disorders to specific genes (see Further Reading)--is based on flimsy, contradictory evidence. I'm so naïve, or arrogant, that I actually thought my critique might dissuade the Times from further hype of gene-whiz science. Times editors must care more about traffic than accuracy, because they devoted almost the entire front page of yesterday’s "Sunday Review" to Friedman's latest travesty, "Infidelity Lurks in Your Genes." The core of Friedman's essay is his assertion that some women are "biologically inclined to wander." More specifically, women who carry variants of the gene AVPR1A—which encodes the receptor for the hormone arginine vasopressin--are "much more likely to engage in 'extra-pair bonding,' the scientific euphemism for sexual infidelity." In support of this claim, Friedman cites a study of Finnish twins and non-twin siblings by a team led by Australian psychologist Brendan Zietsch. The team surveyed the Finnish subjects and found that 9.8 percent of the men and 6.4 percent of the women reported engaging in at least one "extra-pair mating." The researchers found an association between five AVPR1A markers and extra-pair mating in women but not in men.

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 20980 - Posted: 05.26.2015

Monica Tan The age-old question of whether human traits are determined by nature or nurture has been answered, a team of researchers say. Their conclusion? It’s a draw. By collating almost every twin study across the world from the past 50 years, researchers determined that the average variation for human traits and disease is 49% due to genetic factors and 51% due to environmental factors. University of Queensland researcher Beben Benyamin from the Queensland Brain Institute collaborated with researchers at VU University of Amsterdam to collate 2,748 studies involving more than 14.5 million pairs of twins. “Twin studies have been conducted for more than 50 years but there is still some debate in terms of how much the variation is due to genetic or environmental factors,” Benyamin said. He said the study showed the conversation should move away from nature versus nature, instead looking at how the two work together. “Both are important sources of variation between individuals,” he said. While the studies averaged an almost even split between nature and nurture, there was wide variation within the 17,800 separate traits and diseases examined by the studies. For example, the risk for bipolar disorder was found to be 68% due to genetics and only 32% due to environmental factors. Weight maintenance was 63% due to genetics and 37% due to environmental factors. In contrast, risk for eating disorders was found to be 40% genetic and 60% environmental, whereas the risk for mental and behavioural disorders due to use of alcohol was 41% genetic and 59% environmental. © 2015 Guardian News and Media Limited

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 4: Development of the Brain
Link ID: 20948 - Posted: 05.19.2015

Carl Zimmer Scientists in Iceland have produced an unprecedented snapshot of a nation’s genetic makeup, discovering a host of previously unknown gene mutations that may play roles in ailments as diverse as Alzheimer’s disease, heart disease and gallstones. “This is amazing work, there’s no question about it,” said Daniel G. MacArthur, a geneticist at Massachusetts General Hospital who was not involved in the research. “They’ve now managed to get more genetic data on a much larger chunk of the population than in any other country in the world.” In a series of papers published on Wednesday in the journal Nature Genetics, researchers at Decode, an Icelandic genetics firm owned by Amgen, described sequencing the genomes — the complete DNA — of 2,636 Icelanders, the largest collection ever analyzed in a single human population. With this trove of genetic information, the scientists were able to accurately infer the genomes of more than 100,000 other Icelanders, or almost a third of the entire country. “From the technical point of view, these papers are a tour-de-force,” said David Reich, a geneticist at Harvard Medical School who was not involved in the research. While some diseases, like cystic fibrosis, are caused by a single genetic mutation, the most common ones are not. Instead, mutations to a number of different genes can each raise the risk of getting, say, heart disease or breast cancer. Discovering these mutations can shed light on these diseases and point to potential treatments. But many of them are rare, making it necessary to search large groups of people to find them. The wealth of data created in Iceland may enable scientists to begin doing that. In their new study, the researchers at Decode present several such revealing mutations. For example, they found eight people in Iceland who shared a mutation on a gene called MYL4. Medical records showed that they also have early onset atrial fibrillation, a type of irregular heartbeat. © 2015 The New York Times Company

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 4: Development of the Brain; Chapter 5: The Sensorimotor System
Link ID: 20724 - Posted: 03.26.2015

by Helen Thomson Could a futuristic society of humans with the power to control their own biological functions ever become reality? It's not as out there as it sounds, now the technical foundations have been laid. Researchers have created a link between thoughts and cells, allowing people to switch on genes in mice using just their thoughts. "We wanted to be able to use brainwaves to control genes. It's the first time anyone has linked synthetic biology and the mind," says Martin Fussenegger, a bioengineer at ETH Zurich in Basel, Switzerland, who led the team behind the work. They hope to use the technology to help people who are "locked-in" – that is, fully conscious but unable to move or speak – to do things like self-administer pain medication. It might also be able to help people with epilepsy control their seizures. In theory, the technology could be used for non-medical purposes, too. For example, we could give ourselves a hormone burst on demand, much like in the Culture – Iain M. Banks's utopian society, where people are able to secrete hormones and other chemicals to change their mood. Fussenegger's team started by inserting a light-responsive gene into human kidney cells in a dish. The gene is activated, or expressed, when exposed to infrared light. The cells were engineered so that when the gene activated, it caused a cascade of chemical reactions leading to the expression of another gene – the one the team wanted to switch on. © Copyright Reed Business Information Ltd.

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 4: Development of the Brain
Link ID: 20309 - Posted: 11.13.2014

Email David By David Grimm Place a housecat next to its direct ancestor, the Near Eastern wildcat, and it may take you a minute to spot the difference. They’re about the same size and shape, and, well, they both look like cats. But the wildcat is fierce and feral, whereas the housecat, thanks to nearly 10,000 years of domestication, is tame and adaptable enough to have become the world’s most popular pet. Now scientists have begun to pinpoint the genetic changes that drove this remarkable transformation. The findings, based on the first high-quality sequence of the cat genome, could shed light on how other creatures, even humans, become tame. “This is the closest thing to a smoking gun we’ve ever had,” says Greger Larson, an evolutionary biologist at the University of Oxford in the United Kingdom who has studied the domestication of pigs, dogs, and other animals. “We’re much closer to understanding the nitty-gritty of domestication than we were a decade ago.” Cats first entered human society about 9500 years ago, not long after people first took up farming in the Middle East. Drawn to rodents that had invaded grain stores, wildcats slunk out of the deserts and into villages. There, many scientists suspect, they mostly domesticated themselves, with the friendliest ones able to take advantage of human table scraps and protection. Over thousands of years, cats shrank slightly in size, acquired a panoply of coat colors and patterns, and (largely) shed the antisocial tendencies of their past. Domestic animals from cows to dogs have undergone similar transformations, yet scientists know relatively little about the genes involved. Researchers led by Michael Montague, a postdoc at the Washington University School of Medicine in St. Louis, have now pinpointed some of them. The scientists started with the genome of a domestic cat—a female Abyssinian—that had been published in draft form in 2007, then filled in missing sequences and identified genes. They compared the resulting genome with those of cows, tigers, dogs, and humans. © 2014 American Association for the Advancement of Science.

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 4: Development of the Brain
Link ID: 20298 - Posted: 11.11.2014

By JOSHUA A. KRISCH An old stucco house stands atop a grassy hill overlooking the Long Island Sound. Less than a mile down the road, the renowned Cold Spring Harbor Laboratory bustles with more than 600 researchers and technicians, regularly producing breakthroughs in genetics, cancer and neuroscience. But that old house, now a private residence on the outskirts of town, once held a facility whose very name evokes dark memories: the Eugenics Record Office. In its heyday, the office was the premier scientific enterprise at Cold Spring Harbor. There, bigoted scientists applied rudimentary genetics to singling out supposedly superior races and degrading minorities. By the mid-1920s, the office had become the center of the eugenics movement in America. Today, all that remains of it are files and photographs — reams of discredited research that once shaped anti-immigration laws, spurred forced-sterilization campaigns and barred refugees from entering Ellis Island. Now, historians and artists at New York University are bringing the eugenics office back into the public eye. “Haunted Files: The Eugenics Record Office,” a new exhibit at the university’s Asian/Pacific/American Institute, transports visitors to 1924, the height of the eugenics movement in the United States. Inside a dimly lit room, the sounds of an old typewriter click and clack, a teakettle whistles and papers shuffle. The office’s original file cabinets loom over reproduced desks and period knickknacks. Creaky cabinets slide open, and visitors are encouraged to thumb through copies of pseudoscientific papers. © 2014 The New York Times Company

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 4: Development of the Brain
Link ID: 20204 - Posted: 10.14.2014

By Sarah C. P. Williams If you sailed through school with high grades and perfect test scores, you probably did it with traits beyond sheer smarts. A new study of more than 6000 pairs of twins finds that academic achievement is influenced by genes affecting motivation, personality, confidence, and dozens of other traits, in addition to those that shape intelligence. The results may lead to new ways to improve childhood education. “I think this is going to end up being a really classic paper in the literature,” says psychologist Lee Thompson of Case Western Reserve University in Cleveland, Ohio, who has studied the genetics of cognitive skills and who was not involved in the work. “It’s a really firm foundation from which we can build on.” Researchers have previously shown that a person’s IQ is highly influenced by genetic factors, and have even identified certain genes that play a role. They’ve also shown that performance in school has genetic factors. But it’s been unclear whether the same genes that influence IQ also influence grades and test scores. In the new study, researchers at King’s College London turned to a cohort of more than 11,000 pairs of both identical and nonidentical twins born in the United Kingdom between 1994 and 1996. Rather than focus solely on IQ, as many previous studies had, the scientists analyzed 83 different traits, which had been reported on questionnaires that the twins, at age 16, and their parents filled out. The traits ranged from measures of health and overall happiness to ratings of how much each teen liked school and how hard they worked. © 2014 American Association for the Advancement of Science

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 4: Development of the Brain; Chapter 20:
Link ID: 20170 - Posted: 10.07.2014

By JAMIE EDGIN and FABIAN FERNANDEZ LAST week the biologist Richard Dawkins sparked controversy when, in response to a woman’s hypothetical question about whether to carry to term a child with Down syndrome, he wrote on Twitter: “Abort it and try again. It would be immoral to bring it into the world if you have the choice.” In further statements, Mr. Dawkins suggested that his view was rooted in the moral principle of reducing overall suffering whenever possible — in this case, that of individuals born with Down syndrome and their families. But Mr. Dawkins’s argument is flawed. Not because his moral reasoning is wrong, necessarily (that is a question for another day), but because his understanding of the facts is mistaken. Recent research indicates that individuals with Down syndrome can experience more happiness and potential for success than Mr. Dawkins seems to appreciate. There are, of course, many challenges facing families caring for children with Down syndrome, including a high likelihood that their children will face surgery in infancy and Alzheimer’s disease in adulthood. But at the same time, studies have suggested that families of these children show levels of well-being that are often greater than those of families with children with other developmental disabilities, and sometimes equivalent to those of families with nondisabled children. These effects are prevalent enough to have been coined the “Down syndrome advantage.” In 2010, researchers reported that parents of preschoolers with Down syndrome experienced lower levels of stress than parents of preschoolers with autism. In 2007, researchers found that the divorce rate in families with a child with Down syndrome was lower on average than that in families with a child with other congenital abnormalities and in those with a nondisabled child. © 2014 The New York Times Company

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 4: Development of the Brain; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20016 - Posted: 08.30.2014

By DAVID LEVINE MONTREAL — When twins have similar personalities, is it mainly because they share so much genetic material or because their physical resemblance makes other people treat them alike? Most researchers believe the former, but the proposition has been hard to prove. So Nancy L. Segal, a psychologist who directs the Twin Studies Center at California State University, Fullerton, decided to test it — and enlisted an unlikely ally. He is François Brunelle, a photographer in Montreal who takes pictures of pairs of people who look alike but are not twins. Dr. Segal was sent to Mr. Brunelle’s website by a graduate student who knew of her research with twins. When she saw the photographs, she realized that the unrelated look-alikes would be ideal study subjects: She could compare their similarities and differences to those of actual twins. “I reasoned that if personality resides in the face,” she said, “then unrelated look-alikes should be as similar in behavior as identical twins reared apart. Alternatively, if personality traits are influenced by genetic factors, then unrelated look-alikes should show negligible personality similarity.” For 14 years, Mr. Brunelle, 64, has been working on a project he calls “I’m Not a Look-Alike!”: more than 200 black-and-white portraits of pairs who do, in fact, look startlingly alike. “I originally named the project ‘Look-Alikes,’ but I felt it was boring and some of the subjects did not feel they looked alike,” he said. “The new name gives ownership to the people I photographed and allows viewers of my website to decide for themselves if the people look alike or not.” Most come to him through social media links to his website. “It has taken on a life of its own,” he said. “I have heard from people in China — and even a man who has an uncle in Uzbekistan who is a dead ringer for former President George W. Bush.” © 2014 The New York Times Company

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 4: Development of the Brain
Link ID: 19997 - Posted: 08.26.2014

Posted by Ewen Callaway More than 130 leading population geneticists have condemned a book arguing that genetic variation between human populations could underlie global economic, political and social differences. “A Troublesome Inheritance“, by science journalist Nicholas Wade, was published in June by Penguin Press in New York. The 278-page work garnered widespread criticism, much of it from scientists, for suggesting that genetic differences (rather than culture) explain, for instance, why Western governments are more stable than those in African countries. Wade is former staff reporter and editor at the New York Times, Science and Nature. But the letter — signed by a who’s who of population genetics and human evolution researchers, and to be published in the 10 August New York Times — represents a rare unified statement from scientists in the field and includes many whose work was cited by Wade. “It’s just a measure of how unified people are in their disdain for what was done with the field,” says Michael Eisen, a geneticist at the University of California, Berkeley, who co-drafted the letter. “Wade juxtaposes an incomplete and inaccurate explanation of our research on human genetic differences with speculation that recent natural selection has led to worldwide differences in I.Q. test results, political institutions and economic development. We reject Wade’s implication that our findings substantiate his guesswork. They do not,” states the letter, which is a response to a critical review of the book published in the New York Times. “This letter is driven by politics, not science,” Wade said in a statement. “I am confident that most of the signatories have not read my book and are responding to a slanted summary devised by the organizers.” © 2014 Macmillan Publishers Limited

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 4: Development of the Brain
Link ID: 19931 - Posted: 08.09.2014

By Joel Achenbach Friends often look alike. The tendency of people to forge friendships with people of a similar appearance has been noted since the time of Plato. But now there is research suggesting that, to a striking degree, we tend to pick friends who are genetically similar to us in ways that go beyond superficial features. For example, you and your friends are likely to share certain genes associated with the sense of smell. Our friends are as similar to us genetically as you’d expect fourth cousins to be, according to the study published Monday in the Proceedings of the National Academy of Sciences. This means that the number of genetic markers shared by two friends is akin to what would be expected if they had the same great-great-great-grandparents. “Your friends don’t just resemble you superficially, they resemble you genetically,” said Nicholas A. Christakis, a physician and social scientist at Yale University and a co-author of the study. The resemblance is slight, just about 1 percent of the genetic markers, but that has huge implications for evolutionary theory, said James Fowler, a professor of medical genetics and political science at the University of California at San Diego. “We can do better than chance at predicting if two people are going to be friends if all we have is their genetic data,” Fowler said. This is a data-driven study that covers hundreds of friendship pairs and stranger pairs, plus hundreds of thousands of genetic markers. There’s no single “friendship” gene driving people together. There’s no way to say that a person befriended someone else because of any one genetic trait.

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 15: Language and Lateralization
Link ID: 19833 - Posted: 07.15.2014

Thomas B. Edsall It’s been a key question of American politics since at least 1968: Why do so many poor, working-class and lower-middle-class whites — many of them dependent for survival on government programs — vote for Republicans? The debate over the motives of conservative low-income white voters remains unresolved, but two recent research papers suggest that the hurdles facing Democrats in carrying this segment of the electorate may prove difficult to overcome. In “Obedience to Traditional Authority: A heritable factor underlying authoritarianism, conservatism and religiousness,” published by the journal Personality and Individual Differences in 2013, three psychologists write that “authoritarianism, religiousness and conservatism,” which they call the “traditional moral values triad,” are “substantially influenced by genetic factors.” According to the authors — Steven Ludeke of Colgate, Thomas J. Bouchard of the University of Minnesota, and Wendy Johnson of the University of Edinburgh — all three traits are reflections of “a single, underlying tendency,” previously described in one word by Bouchard in a 2006 paper as “traditionalism.” Traditionalists in this sense are defined as “having strict moral standards and child-rearing practices, valuing conventional propriety and reputation, opposing rebelliousness and selfish disregard of others, and valuing religious institutions and practices.” Working along a parallel path, Amanda Friesen, a political scientist at Indiana University, and Aleksander Ksiazkiewicz, a graduate student in political science at Rice University, concluded from their study comparing identical and fraternal twins that “the correlation between religious importance and conservatism” is “driven primarily, but usually not exclusively, by genetic factors.” The substantial “genetic component in these relationships suggests that there may be a common underlying predisposition that leads individuals to adopt conservative bedrock social principles and political ideologies while simultaneously feeling the need for religious experiences.” © 2014 The New York Times Company

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 4: Development of the Brain
Link ID: 19813 - Posted: 07.10.2014

Epigenetics is one of the hottest fields in the life sciences. It’s a phenomenon with wide-ranging, powerful effects on many aspects of biology, and enormous potential in human medicine. As such, its ability to fill in some of the gaps in our scientific knowledge is mentioned everywhere from academic journals to the mainstream media to some of the less scientifically rigorous corners of the Internet. Epigenetics is essentially additional information layered on top of the sequence of letters (strings of molecules called A, C, G, and T) that makes up DNA. If you consider a DNA sequence as the text of an instruction manual that explains how to make a human body, epigenetics is as if someone's taken a pack of highlighters and used different colours to mark up different parts of the text in different ways. For example, someone might use a pink highlighter to mark parts of the text that need to be read the most carefully, and a blue highlighter to mark parts that aren't as important. There are different types of epigenetic marks, and each one tells the proteins in the cell to process those parts of the DNA in certain ways. For example, DNA can be tagged with tiny molecules called methyl groups that stick to some of its C letters. Other tags can be added to proteins called histones that are closely associated with DNA. There are proteins that specifically seek out and bind to these methylated areas, and shut it down so that the genes in that region are inactivated in that cell. So methylation is like a blue highlighter telling the cell "you don't need to know about this section right now." Methyl groups and other small molecular tags can attach to different locations on the histone proteins, each one having a different effect. Some tags in some locations loosen the attachment between the DNA and the histone, making the DNA more accessible to the proteins that are responsible for activating the genes in that region; this is like a pink highlighter telling the cell "hey, this part's important". © 2014 Guardian News and Media Limited

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 4: Development of the Brain; Chapter 8: Hormones and Sex
Link ID: 19541 - Posted: 04.28.2014

By ANDREW POLLACK In the late 1980s, scientists at Osaka University in Japan noticed unusual repeated DNA sequences next to a gene they were studying in a common bacterium. They mentioned them in the final paragraph of a paper: “The biological significance of these sequences is not known.” Now their significance is known, and it has set off a scientific frenzy. The sequences, it turns out, are part of a sophisticated immune system that bacteria use to fight viruses. And that system, whose very existence was unknown until about seven years ago, may provide scientists with unprecedented power to rewrite the code of life. In the past year or so, researchers have discovered that the bacterial system can be harnessed to make precise changes to the DNA of humans, as well as other animals and plants. This means a genome can be edited, much as a writer might change words or fix spelling errors. It allows “customizing the genome of any cell or any species at will,” said Charles Gersbach, an assistant professor of biomedical engineering at Duke University. Already the molecular system, known as Crispr, is being used to make genetically engineered laboratory animals more easily than could be done before, with changes in multiple genes. Scientists in China recently made monkeys with changes in two genes. Scientists hope Crispr might also be used for genomic surgery, as it were, to correct errant genes that cause disease. Working in a laboratory — not, as yet, in actual humans — researchers at the Hubrecht Institute in the Netherlands showed they could fix a mutation that causes cystic fibrosis. But even as it is stirring excitement, Crispr is raising profound questions. Like other technologies that once wowed scientists — like gene therapy, stem cells and RNA interference — it will undoubtedly encounter setbacks before it can be used to help patients. © 2014 The New York Times Company

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 4: Development of the Brain
Link ID: 19317 - Posted: 03.04.2014

Brendan Borrell Scientists can now take snapshots of where and how thousands of genes are expressed in intact tissue samples, ranging from a slice of a human brain to the embryo of a fly. The technique, reported today in Science1, can turn a microscope slide into a tool for creating data-rich, three-dimensional maps of how cells interact with one another — a key to understanding the origins of diseases such as cancer. The methodology also has broader applications, enabling researchers to create, for instance, unique molecular ‘barcodes’ to trace connections between cells in the brain, a stated goal of the US National Institutes of Health's Human Connectome Project. Previously, molecular biologists had a limited spatial view of gene expression, the process by which a stretch of double-stranded DNA is turned into single-stranded RNAs, which can in turn be translated into protein products. Researchers could either grind up a hunk of tissue and catalogue all the RNAs they found there, or use fluorescent markers to track the expression of up to 30 RNAs inside each cell of a tissue sample. The latest technique maps up to thousands of RNAs. Mapping the matrix In a proof-of-principle study, molecular biologist George Church of Harvard Medical School in Boston, Massachusetts, and his colleagues scratched a layer of cultured connective-tissue cells and sequenced the RNA of cells that migrated to the wound during the healing process. Out of 6,880 genes sequenced, the researchers identified 12 that showed changes in gene expression, including eight that were known to be involved in cell migration but had not been studied in wound healing, the researchers say. “This verifies that the technique could be used to do rapidly what has taken scientists years of looking at gene products one by one,” says Robert Singer, a molecular cell biologist at Albert Einstein College of Medicine in New York, who was not involved in the study. © 2014 Nature Publishing Group,

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System; Chapter 4: Development of the Brain
Link ID: 19306 - Posted: 03.01.2014

by Bethany Brookshire When most people think of the quintessential lab mouse, they think of a little white mouse with red eyes. Soft fur. A timid nature. But scientists think of something very different. This mouse is black, small and fast, with pink ears and a pinkish tail. It’s got black eyes to match. The fur may be soft, but the temper sure isn’t. This is the C57 Black 6 mouse. Each Black 6 mouse should be almost identical to every other Black 6 mouse. They have been bred to their own siblings for hundreds of generations, so there should be very few genetic differences left. But even supposedly identical mouse strains have their differences. These take the form of mutations in single DNA base pairs that accumulate in different populations. Recently, researchers showed that one of these tiny changes in a single gene was enough to produce a huge difference in how two groups of Black 6 mice respond to drugs. And the authors identified a surprising number of other small DNA differences still waiting to be explored. On one level, the new work offers scientists a novel tool for identifying genes that could relate to behaviors. But it also serves as a warning. “Identical” mouse populations aren’t as alike as many scientists had assumed. The Black 6, the most common lab mouse in the United States, is used for everything from drug abuse studies to cancer research. The Black 6 is also the reference strain for the Mouse Genome Sequencing Consortium. Whenever scientists discover a new genetic change in a mouse strain, they compare it first against the Black 6. And it’s the mouse used by the International Knockout Mouse Consortium (now the International Mouse Phenotyping Consortium), which keep a library of mouse embryos with different deleted genes. The Allen Brain Atlas, a database of neuroanatomy and gene activity throughout the mouse brain, relies on the Black 6 as well. © Society for Science & the Public 2000 - 2014

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: Development of the Brain; Chapter 3: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 19097 - Posted: 01.04.2014

by Tina Hesman Saey BOSTON— Siberians may use genes to stay warm, a new study shows. As part of an effort to catalog genetic diversity in Siberia, Alexia Cardona of the University of Cambridge and collaborators sampled DNA from 200 Siberians representing 10 native groups. The team looked for genes that have more changes in Siberians than would be expected by chance — a sign that the genes evolved rapidly in the 24,000 years since people settled the frigid land. Rapid changes suggest that a gene is important for adapting to an environment. Several of the Siberians’ genes have variants that may help keep Arctic dwellers warm during the long winters, Cardona reported October 24 at the annual meeting of the American Society of Human Genetics. Among the candidates for genetic heaters are genes involved in metabolizing fats. Some Siberian groups eat mostly meat, so genes that help convert animal fat to energy are important for creating heat. Another gene with variants unique to Siberians is called PRKG1; it helps regulate body heat by controlling muscle contraction and the constriction and dilation of blood vessels. Muscle contractions are an important part of shivering, which can raise body temperature. The researchers also identified variants in genes involved in thyroid function, which plays a role in temperature regulation. A. Cardona et al. Genome-wide analysis of cold adaption in indigenous Siberian populations. American Society of Human Genetics annual meeting, Boston, October 24, 2013. © Society for Science & the Public 2000 - 2013

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 18853 - Posted: 10.30.2013

By David Dobbs If you want a look at a high-profile field dealing with a lot of humbling snags, peer into #ASHG2013, the Twitter hashtag for last week’s meeting of the American Society of Human Genetics, held in Boston. You will see successes, to be sure: Geneticists are sequencing and analyzing genomes ever faster and more precisely. In the last year alone, the field has quintupled the rate at which it identifies genes for rare diseases. These advances are leading to treatments and cures for obscure illnesses that doctors could do nothing about only a few years ago, as well as genetic tests that allow prospective parents to bear healthy children instead of suffering miscarriage after miscarriage. But many of the tweets—or any frank geneticist—will also tell you stories of struggle and confusion: The current list of cancer-risk genes, the detection of which leads some people to have “real organs removed,” likely contains many false positives, even as standard diagnostic sequencing techniques are missing many disease-causing mutations. There’s a real possibility that the “majority of cancer predisposition genes in databases are wrong.” And a sharp team of geneticists just last week cleanly dismantled a hyped study from last year that claimed to find a genetic signature of autism clear enough to diagnose the risk of it in unborn children. This sample reads like an abstract of the entire field of genetics. In researching a book about genetics over the past four years, I’ve found a field that stands in a bizarre but lovely state of confusion—taken aback, but eager to advance; balanced tenuously between wild ambition and a deep but troubling humility. In the 13 years since the sequencing of the first human genome, the field has solved puzzles that 14 years ago seemed hopeless. Yet geneticists with any historical memory hold a painful awareness that their field has fallen short of the glory that seemed close at hand when Francis Collins, Craig Venter, and Bill Clinton announced their apparent triumph in June 2000. © 2013 The Slate Group, LLC

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 4: Development of the Brain; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 18846 - Posted: 10.29.2013

Intelligence tests were first devised in the early twentieth century as a way to identify children who needed extra help in school. It was only later that the growing eugenics movement began to promote use of the tests to weed out the less intelligent and eliminate them from society, sparking a debate over the appropriateness of the study of intelligence that carries on to this day. But it was not the research that was problematic: it was the intended use of the results. As the News Feature on page 26 details, this history is never far from the minds of scientists who work in the most fraught areas of behavioural genetics. Although the ability to investigate the genetic factors that underlie the heritability of traits such as intelligence, violent behaviour, race and sexual orientation is new, arguments and attitudes about the significance of these traits are not. Scientists have a responsibility to do what they can to prevent abuses of their work, including the way it is communicated. Here are some pointers. First: be patient. Do not speculate about the possibility of finding certain results, or about the implications of those results, before your data have even been analysed. The BGI Cognitive Genomics group in Shenzhen, China, is studying thousands of people to find genes that underlie intelligence, but group members sparked a furore by predicting that studies such as theirs could one day let parents select embryos with genetic predispositions to high intelligence. Many other geneticists are sceptical that the project will even find genes linked to this trait. © 2013 Nature Publishing Group

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 4: Development of the Brain; Chapter 20:
Link ID: 18739 - Posted: 10.03.2013

By Fritz Andersen, It was hot that Sunday morning in February 2011 in Old San Juan. I had just retired after 40 years of cardiology practice in the suburbs of Washington, and my wife and I were spending the winter in Puerto Rico. A couple of friends had arrived by cruise ship, and I took them to see the 450-year-old Spanish fortress that sits above the entrance of the harbor. The fortress walls radiated heat, and after reentering the city we walked to our home for a breather and a refreshing ceiling fan. While sitting in the kitchen and sipping a beer, I suddenly passed out. I woke up a bit dizzy and confused; my friend, an internist from Arlington, told me I had had a grand mal seizure. My wife, Carmen Alicia, called a local friend, also a cardiologist, who sent us to a nearby hospital; there, an MRI exam revealed a small spot on my brain. The neurologist felt it needed to be biopsied to obtain a tissue diagnosis. I immediately returned to Virginia and went to several specialists, who suggested further testing before I decided to have an invasive brain biopsy. I also had a blood test for cysticercosis, an infection that results from eating undercooked pork contaminated with Tenia solium. This common parasite produces cysts all over the body, including the brain. It is the most common reason for seizures in many countries, particularly in India, where children with seizures are first treated for this disease even before other studies are done. My blood test was strongly positive. I started a course of oral medicine to treat it. The test reassured me. Unfortunately, my spot grew a bit over the course of three months, reaching the size of a grape. A biopsy and excision were now indicated. © 1996-2013 The Washington Post

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System
Link ID: 18692 - Posted: 09.24.2013