Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 11601 - 11620 of 28886

Daphne Bavelier & Richard J. Davidson Video games are associated with a variety of negative outcomes, such as obesity, aggressiveness, antisocial behaviour and, in extreme cases, addiction2. At the same time, evidence is mounting that playing games can have beneficial effects on the brain. After spending an hour a day, 5 days a week for 8–10 weeks spotting snipers and evading opponents in shooter games such as Call of Duty or Unreal Tournament, young adults saw more small visual details in the middle of clutter and more accurately distinguished between various shades of grey3. After 10 hours stretched over 2 weeks spent chasing bad guys in mazes and labyrinths, players were better able to rotate an image mentally4, an improvement that was still present six months later and could be useful for activities as varied as navigation, research chemistry and architectural design. After guiding small rodents to a safe exit amid obstacles during a version of the game Lemmings that was designed to encourage positive behaviour, players were more likely in simulated scenarios to help another person after a mishap or to intervene when someone was being harassed5. Because gaming is clearly here to stay, some scientists are asking how to channel people's love of screen time towards positive effects on the brain and behaviour by designing video games specifically intended to train particular aspects of behaviour and brain function. One game, for example, aims to treat depression by introducing cognitive behavioural therapy while users fight off negative thoughts in a fantasy world6. In Re-mission, young cancer patients blast cancer cells and fight infections and the side effects of therapy — all to encourage them to stick with treatment (see www.re-mission.net). © 2013 Nature Publishing Group

Keyword: Learning & Memory
Link ID: 17859 - Posted: 03.02.2013

By Bruce Bower Children with dyslexia may read better after playing action video games that stress mayhem, not literacy, a contested study suggests. Playing fast-paced Wii video games for 12 hours over two weeks markedly increased the reading speed of 7- to 13-year-old kids with dyslexia, with no loss of reading accuracy, says a team led by psychologist Andrea Facoetti of the University of Padua, Italy. Reading gains lasted at least two months after the video game sessions. The gains matched or exceeded previously reported effects of reading-focused programs for dyslexia, the researchers report online February 28 in Current Biology. “These results are clear enough to say that action video games are able to improve reading abilities in children with dyslexia,” Facoetti says. Although the new study includes only 20 children with dyslexia, its results build on earlier evidence that many poor readers have difficulty focusing on items within arrays, Facoetti holds. By strengthening the ability to monitor central and peripheral objects in chaotic scenes, he says, action video games give kids with dyslexia a badly needed tool for tracking successive letters in written words. But evidence for Facoetti’s conclusions is shaky, asserts psychologist Nicola Brunswick of Middlesex University in London. The researchers tested word reading ability two months later but failed to test reading comprehension, she says. What’s more, they did so with a mere six of 10 kids who played the action video games. © Society for Science & the Public 2000 - 2013

Keyword: Dyslexia; Development of the Brain
Link ID: 17858 - Posted: 03.02.2013

By Kali Tal A few weeks ago an article in the Scientific American Twitter stream caught my eye. EMDR (Eye Movement Desensitization and Reprocessing) once again debuted as a “promising new treatment” for PTSD. EMDR, which has been repeatedly called “promising” over the last two decades, works only about as well for PTSD as other psychological treatment modalities with which it competes, primarily cognitive behavioral therapy (CBT) and exposure therapy. These so-called trauma focused treatments (TFT) all garner similar results. TFT have large effects in clinical trials, with two important caveats: 1) the enthusiasm of their various advocates bias the study results towards the treatment the researchers prefer; and, 2) they are effective for a significant number of carefully selected PTSD patients. The sad truth, however, is that current short-term treatments are not the solution for most patients with PTSD. Trial criteria often exclude those with comorbid disorders, multiple traumas, complex PTSD, and suicidal ideation, among others. Even when they are included, comorbid patients drop out of treatment studies at a much higher rate than those with simple PTSD, a problem that has implications for clinical practice. The large majority of those with PTSD also have other psychological disorders (commonly, substance abuse, depression, and anxiety disorders) and many of these patients have complex PTSD, which is both harder to treat, and more prone to relapse (see Fig. 1). Those who suffer from both PTSD and substance abuse (64%-84% of veterans, for example) often perceive the disorders as “functionally correlated.” Similarly, depression and PTSD are mutually reinforcing; each compounds the symptoms of the other. Both substance abuse and depression are notoriously difficult to treat, and harder to treat when comorbid with PTSD. Multiple studies document the long-term failure of PTSD treatment for veterans, but there are fewer on the effectiveness of therapies in treating comorbid PTSD in civilian populations. Existing studies challenge the assumption that PTSD treatments effective for simple PTSD, are also effective for combined PTSD and substance abuse, or PTSD and depression. © 2013 Scientific American

Keyword: Stress
Link ID: 17857 - Posted: 02.27.2013

by Tim Wall Some feathered crooners may advertise their size to females by hitting the low notes. Ornithologists at the Max Planck Institute found that only bigger-bodied birds belt out the bass. The physical size of some birds may put a limit on the frequency of the birds’ songs, according to a study published in PLOS ONE. Since only a larger males hit lower notes, females may be able to use deeper voices as a reliable measure of a male’s size. Size matters to some songbird species, with females preferring larger males, so vocal limitations could affect some birds’ love lives. The songs of purple-crowned fairy-wrens, Malurus coronatus coronatus, hit a range of notes. However the study found that in some songs, larger body size related to lower-pitched singing ability. Further study will be needed to prove a relationship among body size, singing frequency and sexual success in fairy-wrens. The authors suggested that body size may be just one of many characteristics advertized by fairy-wrens songs. The authors also noted that low-frequency singing ability may have resulted from good health as the male fairy-wrens grew up. Better health may have allowed better development of singing structures in the birds’ anatomies. The same healthy conditions could have also resulted in larger size. So size and singing would be correlated, but not causally related. © 2013 Discovery Communications, LLC.

Keyword: Sexual Behavior; Animal Communication
Link ID: 17856 - Posted: 02.27.2013

By JEFF Z. KLEIN For the last two seasons, concussions and hits to the head were frequent talking points in the N.H.L., with the Pittsburgh Penguins star Sidney Crosby serving as the catalyst. As the lockout dragged on for more than four months, though, the conversation shifted from player safety to revenue percentages and competitive balance. The first few weeks of the shortened 48-game season passed without much talk of concussions. But in the past two weeks, 11 N.H.L. players are believed to have sustained them, among them Crosby’s teammate and the reigning most valuable player, Evgeni Malkin, thrusting the issue of head injuries back into the spotlight. Concussions continue to plague the league, despite its increased emphasis on reducing them. For the second season, the N.H.L. is playing under its broadened version of Rule 48, which penalizes hits that target an opponent’s head or make the head the principal point of contact. But many of the recent injuries, including Malkin’s, were not caused by hits deemed worthy of fines or suspensions. Last season, according to CBC network estimates, about 90 players missed games because of concussions, about 13 percent of N.H.L. players on active rosters on a given night. Crosby missed 60 games while recovering from a concussion he sustained in the 2011 Winter Classic. Malkin, who has 4 goals and 17 assists in 18 games this season, received a concussion diagnosis Sunday, two days after he fell awkwardly into the end boards following a routine shove from Florida’s Erik Gudbranson. Malkin slid back-first into the boards, causing his head to snap sharply backward and strike the boards. © 2013 The New York Times Company

Keyword: Brain Injury/Concussion
Link ID: 17855 - Posted: 02.27.2013

By Maria Konnikova Georg Tobias Ludwig Sachs was born on April 22, 1786, in the mountain village of St. Ruprecht, Kärnthen, or Carinthia – the south of present-day Austria. From the first, he was notably different from his parents and siblings: he was an albino. (His youngest sister, eleven years his junior, would be one as well.) We don’t know if this physical distinction had any negative impact on the young Georg—but it certainly piqued his curiosity. He proceeded to embark on the scientific study of albinism at the universities in Tübingen, Altdorf, and Erlangen, and at the last of these, produced his 1812 doctoral dissertation. It was about albinism: “A Natural History of Two Albinos, the Author and His Sister.” Today, though, Sachs is remembered not for his thoughts on the nature of the albino, but rather those on another curious condition that was far less noticeable—but received a chapter of its very own in his thesis all the same: synesthesia. Georg Sachs just so happens to be the first known synesthete in the medical or psychological literature. Synesthesia means, literally, a cross-mingling of the senses, when two or more senses talk to each other in a way that is not usually associated with either sense on its own. For instance, you see color when you listen to a song on the radio. Taste shapes as you take a bite of your spaghetti. Frown at the 3 on that piece of paper because it’s giving you attitude—it seems irritable. Smile at the woman you just met because her name comes with a beautiful orange glow. The variations are many, but in every scenario, there is a sensory cross-talk that reaches to a neural level. As in, if I were to put you in a scanner while you took that bite or listened to that musical composition, the relevant areas of the brain would light up: your brain would actually be experiencing color, shape, or whatever you say you’re experiencing as if you were exposed to that very stimulus. It’s a condition that affects, by the most recent estimates, roughly 4% of the population. © 2013 Scientific American

Keyword: Vision
Link ID: 17854 - Posted: 02.27.2013

By Stephanie Pappas, People infected with HIV, the virus that causes AIDS, have a harder time than healthy individuals recognizing fear in the faces of others. This trouble with emotional recognition may reveal subtle cognitive deficits caused by the disease, researchers wrote today (Feb. 26) in the open-access journal BMC Psychology. Previous studies have found that HIV (human immunodeficiency virus) is linked with abnormalities in the frontostriatal region of the brain, communications corridors that link the frontal lobes to deeper brain structures. "Frontostriatal structures are involved in facial emotion recognition, so we expected that HIV-positive subjects were impaired in facial emotion recognition tasks," said study researcher Eleonora Baldonero of the Catholic University of the Sacred Heart in Rome. Baldonero and her colleagues recruited 49 HIV-positive adults from a clinic, making sure that none of the volunteers had a history of psychiatric or neurological disorders. HIV itself can affect the brain, Baldonero told LiveScience, but better drug therapies have made neurological problems less of an issue. Nevertheless, the team wanted to find out if there were any subtle deficits in the brains of patients. [The 10 Most Stigmatized Health Disorders] For comparison, the researchers also recruited 20 healthy adults chosen to be similar to the 49 HIV patients in age, gender and education. Both groups underwent a battery of neurological tests, including a facial emotion recognition task. In this test, patients saw male and female faces displaying disgust, anger, fear, happiness, surprise and sadness and had to match the name of the emotion to the face. © 2013 Yahoo! Inc

Keyword: Emotions
Link ID: 17853 - Posted: 02.27.2013

Regina Nuzzo Despite having brains that are still largely under construction, babies born up to three months before full term can already distinguish between spoken syllables in much the same way that adults do, an imaging study has shown1. Full-term babies — those born after 37 weeks' gestation — display remarkable linguistic sophistication soon after they are born: they recognize their mother’s voice2, can tell apart two languages they’d heard before birth3 and remember short stories read to them while in the womb4. But exactly how these speech-processing abilities develop has been a point of contention. “The question is: what is innate, and what is due to learning immediately after birth?” asks neuroscientist Fabrice Wallois of the University of Picardy Jules Verne in Amiens, France. To answer that, Wallois and his team needed to peek at neural processes already taking place before birth. It is tough to study fetuses, however, so they turned to their same-age peers: babies born 2–3 months premature. At that point, neurons are still migrating to their final destinations; the first connections between upper brain areas are snapping into place; and links have just been forged between the inner ear and cortex. To test these neural pathways, the researchers played soft voices to premature babies while they were asleep in their incubators a few days after birth, then monitored their brain activity using a non-invasive optical imaging technique called functional near-infrared spectroscopy. They were looking for the tell-tale signals of surprise that brains display — for example, when they suddenly hear male and female voices intermingled after hearing a long run of simply female voices. © 2013 Nature Publishing Group

Keyword: Language; Development of the Brain
Link ID: 17852 - Posted: 02.26.2013

By Ferris Jabr If you had opened the front door of Lee Shuer's apartment in the early 2000s, you would have encountered a narrow hallway made even narrower by all kinds of random stuff: unnervingly tall stacks of books and papers, cardboard boxes full of assorted knickknacks, and two hot pink salon hair dryer chairs with glass domes suspended from their arched necks. Sidling down the hallway to the right, you would have reached Shuer's bedroom. The door would have opened just wide enough for you to squeeze inside, where you would have seen mounds of stuff three to four feet high on the floor, bed and every available surface. A typical heap might have contained clothes, a violin case, a big box of Magic Markers, record albums, a trumpet, a framed picture, a package of socks, three dictionaries, two thesauruses and a pillow. Traveling a little farther down the hallway would have brought you to the common space that Shuer shared with his two roommates—a space that they had come to call "the museum room." In addition to Shuer's extensive collection of vintage Atari video games and related paraphernalia—Pac-Man board games and action figures—the room contained numerous bobble heads and kitsch from 1970s and '80s; nine milk crates stuffed with hundreds of eight-track tapes; furniture that he planned to refurbish; pile of newspapers, magazines and his artwork; and an assemblage of curious salt and pepper shakers—a mouse and slice of cheese, a dog and fire hydrant. Like many people, Shuer collected things in his youth—baseball cards, coins, cool rocks—but his childhood collections never became unusually large or disorderly. After college he bounced from place to place with few possessions. But when he settled down in an apartment in Northampton, Mass., in 2000 he began collecting much more avidly than in the past. He spent his weekends and spare time visiting Goodwill, the Salvation Army and tag sales in search of his next acquisition—the more intriguing and unusual, the better. Sometimes he would visit a thrift shop on his lunch break rather than eat. © 2013 Scientific American

Keyword: OCD - Obsessive Compulsive Disorder
Link ID: 17851 - Posted: 02.26.2013

By JOHN MARKOFF In setting the nation on a course to map the active human brain, President Obama may have picked a challenge even more daunting than ending the war in Afghanistan or finding common ground with his Republican opponents. In more than a century of scientific inquiry into the interwoven cells known as neurons that make up the brain, researchers acknowledge they are only beginning to scratch the surface of a scientific challenge that is certain to prove vastly more complicated than sequencing the human genome. The Obama administration is hoping to announce as soon as next month its intention to assemble the pieces — and, even more challenging, the financing — for a decade-long research project that will have the goal of building a comprehensive map of the brain’s activity. At present, scientists are a long way from doing so. Before they can even begin the process, they have to develop the tools to examine the brain. And before they develop tools that will work on humans, they must succeed in doing so in a number of simpler species — assuming that what they learn can even be applied to humans. Besides the technological and scientific challenges, there are a host of issues involving storing the information researchers gather, and ethical concerns about what can be done with the data. Also highly uncertain is whether the science will advance quickly enough to meet the time frames being considered for what is being called the Brain Activity Map project. Many neuroscientists are skeptical that a multiyear, multibillion dollar effort to unlock the brain’s mysteries will succeed.“I believe the scientific paradigm underlying this mapping project is, at best, out of date and at worst, simply wrong,” said Donald G. Stein, a neurologist at the Emory University School of Medicine in Atlanta. “The search for a road map of stable, neural pathways that can represent brain functions is futile.” © 2013 The New York Times Company

Keyword: Brain imaging
Link ID: 17850 - Posted: 02.26.2013

By Gary Stix The era of Big Neuroscience has arrived. In late January, The Human Brain Project—an attempt to create a computer simulation of the brain at every scale from the nano nano to the macro biotic—announced that it had successfully arranged a billion Euro funding package for a 10-year run. And then on Feb. 18, an article in The New York Times took the wraps off a plan to spend perhaps billions of dollars for an effort to record large collections of brain cells and figure out what exactly they are doing. Is this the Large Hadron Collider vs. the Superconducting Supercollider redux? Not yet. The billions for the Brain Activity Map, the U.S. project, are still a wish that has yet to be granted. But, despite as-always hazy government finances, brain researchers are thinking large as they never have before, and invoking the attendant rhetoric of moon shots, next-generation Human Genome Projects and the need for humankind to muster the requisite visionary zeal to tackle one of science’s “last frontiers.” Oy, spare me that last part. The challenges these projects have set for themselves, though, illustrate the challenge of going from today’s crude profiles of a biological machine of incomprehensible complexity to an accurate rendering of the goings-on of some 100 billion neurons woven together by a pulsating tapestry of 100 trillion electrical interconnections. © 2013 Scientific American

Keyword: Brain imaging
Link ID: 17849 - Posted: 02.26.2013

By James Gallagher Health and science reporter, BBC News A run of poor sleep can have a dramatic effect on the internal workings of the human body, say UK researchers. The activity of hundreds of genes was altered when people's sleep was cut to less than six hours a day for a week. Writing in the journal Proceedings of the National Academy of Sciences, the researchers said the results helped explain how poor sleep damaged health. Heart disease, diabetes, obesity and poor brain function have all been linked to substandard sleep. What missing hours in bed actually does to alter health, however, is unknown. So researchers at the University of Surrey analysed the blood of 26 people after they had had plenty of sleep, up to 10 hours each night for a week, and compared the results with samples after a week of fewer than six hours a night. More than 700 genes were altered by the shift. Each contains the instructions for building a protein, so those that became more active produced more proteins - changing the chemistry of the body. Meanwhile the natural body clock was disturbed - some genes naturally wax and wane in activity through the day, but this effect was dulled by sleep deprivation. Prof Colin Smith, from the University of Surrey, told the BBC: "There was quite a dramatic change in activity in many different kinds of genes." Areas such as the immune system and how the body responds to damage and stress were affected. BBC © 2013

Keyword: Sleep
Link ID: 17848 - Posted: 02.26.2013

By George Johnson The mystery of whether there is a natural resonance between music and our brains, as I mentioned in a post last week, brings up an even deeper question: whether mathematics itself is neurologically innate, giving the mind (or some minds) direct access to the structure of the universe. Thinking about that recently led me back to one of Oliver Sack’s most astonishing essays. It appeared in his collection The Man Who Mistook His Wife for a Hat, and is about two twins, idiot savants who appeared to have an almost supernatural ability to quickly tell if a number is prime. Prime numbers are those that cannot be broken down into factors — smaller numbers that can be multiplied together to produce the larger one. They have been described as the atoms of the number system. 11 and 13 are obviously prime while 12 and 14 are not. But with larger numbers our brains are quickly flummoxed. Is 7244985277 prime? I just typed the digits by twitching my fingers along the top row of my keyboard. To test the number by hand I would have to start at the beginning of the number system and begin trying out the possible divisors. There are shortcuts to avoid testing every single one. We know 2 can’t be a factor since 7244985277, like all primes, is odd. For the same reason we can rule out all even factors. And you only have to test factors up to the square root of a number. (The factors of 100 are 2 x 50, 4 x 25, 5 x 20, and 10 x 10. Testing beyond 10 would be redundant.)

Keyword: Miscellaneous
Link ID: 17847 - Posted: 02.26.2013

By Meghan Rosen Mouse brain cells scamper close to eternal life: They can actually outlive their bodies. Mouse neurons transplanted into rat brains lived as long as the rats did, surviving twice as long as the mouse’s average life span, researchers report online February 25 in the Proceedings of the National Academy of Sciences. The findings suggest that long lives might not mean deteriorating brains. “This could absolutely be true in other mammals — humans too,” says study author Lorenzo Magrassi, a neurosurgeon at the University of Pavia in Italy. The findings are “very promising,” says Carmela Abraham, a neuroscientist at Boston University. “The question is: Can neurons live longer if we prolong our life span?” Magrassi’s experiment, she says, suggests the answer is yes. One theory about aging, Magrassi says, is that every species has a genetically determined life span and that all the cells in the body wear out and die at roughly the same time. For the neurons his team studied, he says, “We have shown that this simple idea is certainly not true.” Magrassi’s team surgically transplanted neurons from embryonic mice with an average life span of 18 months into rats. To do so, the researchers slipped a glass microneedle through the abdomens of anesthetized pregnant mice. Then, using a dissecting microscope and a tool to illuminate the corn-kernel-sized mouse embryos, the researchers scraped out tiny bits of brain tissue and injected the neurons into fetal rat brains. After the rat pups were born, Magrassi and colleagues waited as long as three years, until the animals were near death, to euthanize the rats and dissect their brains. © Society for Science & the Public 2000 - 2013

Keyword: Stem Cells; Development of the Brain
Link ID: 17846 - Posted: 02.26.2013

By Athena Andreadis Genes are subject to multiple layers of regulation. An early regulatory point is transcription. During this process, regulatory proteins bind to DNA regions (promoters and enhancers) that direct gene expression. These DNA/protein complexes attract the transcription apparatus, which docks next to the complex and proceeds linearly downstream, producing the heteronuclear (hn) RNA that is encoded by the gene linked to the promoter. The hnRNA is then spliced and either becomes structural/regulatory RNA or is translated into protein. Transcription factors are members of large clans that arose from ancestral genes that went through successive duplications and then diverged to fit specific niches. One such family of about fifty members is called FOX. Their DNA binding portion is shaped like a butterfly, which has given this particular motif the monikers of forkhead box or winged helix. The activities of the FOX proteins extend widely in time and region. One of the FOX family members is FOXP2, as notorious as Fox News – except for different reasons: FOXP2 has become entrenched in popular consciousness as “the language gene”. As is the case with all such folklore, there is some truth in this; but as is the case with everything in biology, reality is far more complex. FOXP2, the first gene found to “affect language” (more on this anon), was discovered in 2001 by several converging observations and techniques. The clincher was a large family (code name KE), some of whose members had severe articulation and grammatical deficits with no accompanying sensory or cognitive impairment. The inheritance is autosomal dominant: one copy of the mutated gene is sufficient to confer the trait. When the researchers definitively identified the FOXP2 gene, they found that the version of FOXP2 carried by the KE affected members has a single point mutation that alters an invariant residue in its forkhead domain, thereby influencing the protein’s binding to its DNA targets. © 2013 Scientific American

Keyword: Language; Sexual Behavior
Link ID: 17845 - Posted: 02.25.2013

By James Gallagher Health and science reporter, BBC News A part of the brain's ability to shield itself from the destructive damage caused by a stroke has been explained by researchers. It has been known for more than 85 years that some brain cells could withstand being starved of oxygen. Scientists, writing in the journal Nature Medicine, have shown how these cells switch into survival mode. They hope to one-day find a drug which uses the same trick to protect the whole brain. Treating a stroke is a race against time. Clots that block the blood supply prevent the flow of oxygen and sugar to brain cells, which then rapidly die. But in 1926, it was noticed that some cells in the hippocampus, the part of the brain involved in memory, did not follow this rule. "They're staying alive when the prediction would say that they should die," said Prof Alastair Buchan from Oxford University who has investigated how they survive. I'm a survivor Experiments on rats showed that these surviving-cells started producing a protein called hamartin - which forces cells to conserve energy. They stop producing new proteins and break down existing ones to access the raw materials. When the researchers prevented the cells from producing hamartin, they died just like other cells. BBC © 2013

Keyword: Stroke
Link ID: 17844 - Posted: 02.25.2013

By MICHAEL MOSS On the evening of April 8, 1999, a long line of Town Cars and taxis pulled up to the Minneapolis headquarters of Pillsbury and discharged 11 men who controlled America’s largest food companies. Nestlé was in attendance, as were Kraft and Nabisco, General Mills and Procter & Gamble, Coca-Cola and Mars. Rivals any other day, the C.E.O.’s and company presidents had come together for a rare, private meeting. On the agenda was one item: the emerging obesity epidemic and how to deal with it. While the atmosphere was cordial, the men assembled were hardly friends. Their stature was defined by their skill in fighting one another for what they called “stomach share” — the amount of digestive space that any one company’s brand can grab from the competition. James Behnke, a 55-year-old executive at Pillsbury, greeted the men as they arrived. He was anxious but also hopeful about the plan that he and a few other food-company executives had devised to engage the C.E.O.’s on America’s growing weight problem. “We were very concerned, and rightfully so, that obesity was becoming a major issue,” Behnke recalled. “People were starting to talk about sugar taxes, and there was a lot of pressure on food companies.” Getting the company chiefs in the same room to talk about anything, much less a sensitive issue like this, was a tricky business, so Behnke and his fellow organizers had scripted the meeting carefully, honing the message to its barest essentials. “C.E.O.’s in the food industry are typically not technical guys, and they’re uncomfortable going to meetings where technical people talk in technical terms about technical things,” Behnke said. “They don’t want to be embarrassed. They don’t want to make commitments. They want to maintain their aloofness and autonomy.” A chemist by training with a doctoral degree in food science, Behnke became Pillsbury’s chief technical officer in 1979 and was instrumental in creating a long line of hit products, including microwaveable popcorn. He deeply admired Pillsbury but in recent years had grown troubled by pictures of obese children suffering from diabetes and the earliest signs of hypertension and heart disease. In the months leading up to the C.E.O. meeting, he was engaged in conversation with a group of food-science experts who were painting an increasingly grim picture of the public’s ability to cope with the industry’s formulations — from the body’s fragile controls on overeating to the hidden power of some processed foods to make people feel hungrier still. It was time, he and a handful of others felt, to warn the C.E.O.’s that their companies may have gone too far in creating and marketing products that posed the greatest health concerns. © 2013 The New York Times Company

Keyword: Drug Abuse; Obesity
Link ID: 17843 - Posted: 02.25.2013

by Andy Coghlan Deep brain stimulation helps some people with obsessive-compulsive disorder (OCD), but no one was quite sure why it is effective. A new study offers an explanation: the stimulation has surprisingly pervasive effects, fixing abnormal signalling between different parts of the brain. A small number of people with difficult-to-treat OCD have had electrodes permanently implanted deep within their brain. Stimulating these electrodes reduces their symptoms. To work out why stimulation has this effect, Damiaan Denys and Martijn Figee at the Academic Medical Center in Amsterdam, the Netherlands, and colleagues recorded neural activity in people with electrodes implanted into a part of the brain called the nucleus accumbens. This region is vital for conveying motivational and emotional information to the frontal cortex to guide decisions on what actions to take next. In some people with OCD, feedback loops between the two get jammed, leading them to do the same task repeatedly to reduce anxiety. Surplus signalling The researchers took fMRI scans as participants rested. In 13 people with OCD and implanted electrodes, there was continuous and excessive exchange of signals between the nucleus accumbens and the frontal cortex that was not seen in 11 control subjects. When the electrodes were activated, though, the neural activity of both brain regions in the people with OCD became virtually identical to that in the controls. © Copyright Reed Business Information Ltd

Keyword: OCD - Obsessive Compulsive Disorder
Link ID: 17842 - Posted: 02.25.2013

—By Chris Mooney It is still considered highly uncool to ascribe a person's political beliefs, even in part, to that person's biology: hormones, physiological responses, even brain structures and genes. And no wonder: Doing so raises all kinds of thorny, non-PC issues involving free will, determinism, toleration, and much else. There's just one problem: Published scientific research keeps going there, with ever increasing audacity (not to mention growing stacks of data). The past two weeks have seen not one but two studies published in scientific journals on the biological underpinnings of political ideology. And these studies go straight at the role of genes and the brain in shaping our views, and even our votes. First, in the American Journal of Political Science, a team of researchers including Peter Hatemi of Penn State University and Rose McDermott of Brown University studied the relationship between our deep-seated tendencies to experience fear—tendencies that vary from person to person, partly for reasons that seem rooted in our genes—and our political beliefs. What they found is that people who have more fearful disposition also tend to be more politically conservative, and less tolerant of immigrants and people of races different from their own. As McDermott carefully emphasizes, that does not mean that every conservative has a high fear disposition. "It's not that conservative people are more fearful, it's that fearful people are more conservative," as she puts it.

Keyword: Emotions
Link ID: 17841 - Posted: 02.25.2013

An international team of biologists has successfully identified some of the brain chemicals that may help clarify some unanswered questions about how humans sleep. The research - conducted by the University of California, Los Angeles (UCLA) and the University of Toronto - focused on seals and the chemicals found in their brain, as they are able to sleep with half their brain at a time. Professor John Peever of the University of Toronto said: "Seals do something biologically amazing - they sleep with half their brain at a time. The left side of their brain can sleep while the right side stays awake. Seals sleep this way while they're in water, but they sleep like humans while on land. Our research may explain how this unique biological phenomenon happens." The study's first author, PhD student Jennifer Lapierre, measured how the brain chemicals change while the seals are asleep and awake. She found that acetylcholine - an important brain chemical - was at low levels on the sleeping side of the brain, but high levels on the waking side. This discovery suggests that acetylcholine may be responsible for brain alertness. They also discovered - to their surprise - that the chemical serotonin was present in both sides of the brain whether the seal was awake or asleep. It was previously thought that serotonin caused brain arousal. Researchers hope that the discovery of the chemicals may make a breakthrough in understanding and curing sleeping disorders. The study's senior author, Jerome Siegel from UCLA's Brain Research Institute added: "Understanding which brain chemicals function to keep us awake or asleep is a major scientific advance. It could help solve the mystery of how and why we sleep." © independent.co.uk

Keyword: Sleep
Link ID: 17840 - Posted: 02.23.2013