Links for Keyword: Evolution

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 61 - 80 of 907

By Isabella Backman Even tough male chimps need their moms. Chimpanzees live in a male-dominated society, where most of their valuable allies are other males. However, as young male chimpanzees become adults, they continue to maintain tight bonds with their mothers, a new study reveals. And for about one-third of them, this mother-son relationship is the closest one they have. The dramatic changes of adolescence are difficult for chimps, just like they are for humans, says Elizabeth Lonsdorf, a primatologist at Franklin & Marshall College who was not involved in the study. And “sure enough,” she says, “their moms remain a key social partner during this turbulent time.” Previous research has shown chimpanzee mothers provide their sons support that goes far beyond nursing. Young male chimps that are close with their moms grow bigger and have a greater chance of survival. What’s more, losing their mothers after weaning, but before age 12, hinders the ability of young chimps to compete with other males and reproduce. To see whether this bond extends later into life, researchers followed 29 adolescent (9 to 15 years old) and young adult (16 to 20 years old) male chimpanzees at a research site in Kibale National Park in Uganda. For 3 years, they observed the chimps from a distance, recording any social interaction they witnessed. These included grooming, comforting behaviors such as holding hands or shoulder pats, looking back for or waiting for other individuals, offering support during conflicts, and sitting near each other. © 2020 American Association for the Advancement of Science.

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27633 - Posted: 12.22.2020

By Bruce Bower Bonobos display responsibility toward grooming partners akin to that of people working together on a task, a new study suggests. Until now, investigations have shown only that humans can work jointly toward a common goal presumed to require back-and-forth exchanges and an appreciation of being obligated to a partner (SN: 10/5/09). Primate biologist Raphaela Heesen of Durham University in England and colleagues studied 15 of the endangered great apes at a French zoological park. The researchers interrupted 85 instances of social grooming, in which one ape cleaned another’s fur, and 26 instances of self-grooming or solitary play. Interruptions consisted either of a keeper calling one bonobo in a grooming pair to come over for a food reward or a keeper rapidly opening and closing a sliding door to an indoor enclosure, which typically signaled mealtime and thus attracted both bonobos. Social grooming resumed, on average, 80 percent of the time after food rewards and 83 percent of the time after sliding-door disruptions, the researchers report December 18 in Science Advances. In contrast, self-grooming or playing alone was resumed only around 50 percent of the time, on average. © Society for Science & the Public 2000–2020

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27629 - Posted: 12.19.2020

By Veronique Greenwood Some 230 million years ago, in the forests of what humans would eventually call Brazil, a small bipedal dinosaur zipped after its prey. It had a slender head, a long tail and sharp teeth, and it was about the size of a basset hound. Buriolestes schultzi, as paleontologists have named the creature, is one of the earliest known relatives of more famous dinosaurs that emerged 100 million years later: the lumbering brachiosaurus, up to 80 feet long and weighing up to 80 metric tons, the likewise massive diplodocus, as well as other sauropod dinosaurs. By the time the Jurassic period rolled around and the time of Buriolestes had passed, these quadrupedal cousins had reached tremendous size. They also had tiny brains around the size of a tennis ball. Buriolestes’s brain was markedly different, scientists who built a 3-D reconstruction of the inside of its skull report in a paper published Tuesday in the Journal of Anatomy. The brain was larger relative to its body size, and it had structures that were much more like those of predatory animals. The findings suggest that the enormous herbivores of later eras, whose ancestors probably looked a lot like Buriolestes, lost these features as they transitioned to their ponderous new lifestyle. It’s also a rare glimpse into dinosaurs’ neural anatomy at a very early moment in their evolution. In 2009, Rodrigo Müller of the Universidade Federal de Santa Maria and colleagues discovered the first partial Buriolestes fossil in southern Brazil. In 2015, they uncovered another Buriolestes nearby — and this time, to their excitement, the dinosaur’s skull was nearly all there. They used computed tomography scanning to get a peek inside, drawing inferences about the brain from the contours of the cavity left behind. They found that one portion of the cerebellum, the floccular lobe, was particularly large in Buriolestes. © 2020 The New York Times Company

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 27566 - Posted: 11.04.2020

By Bruce Bower A type of bone tool generally thought to have been invented by Stone Age humans got its start among hominids that lived hundreds of thousands of years before Homo sapiens evolved, a new study concludes. A set of 52 previously excavated but little-studied animal bones from East Africa’s Olduvai Gorge includes the world’s oldest known barbed bone point, an implement probably crafted by now-extinct Homo erectus at least 800,000 years ago, researchers say. Made from a piece of a large animal’s rib, the artifact features three curved barbs and a carved tip, the team reports in the November Journal of Human Evolution. Among the Olduvai bones, biological anthropologist Michael Pante of Colorado State University in Fort Collins and colleagues identified five other tools from more than 800,000 years ago as probable choppers, hammering tools or hammering platforms. The previous oldest barbed bone points were from a central African site and dated to around 90,000 years ago (SN: 4/29/95), and were assumed to reflect a toolmaking ingenuity exclusive to Homo sapiens. Those implements include carved rings around the base of the tools where wooden shafts were presumably attached. Barbed bone points found at H. sapiens sites were likely used to catch fish and perhaps to hunt large land prey. The Olduvai Gorge barbed bone point, which had not been completed, shows no signs of having been attached to a handle or shaft. Ways in which H. erectus used the implement are unclear, Pante and his colleagues say. © Society for Science & the Public 2000–2020.

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 27543 - Posted: 10.24.2020

By Meagan Cantwell Although bird brains are tiny, they’re packed with neurons, especially in areas responsible for higher level thinking. Two studies published last month in Science explore the structure and function of avian brains—revealing they are organized similarly to mammals’ and are capable of conscious thought. © 2020 American Association for the Advancement of Science.

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 27541 - Posted: 10.24.2020

By Jake Buehler Naked mole-rats — with their subterranean societies made up of a single breeding pair and an army of workers — seem like mammals trying their hardest to live like insects. Nearly 300 of the bald, bucktoothed, nearly blind rodents can scoot along a colony’s labyrinth of tunnels. New research suggests there’s brute power in those numbers: Like ants or termites, the mole-rats go to battle with rival colonies to conquer their lands. Wild naked mole-rats (Heterocephalus glaber) will invade nearby colonies to expand their territory, sometimes abducting pups to incorporate them into their own ranks, researchers report September 28 in the Journal of Zoology. This behavior may put smaller, less cohesive colonies at a disadvantage, potentially supporting the evolution of bigger colonies. Researchers stumbled across this phenomenon by accident while monitoring naked mole-rat colonies in Kenya’s Meru National Park. The team was studying the social structure of this extreme form of group living among mammals (SN: 6/20/06). Over more than a decade, the team trapped and marked thousands of mole-rats from dozens of colonies by either implanting small radio-frequency transponder chips under their skin, or clipping their toes. One day in 1994, while marking mole-rats in a new colony, researchers were surprised to find in its tunnels mole-rats from a neighboring colony that had already been marked. The queen in the new colony had wounds on her face from the ravages of battle. It looked like a war was playing out down in the soil. © Society for Science & the Public 2000–2020.

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 27538 - Posted: 10.21.2020

By Bret Stetka With enough training, pigeons can distinguish between the works of Picasso and Monet. Ravens can identify themselves in a mirror. And on a university campus in Japan, crows are known to intentionally leave walnuts in a crosswalk and let passing traffic do their nut cracking. Many bird species are incredibly smart. Yet among intelligent animals, the “bird brain” often doesn’t get much respect. Two papers published today in Science find birds actually have a brain that is much more similar to our complex primate organ than previously thought. For years it was assumed that the avian brain was limited in function because it lacked a neocortex. In mammals, the neocortex is the hulking, evolutionarily modern outer layer of the brain that allows for complex cognition and creativity and that makes up most of what, in vertebrates as a whole, is called the pallium. The new findings show that birds’ do, in fact, have a brain structure that is comparable to the neocortex despite taking a different shape. It turns out that at a cellular level, the brain region is laid out much like the mammal cortex, explaining why many birds exhibit advanced behaviors and abilities that have long befuddled scientists. The new work even suggests that certain birds demonstrate some degree of consciousness. The mammalian cortex is organized into six layers containing vertical columns of neurons that communicate with one another both horizontally and vertically. The avian brain, on the other hand, was thought to be arranged into discrete collections of neurons called nuclei, including a region called the dorsal ventricular ridge, or DVR, and a single nucleus named the wulst. In one of the new papers, senior author Onur Güntürkün, a neuroscientist at Ruhr University Bochum in Germany, and his colleagues analyzed regions of the DVR and wulst involved in sound and vision processing. To do so, they used a technology called three-dimensional polarized light imaging, or 3D-PLI—a light-based microscopy technique that can be employed to visualize nerve fibers in brain samples. The researchers found that in both pigeons and barn owls, these brain regions are constructed much like our neocortex, with both layerlike and columnar organization—and with both horizontal and vertical circuitry. They confirmed the 3D-PLI findings using biocytin tracing, a technique for staining nerve cells. © 2020 Scientific American

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 27487 - Posted: 09.25.2020

By Elizabeth Preston This is Panurgus banksianus, the large shaggy bee. It lives alone, burrowed into sandy grasslands across Europe. It prefers to feed on yellow-flowered members of the aster family. The large shaggy bee also has a very large brain. Just like mammals or birds, insect species of the same size may have different endowments inside their heads. Researchers have discovered some factors linked to brain size in back-boned animals. But in insects, the drivers of brain size have been more of a mystery. In a study published Wednesday in Proceedings of the Royal Society B, scientists scrutinized hundreds of bee brains for patterns. Bees with specialized diets seem to have larger brains, while social behavior appears unrelated to brain size. That means when it comes to insects, the rules that have guided brain evolution in other animals may not apply. “Most bee brains are smaller than a grain of rice,” said Elizabeth Tibbetts, an evolutionary biologist at the University of Michigan who was not involved in the research. But, she said, “Bees manage surprisingly complex behavior with tiny brains,” making the evolution of bee brains an especially interesting subject. Ferran Sayol, an evolutionary biologist at University College London, and his co-authors studied those tiny brains from 395 female bees belonging to 93 species from across the United States, Spain and the Netherlands. Researchers beheaded each insect and used forceps to remove its brain, a curled structure that’s widest in the center. “It reminds me a little bit of a croissant,” Dr. Sayol said. One pattern that emerged was a connection between brain size and how long each bee generation lasted. Bees that only go through one generation each year have larger brains, relative to their body size, than bees with multiple generations a year. © 2020 The New York Times Company

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 27476 - Posted: 09.16.2020

Primatologists observed that different groups of bonobos have different dietary preferences — indicating a form of "culture" among the animals. AILSA CHANG, HOST: Bonobos, like chimpanzees, are one of our closest living relatives. We share about 99% of our DNA. These endangered apes are covered in incredibly black hair. LIRAN SAMUNI: And what's very nice is that they have extremely pink lips, almost as if they put the lipstick on. SACHA PFEIFFER, HOST: That's Liran Samuni, a primatologist at Harvard University. Now her team has discovered that wild bonobos share more than just DNA with humans and chimps. They also appear to share our penchant for culture. SAMUNI: We already had some information about chimpanzees that they have the ability for culture. But it was always this kind of a puzzle about bonobos. CHANG: So for more than four years, the researchers tracked two bonobo groups in the Democratic Republic of Congo, documenting the apes' social interactions and what they hunted. And they found a striking dietary difference. SAMUNI: So we had one group which specialized on the hunting of a small antelope called duiker, while the other bonobo group specialized on the hunting of anomalure, which is a gliding rodent. PFEIFFER: Samuni says think about it in the context of humans. You might have two cultures living near or among each other, but one prefers chicken; the other prefers beef. CHANG: Samuni's colleague at Harvard Martin Surbeck says that's important because it shows that the two groups of bonobos have different preferences despite their overlapping range. © 2020 npr

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 27465 - Posted: 09.12.2020

By Priyanka Runwal Everyone needs to cool off on a scorching summer day, even chimpanzees. Where do the primates go on sizzling days when woodlands and forests don’t provide respite from the heat? But not just any chimps. New research shows that on Senegal’s savannas, home to a population of chimpanzees that has long fascinated scientists for their distinct behaviors, you’re more likely to find mama chimps than adult males or non-lactating females hiding out in cool caves. Their visits coincided with the hottest times of day and became more frequent during the hottest months of the year, according to the study published last month in the International Journal of Primatology. They also made these visits despite the risks of encounters with predators, showing how important the locations are for helping them survive and bring up babies in a challenging landscape that is threatened by human activities. In southeastern Senegal, temperatures spike to 110 degrees Fahrenheit and fires burn large parts of the landscape over a seven-month dry season. Several natural cave formations pock the terrain, and they can be up to 55 degrees cooler than the surrounding grasslands. The region is also home to the northernmost population of western chimpanzees, a critically endangered subspecies that mostly lives in large swathes of open grasslands and woodlands in this area. In 2001, Jill Pruetz, a primatologist then at Iowa State University, gathered evidence of western chimpanzees using caves in the area, suspecting that they used them to escape the heat and possibly avoid heat stroke and other ill health effects of the dry season. But she reached few conclusions about whether all of the chimps used the caves as often as others. Kelly Boyer Ontl, a primatologist at Ball State University in Indiana and lead author of the new study, said, “I was really interested in finding out what chimpanzees are doing in caves, when are they using it and who’s going in there.” © 2020 The New York Times Company

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 27409 - Posted: 08.08.2020

By Amanda Heidt Human beings typically don’t leave the nest until well into our teenage years—a relatively rare strategy among animals. But corvids—a group of birds that includes jays, ravens, and crows—also spend a lot of time under their parents’ wings. Now, in a parallel to humans, researchers have found that ongoing tutelage by patient parents may explain how corvids have managed to achieve their smarts. Corvids are large, big-brained birds that often live in intimate social groups of related and unrelated individuals. They are known to be intelligent—capable of using tools, recognizing human faces, and even understanding physics—and some researchers believe crows may rival apes for smarts. Meanwhile, humans continue to grow their big brains and build up their cognitive abilities during childhood, as their parents feed and protect them. “Humans are characterized by this extended childhood that affects our intelligence, but we can’t be the only ones,” says Natalie Uomini, a cognitive scientist at the Max Planck Institute for the Science of Human History. But few researchers have studied the impact of parenting throughout the juvenile years on intelligence in nonhumans. To study the link between parental care and intelligence in birds, Uomini and her team created a database detailing the life history of thousands of species, including more than 120 corvids. Compared with other birds, they found corvids spend more time in the nest before fledging, more days feeding their offspring as adults, and more of their life living among family. The results, reported last week in the Philosophical Transactions of the Royal Society B, also confirm corvids have unusually large brains compared with many other birds. Birds need to be light for flight, but a raven’s brain accounts for almost 2% of its body mass, a value similar to humans. © 2020 American Association for the Advancement of Science.

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 27295 - Posted: 06.09.2020

By Ann Gibbons If you think you got your freckles, red hair, or even narcolepsy from a Neanderthal in your family tree, think again. People around the world do carry traces of Neanderthals in their genomes. But a study of tens of thousands of Icelanders finds their Neanderthal legacy had little or no impact on most of their physical traits or disease risk. Paleogeneticists realized about 10 years ago that most Europeans and Asians inherited 1% to 2% of their genomes from Neanderthals. And Melanesians and Australian Aboriginals get another 3% to 6% of their DNA from Denisovans, Neanderthal cousins who ranged across Asia 50,000 to 200,000 years ago or so. A steady stream of studies suggested gene variants from these archaic peoples might raise the risk of depression, blood clotting, diabetes, and other disorders in living people. The archaic DNA may also be altering the shape of our skulls; boosting our immune systems; and influencing our eye color, hair color, and sensitivity to the Sun, according to scans of genomic and health data in biobanks and medical databases. But the new study, which looked for archaic DNA in living Icelanders, challenges many of those claims. Researchers from Aarhus University in Denmark scanned the full genomes of 27,566 Icelanders in a database at deCODE Genetics in Iceland, seeking unusual archaic gene variants. The researchers ended up with a large catalog of 56,000 to 112,000 potentially archaic variants—and a few surprises. They found, for example, that Icelanders had inherited 3.3% of their archaic DNA from Denisovans and 12.2% from unknown sources. (84.5% came from close relatives of the reference Neanderthals.) © 2020 American Association for the Advancement of Science.

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27211 - Posted: 04.24.2020

Peter Rhys-Evans For the past 150 years, scientists and laypeople alike have accepted a “savanna” scenario of human evolution. The theory, primarily based on fossil evidence, suggests that because our ancestral ape family members were living in the trees of East African forests, and because we humans live on terra firma, our primate ancestors simply came down from the trees onto the grasslands and stood upright to see farther over the vegetation, increasing their efficiency as hunter-gatherers. In the late 19th century, anthropologists only had a few Neanderthal fossils to study, and science had very little knowledge of genetics and evolutionary changes. So this savanna theory of human evolution became ingrained in anthropological dogma and has remained the established explanation of early hominin evolution following the genetic split from our primate cousins 6 million to 7 million years ago. But in 1960, a different twist on human evolution emerged. That year, marine biologist Sir Alister Hardy wrote an article in New Scientist suggesting a possible aquatic phase in our evolution, noting Homo sapiens’s differences from other primates and similarities to other aquatic and semi-aquatic mammals. In 1967, zoologist Desmond Morris published The Naked Ape, which explored different theories about why modern humans lost their fur. Morris mentioned Hardy’s “aquatic ape” hypothesis as an “ingenious” theory that sufficiently explained “why we are so nimble in the water today and why our closest living relatives, the chimpanzees, are so helpless and quickly drown.” © 1986–2020 The Scientist

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 27190 - Posted: 04.15.2020

By Alexandra Horowitz Recently, in communities under quarantine or stay-at-home orders, residents have looked out their windows to find wild animals that usually stay on the fringes of the city or emerge only at night suddenly appearing in daylight in the middle of the street. The reason is us: Human activity disturbs animals. Even our presence — simply observing, as bird-watchers, or field biologists, or nature-loving hikers — changes their behavior. The ecologist Carl Safina (author of “Beyond Words” and “Song for the Blue Ocean”) is no agnostic observer. He sees humans as destroying the world for nonhuman animals, to say nothing of destroying the animals themselves, and would like us to stop, please. The question for him, and for anyone with this conviction, is: Short of quarantining the human race, what’s the best way to do this? Fifty years ago, the biologist Robert Payne first eavesdropped on a humpback whale community and heard whale song. He spread the word about their ethereal, beautiful forms of communication, and the world looked at whales differently. Since that time, whaling has sharply declined. Today, many advocates for animals appeal to species’ cognitive abilities to argue for their better treatment. They’re so smart or humanlike, the argument goes, we should be treating them better. Such is the vestige of the scala naturae that has awarded all lives a certain value — with humans on top, of course. © 2020 The New York Times Company

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 27185 - Posted: 04.14.2020

Amy Schleunes The brains of Australopithecus afarensis, a hominin species that lived in eastern Africa more than 3 million years ago, were organized in a manner similar to those of apes, report the authors of a study published on April 1 in Science Advances, but they also indicate a slow growth period like that found in modern humans. “The fact that protracted brain growth emerged in hominins as early as 3.3 Ma ago could suggest that it characterized all of subsequent hominin evolutionary history,” the authors write in the paper, though brain development patterns in hominins may not have followed a linear trajectory in the evolutionary process that led to modern humans. Whatever the evolutionary pattern, they say, the extended brain growth period in A. afarensis “provided a basis for subsequent evolution of the brain and social behavior in hominins and was likely critical for the evolution of a long period of childhood learning.” P. Gunz et al., “Australopithecus afarensis endocasts suggest ape-like brain organization and prolonged brain growth,” Science Advances, doi:10.1126/sciadv.aaz4729, 2020. © 1986–2020 The Scientist

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 27177 - Posted: 04.10.2020

By Bruce Bower Lucy’s kind had small, chimplike brains that, nevertheless, grew at a slow, humanlike pace. This discovery, reported April 1 in Science Advances, shows for the first time that prolonged brain growth in hominid youngsters wasn’t a by-product of having unusually large brains. An influential idea over the last 20 years has held that extended brain development after birth originated in the Homo genus around 2.5 million years ago, so that mothers — whose pelvic bones and birth canal had narrowed to enable efficient upright walking — could safely deliver babies. But Australopithecus afarensis, an East African hominid species best known for Lucy’s partial skeleton, also had slow-developing brains that reached only about one-third the volume of present-day human brains, say paleoanthropologist Philipp Gunz of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, and his colleagues. And A. afarensis is roughly 3 million to 4 million years old, meaning slow brain growth after birth developed before members of the Homo genus appeared, perhaps as early as 2.8 million years ago (SN: 3/4/15). Too few A. afarensis infants have been studied to calculate the age at which this species attained adult-sized brains, Gunz cautions. The brains of human infants today reach adult sizes by close to age 5, versus an age of around 2 or 3 for both chimps and gorillas. In the new study, Gunz and colleagues estimated brain volumes for six A. afarensis adults and two children, estimated to have been about 2 years and 5 months old. The kids had brains that were smaller than adult A. afarensis brain sizes in a proportion similar to human children’s brains at the same age relative to adult humans. © Society for Science & the Public 2000–2020.

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 4: Development of the Brain
Link ID: 27163 - Posted: 04.02.2020

By Virginia Morell Whether it’s calculating your risk of catching the new coronavirus or gauging the chance of rain on your upcoming beach vacation, you use a mix of statistical, physical, and social information to make a decision. So do New Zealand parrots known as keas, scientists report today. It’s the first time this cognitive ability has been demonstrated outside of apes, and it may have implications for understanding how intelligence evolved. “It’s a neat study,” says Karl Berg, an ornithologist and parrot expert at the University of Texas Rio Grande Valley, Brownsville, who was not involved with this research. Keas already had a reputation in New Zealand—and it wasn’t a great one. The olive-brown, crow-size birds can wield their curved beaks like knives—and did so on early settlers’ sheep, slicing through wool and muscle to reach the fat along their spines. These days, they’re notorious for slashing through backpacks for food and ripping windshield wipers off cars. To see whether keas’ intelligence extended beyond being mischievous, Amalia Bastos, a doctoral candidate in comparative psychology at the University of Auckland, and colleagues turned to six captive keas at a wildlife reserve near Christchurch, New Zealand. The researchers taught the birds that a black token always led to a tasty food pellet, whereas an orange one never did. When the scientists placed two transparent jars containing a mix of tokens next to the keas and removed a token with a closed hand, the birds were more likely to pick hands dipped into jars that contained more black than orange tokens, even if the ratio was as close as 63 to 57. That experiment combined with other tests “provide conclusive evidence” that keas are capable of “true statistical inference,” the scientists report in today’s issue of Nature Communications. © 2020 American Association for the Advancement of Science

Related chapters from BN: Chapter 18: Attention and Higher Cognition; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 27092 - Posted: 03.04.2020

By Veronique Greenwood When you look at a reconstruction of the skull and brain of Neoepiblema acreensis, an extinct rodent, it’s hard to shake the feeling that something’s not quite right. Huddled at the back of the cavernous skull, the brain of the South American giant rodent looks really, really small. By some estimates, it was around three to five times smaller than scientists would expect from the animal’s estimated body weight of about 180 pounds, and from comparisons to modern rodents. In fact, 10 million years ago the animal may have been running around with a brain weighing half as much as a mandarin orange, according to a paper published Wednesday in Biology Letters. The glory days of rodents, in terms of the animals’ size, were quite a long time ago, said Leonardo Kerber, a paleontologist at Universidade Federal de Santa Maria in Brazil and an author of the new study. Today rodents are generally dainty, with the exception of larger creatures like the capybara that can weigh as much as 150 pounds. But when it comes to relative brain size, N. acreensis, represented in this study by a fossil skull unearthed in the 1990s in the Brazilian Amazon, seems to be an extreme. The researchers used an equation that relates the body and brain weight of modern South American rodents to get a ballpark estimate for N. acreensis, then compared that with the brain weight implied by the volume of the cavity in the skull. The first method predicted a brain weighing about 4 ounces, but the volume suggested a dinky 1.7 ounces. Other calculations, used to compare the expected ratio of the rodent’s brain and body size with the actual fossil, suggested that N. acreensis’ brain was three to five times smaller than one would expect. © 2020 The New York Times Company

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System
Link ID: 27035 - Posted: 02.13.2020

Kristen S. Morrow Human beings used to be defined as “the tool-maker” species. But the uniqueness of this description was challenged in the 1960s when Dr. Jane Goodall discovered that chimpanzees will pick and modify grass stems to use to collect termites. Her observations called into question homo sapiens‘ very place in the world. Since then scientists’ knowledge of animal tool use has expanded exponentially. We now know that monkeys, crows, parrots, pigs and many other animals can use tools, and research on animal tool use changed our understanding of how animals think and learn. Studying animal tooling – defined as the process of using an object to achieve a mechanical outcome on a target – can also provide clues to the mysteries of human evolution. Our human ancestors’ shift to making and using tools is linked to evolutionary changes in hand anatomy, a transition to walking on two rather than four feet and increased brain size. But using found stones as pounding tools doesn’t require any of these advanced evolutionary traits; it likely came about before humans began to manufacture tools. By studying this percussive tool use in monkeys, researchers like my colleagues and I can infer how early human ancestors practiced the same skills before modern hands, posture and brains evolved. Understanding wild animals’ memory, thinking and problem-solving abilities is no easy task. In experimental research where animals are asked to perform a behavior or solve a problem, there should be no distractions – like a predator popping up. But wild animals come and go as they please, over large spaces, and researchers cannot control what is happening around them. © 2010–2020, The Conversation US, Inc.

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 26947 - Posted: 01.10.2020

By Eva Frederick One day in 2014, primatologist Yuko Hattori was trying to teach a mother chimpanzee in her lab to keep a beat. Hattori would play a repetitive piano note, and the chimp would attempt to tap out the rhythm on a small electronic keyboard in hopes of receiving a tasty piece of apple. Everything went as expected in the experiment room, but in the next room over, something strange was happening. Another chimpanzee, the mother’s son, heard the beat and began to sway his body back and forth, almost as if he were dancing. “I was shocked,” Hattori says. “I was not aware that without any training or reward, a chimpanzee would spontaneously engage with the sound.” Hattori has now published her research showing that chimps respond to sounds, both rhythmic and random, by “dancing.” “This study is very thought-provoking,” says Andrea Ravignani, a cognitive biologist at the Seal Rehabilitation and Research Centre who researches the evolution of rhythm, speech, and music. The work, she says, could shed light on the evolution of dancing in humans. For their the study, Hattori and her colleague Masaki Tomonaga at Kyoto University played 2-minute clips of evenly spaced, repetitive piano tones (heard in the video above) to seven chimpanzees (three males and four females). On hearing the sound, the chimps started to groove, swaying back and forth and sometimes tapping their fingers or their feet to the beat or making howling “singing” sounds, the researchers report today in the Proceedings of the National Academy of Sciences. All of the chimps showed at least a little bit of rhythmic movement, though the males spent much more time moving to the music than females. © 2019 American Association for the Advancement of Science.

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 26916 - Posted: 12.26.2019