Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 11421 - 11440 of 29390

By Neuroskeptic An intriguing new paper in the Journal of Neuroscience introduces a new optical illusion – and, potentially, a new way to see ones own brain activity. The article is called The Flickering Wheel Illusion: When α Rhythms Make a Static Wheel Flicker by Sokoliuk and VanRullen. Here’s the illusion: It’s a simple black and white “wheel” with 32 spokes. To see the illusion, get the wheel in your peripheral vision. Look around the edge of your screen and maybe a bit beyond – you should find a ‘sweet spot’ at which the center of the wheel starts to ‘flicker’ on and off like a strobe light. Remarkably, it even works as an afterimage. Find a ‘sweet spot’, stare at that spot for a minute, then look at a blank white wall. You should briefly see a (color-reversed) image of the wheel and it flickers like the real one (I can confirm it works for me). By itself, this is just a cool illusion. There are lots of those around. What makes it neuroscientifically interesting is that – according to Sokoliuk and VanRullen – that flickering reflects brain alpha waves. First some background. Alpha (α) waves are rhythmical electrical fields generated in the brain. They cycle with a frequency of about 10 Hz (ten times per second) and are strongest when you have your eyes closed, but are still present whenever you’re awake. When Hans Berger invented the electroencephalograph (EEG) and hooked it up to the first subjects in 1924, these waves were the first thing he noticed – hence, “alpha”. They’re noticable because they’re both strong and consistent. They’re buzzing through your brain right now. But this raises a mystery – why don’t we see them? Alpha waves are generated by rhythmical changes in neuronal activity, mainly centered on the occipital cortex. Occipital activity is what makes us see things. So why don’t we see something roughly 10 times every second?

Keyword: Vision
Link ID: 18543 - Posted: 08.22.2013

Moheb Costandi Exposure to nicotine in the womb increases the production of brain cells that stimulate appetite, leading to overconsumption of nicotine, alcohol and fatty foods in later life, according to a new study in rats. Smoking during pregnancy is known to alter fetal brain development and increase the risk of premature birth, low birth weight and miscarriage. Prenatal exposure to nicotine also increases the likelihood of tobacco use and nicotine addiction in later life, but exactly how is unclear. To understand the mechanisms behind this effect, Sarah Leibowitz, a behavioural neurobiologist at the Rockefeller University in New York, and her colleagues injected pregnant rats with small doses of nicotine — which the researchers say are comparable to the amount a pregnant woman would get from smoking one cigarette a day — and then examined the brains and behaviour of the offspring. In a paper published today in Journal of Neuroscience1, they found that nicotine increased the production of specific types of neurons in the amygdala and hypothalamus. These cells produce orexin, enkephalin and melanin-concentrating hormone, neuropeptides that stimulate appetite and increase food intake. Rats exposed to nicotine in the womb had more of these cells and produced more of the neuropeptides than those that were not, and this had long-term consequences on their behaviour. As adolescents, they not only self-administered more nicotine, but also ate more fat-rich food and drank more alcohol. © 2013 Nature Publishing Group

Keyword: Drug Abuse; Development of the Brain
Link ID: 18542 - Posted: 08.21.2013

Linda Carroll TODAY contributor Whether it’s “One Flew Over the Cuckoo’s Nest,” “Girl Interrupted,” or “Homeland,” Hollywood’s portrayals of electroconvulsive therapy have never been pretty. And the images from those movies and TV shows have only added to a stigma that keeps many desperate patients from opting for a therapy that might turn their lives around, experts say. “We can’t get past the stigma of all the visuals we’ve seen from movies and the fact that it seems so antiquated when you consider modern medicine,” NBC chief medical editor Dr. Nancy Snyderman told TODAY’s Matt Lauer. “But time and time and time again if you look at patients who have severe depression who don’t respond to medications, they will tell you that ECT works.” That’s certainly true in Denise Stewart’s case. Stewart, a mother of two, suffers from schizoaffective disorder. Her hallucinations were pushing her closer and closer to suicide each day. “There would be voices in my head that would sit there and say, ‘Denise, see the knife in the kitchen? Cut your wrists. Denise, see those pills over there? Take all those pills,’” she told TODAY. After antidepressants made Stewart’s condition worse, her doctors suggested ECT. And the change was dramatic. “If it hadn’t been for the electroconvulsive therapy, I wouldn’t be alive right now,” Stewart said. These days an estimated 100,000 Americans undergo ECT each year – and the process is a lot different from what you see in the media, experts say.

Keyword: Depression; Learning & Memory
Link ID: 18541 - Posted: 08.21.2013

Philip Ball He is sometimes called the first rock star. He would whip his long hair around as he played, beads of sweat flying into the audience, and women would swoon or throw their clothes on to the stage. This is not Mick Jagger or Jimmy Page, but Franz Liszt, the nineteenth-century Hungarian pianist whose theatrical recitals made the composer Robert Schumann say that “a great deal of poetry would be lost” had Liszt played behind a screen. But who cares about the histrionics — it’s the music that matters, right? Not according to the latest study, which shows that people’s judgements about the quality of a musical performance are influenced more by what they see than by what they hear. The findings, reported this week in the Proceedings of the National Academy of Sciences by social psychologist Chia-Jung Tsay of University College London1, may be embarrassing and even shocking to music lovers. The vast majority of participants in Tsay’s experiments — around 83% of both untrained participants and professional musicians — insisted at the outset that sound was their key criterion for assessing video and audio recordings of performances. Yet it wasn’t. The participants were presented with recordings of the three finalists in each of ten prestigious international competitions, and were asked to guess the winner. With just sound, or sound and video, novices and experts both guessed right at about the same level as chance (33% of the time), or a little less. But with silent video alone, the success rate for both was about 46–53%. The experts did no better than the novices. © 2013 Nature Publishing Group

Keyword: Emotions; Hearing
Link ID: 18540 - Posted: 08.21.2013

By Ella Davies Reporter, BBC Nature An unusual caterpillar uses the sun to navigate as it jumps to safety, according to scientists. The larva of Calindoea trifascialis, a species of moth native to Vietnam, wraps itself in a leaf before dropping to the forest floor. It then spends three days searching for a suitable place to pupate, despite not being able to see out of its shelter. Experts found the insect used a piston-like motion to jump away from strong sunlight. "We believe the object of the jumping is to find shade - to avoid overheating and desiccation," explained Mr Kim Humphreys from the Royal Ontario Museum, Canada who conducted the research alongside Dr Christopher Darling. Their findings are published in the Royal Society journal Biology Letters. Although Mr Humphreys described the caterpillar as "non-descript" in appearance, he said its behaviour makes it unique in a number of ways. "Caterpillars or larvae that jump are rare in themselves," he said. "[This] caterpillar is remarkable for its jumping, which no other insect does in this way. It also makes its own vehicle [or] shelter to jump in." "It is also the only one I know of that jumps in an oriented way." BBC © 2013

Keyword: Animal Migration; Vision
Link ID: 18539 - Posted: 08.21.2013

by Ed Yong In the image above, all the eggs in the top row are laid by cuckoos and those in the bottom row belong to their victims. These uncanny similarities help cuckoos to fob off their parental duties by laying their eggs in the nests of other species. If the hosts can’t tell the difference between their eggs and the foreign ones, they’ll end up raising the cuckoo chick as their own. And they pay a hefty price for their gullibility, since cuckoo chicks often kill or outcompete their foster siblings. The relationship between cuckoos and their hosts is a classic example of an evolutionary arms race. Cuckoos, should evolve eggs that more closely match those of their hosts, while the hosts should evolve keener senses to discriminate between their own eggs and a cuckoo’s. The greater honeyguide isn’t a cuckoo but uses the same tactics—it parasitises the nests of little bee-eaters by laying eggs of the same size and shape. But this mimicry doesn’t help it to fool the bee-eaters, which seem to accept any old egg no matter how different it looks. Instead, Claire Spottiswoode from the University of Cambridge has found that the parasitic honeyguides are fighting an evolutionary arms race against… each other. Bee-eaters build their nests underground, usually within abandoned aardvark burrows. When honeyguides invade, they’ll puncture the bee-eater’s eggs before laying their own. This kills some of the eggs outright and weakens others. If any chicks survive to hatching, they’re finished off by the honeyguide chick, which stabs its foster siblings to death with a vicious hooked bill.

Keyword: Sexual Behavior; Evolution
Link ID: 18538 - Posted: 08.21.2013

By Jessica Shugart People who need sugary snacks to stay sharp throughout the day could be prisoners of their own beliefs. The brain works just fine without regular shots of sugar in people who believe their willpower is unlimited, a new study shows. “There's a dominant theory in psychology that willpower is limited, and whenever you exert yourself to do a hard task or to resist a temptation, you deplete this limited resource,” says psychologist Carol Dweck from Stanford University. Previous studies have shown that mental exertion diminishes blood glucose levels and that a person’s willpower can be rejuvenated by ingesting a sugary drink. But Dweck’s earlier work led her to suspect that people’s attitudes about willpower may be responsible for that effect. In the new study, published online August 19 in the Proceedings of the National Academy of Sciences, Dweck, along with colleagues at the University of Zurich in Switzerland, focused on how attitudes about willpower may shape a person’s sugar dependence in the face of a challenge. The scientists also tested whether altering these beliefs might liberate a person from such a calorie-rich requirement. In the first of three experiments, the researchers asked students about their attitudes on willpower, then gave them lemonade sweetened with either sugar or a sugar substitute. Ten minutes after downing the sweet beverage, the students took tests of self-control and mental acuity. The students who subscribed to a self-generating belief about unlimited willpower scored equally well whether their drinks contained sugar or not. But the students who felt willpower was limited needed sugar to perform as well as the other group did. © Society for Science & the Public 2000 - 2013

Keyword: Attention; Obesity
Link ID: 18537 - Posted: 08.20.2013

Louis Herman The mournful, curiously repetitious yet ever-changing songs of male humpback whales have long puzzled scientists. The tunes are part of the males’ mating displays, but researchers don’t know their exact function, or which males in a population are doing the singing. Now, scientists who’ve been studying the giant marine mammals in Hawaii for almost 40 years report that even sexually immature males join older males in singing, apparently as a way to learn the music and to amplify the song. The beefed-up, all-male choruses may attract more females to the areas where the songsters hang out. Scientists generally thought that only adult male humpbacks (Megaptera novaeangliae) sing, says Louis Herman, a marine mammal biologist emeritus at the University of Hawaii, Manoa, and the lead author of the new study. “But that’s just because you can’t easily tell which ones are mature and which ones are immature,” he says. “We know that mature males are larger than immature ones, so we had to figure out an unobtrusive way to measure them in the open ocean.” Herman and his team hit on a technique by looking at 20th century whaling records. Biologists with whaling operations in the Southern Ocean had the opportunity to measure many humpbacks killed during the commercial hunts. They determined, based on the weight of males’ testes, that the whales reached sexual maturity at a body length of 11.2 meters. Working independently, whaling biologists in Japan, who also measured killed whales, reached a similar conclusion; they described 11.3 meters as the break point between adolescents and adults. © 2012 American Association for the Advancement of Science

Keyword: Sexual Behavior; Animal Communication
Link ID: 18536 - Posted: 08.20.2013

Karen Ravn The authors of a new study write that this plant bug, Coridromius tahitiensis, “lacks precopulatory courtship, and males instead pounce on nearby females, with whom they struggle violently in their attempt to mate.” If you lived on an exotic island where unsafe sex was all too common, you'd find ways to ward off unwanted attention. On Tahiti, the females of two related insect species have had to move their genitals to different sides of their bodies and even impersonate the opposite sex — all to avoid getting pierced in the abdomen by the sexual organs of the wrong males, biologists report. The two insects, which live side by side on the Pacific island of Tahiti and feed on the same plants, are known as Coridromius tahitiensis and Coridromius taravao. Both species follow the aptly named practice of traumatic insemination. With his genital organ reminiscent of a hypodermic needle, the male stabs a female in the side and shoots sperm into her abdomen. The ritual — shared by a number of other invertebrates, including bedbugs (Cimex lectularius) — can cause injury or infection for the female. Not only that, but insects that use this type of reproductive method are not particularly persnickety about partners, so a male of one species may try to mate with another male — or even with a member of another species. Such interspecies mating can be costly to both species in terms of wasted time, energy and sperm, says Nikolai Tatarnic, a biologist who is now curator of insects at the Western Australian Museum in Welshpool. © 2013 Nature Publishing Group,

Keyword: Sexual Behavior; Evolution
Link ID: 18535 - Posted: 08.20.2013

by Douglas Main, LiveScience Staff Writer Rock-a-bye owlet, in the treetop … Baby owls and baby mammals, including humans, sleep in an analogous manner, spending a similar amount of time in an awakelike phase called REM (rapid-eye movement), in which dreams are thought to occur, at least during adulthood, new research suggests. In both owls and humans, REM sleep decreases with increasing age. Baby humans spend about 50 percent of their snooze time in this REM phase, whereas that figure decreases to less than 25 percent in adults, according to a statement from the Max Planck Institute for Ornithology. (Applying the REM term to owls, whose eyes are fixed in their heads, may seem a stretch, but researchers use the phrase anyway.) In the new study, published in July in the journal Frontiers in Zoology, the researchers attached electroencephalograms (EEGs) and movement data loggers to 66 young barn owls to record how much time the animals spent in REM sleep and how much they moved while snoozing. They later removed the EEGs, which measure brain waves, and found that the birds mated normally and didn't appear to have suffered any negative effects from the devices, the statement noted. (7 Ways Animals Act Like Humans) "During this sleep phase, the owlets' EEG showed awakelike activity, their eyes remained closed, and their heads nodded slowly," said University of Lausanne researcher Madeleine Scriba in the statement. © 2013 Discovery Communications, LLC.

Keyword: Sleep; Development of the Brain
Link ID: 18534 - Posted: 08.20.2013

By Scicurious It’s something we feel we’ve always known: if you can’t sleep, you need to exercise more. Wear yourself out, make yourself good and tired, you’ll sleep like a baby! So when I started having trouble sleeping, I just figured I needed to work out more. Of course, it kind of figures that often, you have trouble sleeping because of life stress, which often means you’re really busy, which in turn means it probably puts MORE stress in your life just trying to find the time to work out. But that’s just details. So sometimes, when I catch myself constantly waking up in a panic over several days, I’ll fit in some hard exercise. Maybe I’ll go for a long run, or try a really hard new class or something. By the time I go to bed I am WIPED. Physically and mentally. My body is so exhausted that the feeling of lying down is one of total bliss. …so why can’t I SLEEP?!?! Turns out I was suffering under expectations that were a little too high for reality. First off, we’re not wrong. Exercise DOES improve sleep. It does. But not necessarily immediately. And perhaps, instead, we should ask a different question. Instead of asking how exercise impacts sleep, perhaps we should ask how sleep impacts exercise. The authors of this study were looking at exercise and sleep, especially in the elderly. We all sleep less as we get older, but chronic insomnia is a different beast entirely. When we don’t get enough sleep, we get snappish, have trouble concentrating, suffer from daytime sleepiness, and are more susceptible to things like getting sick, or getting in to accidents. © 2013 Scientific American

Keyword: Sleep
Link ID: 18533 - Posted: 08.20.2013

By James Gallagher Health and science reporter, BBC News A lifetime of too much copper in our diets may be contributing to Alzheimer's disease, US scientists say. However, research is divided, with other studies suggesting copper may actually protect the brain. The latest study in Proceedings of the National Academy of Sciences showed high levels of copper left the brain struggling to get rid of a protein thought to cause the dementia. Copper is a vital part of our diet and necessary for a healthy body. Tap water coming through copper pipes, red meat and shellfish as well as fruit and vegetables are all sources of dietary copper. Barrier The study on mice, by a team at the University of Rochester in New York, suggested that copper interfered with the brain's shielding - the blood brain barrier. Mice that were fed more copper in their water had a greater build-up of the metal in the blood vessels in the brain. The team said this interfered with the way the barrier functioned and made it harder for the brain to get rid of a protein call beta amyloid. One of the hallmarks of Alzheimer's disease is the formation of plaques of amyloid in the dying brain. Lead researcher Dr Rashid Deane said: "It is clear that, over time, copper's cumulative effect is to impair the systems by which amyloid beta is removed from the brain." BBC © 2013

Keyword: Alzheimers; Neurotoxins
Link ID: 18532 - Posted: 08.20.2013

By RICHARD A. FRIEDMAN, M.D. Fully 1 in 5 Americans take at least one psychiatric medication. Yet when it comes to mental health, we are facing a crisis in drug innovation. Sure, we have many antidepressants, antipsychotics, hypnotic medications and the like. But their popularity masks two serious problems. First, each of these drug classes is filled with “me too” drugs, which are essentially just copies of one another; we have six S.S.R.I. antidepressants that essentially do the same thing, and likewise for the 10 new atypical antipsychotic drugs. Second, the available drugs leave a lot to be desired: patients with illnesses like schizophrenia, major depression and bipolar disorder often fail to respond adequately to these medications or cannot tolerate their side effects. Yet even though 25 percent of Americans suffer from a diagnosable mental illness in any year, there are few signs of innovation from the major drug makers. After a series of failed clinical trials in which novel antidepressants and antipsychotics did little or no better than placebos, the companies seem to have concluded that developing new psychiatric drugs is too risky and too expensive. This trend was obvious at the 2011 meeting of the American Society for Clinical Pharmacology and Therapeutics, where only 13 of 300 abstracts related to psychopharmacology and none related to novel drugs. Instead, they are spending most of their research dollars on illnesses like cancer, heart disease and diabetes, which have well-defined biological markers and are easier to study than mental disorders. © 2013 The New York Times Company

Keyword: Depression; Schizophrenia
Link ID: 18531 - Posted: 08.20.2013

What if a psychiatrist could tell whether someone was about to commit suicide simply by taking a sample of their blood? That’s the promise of new research, which finds increased amounts of a particular protein in the bloodstream of those contemplating killing themselves. The test was conducted on only a few people, however, and given that such “biomarkers” often prove unreliable in the long run, it’s far from ready for clinical use. Suicide isn’t like a heart attack. People typically don’t reveal early symptoms to their doctor—morbid thoughts, for example, instead of chest pain—and there’s no equivalent of a cholesterol or high blood pressure test to identify those at most risk of killing themselves. "We are dealing with something more complex and less accessible," says Alexander Niculescu III, a psychiatrist at the Indiana University School of Medicine in Indianapolis. So some researchers are eager to find physical signs, called biomarkers, that can be measured in the bloodstream to signal when a person is at a high likelihood of committing suicide. Over the past decade, Niculescu and his colleagues have been refining a method for identifying biomarkers that can distinguish psychological states. The technique depends on blood samples taken from individuals in different mental states over time—for example, from people with bipolar disorder as they swing between the disorder’s characteristic high and low moods. The researchers test those samples for differences in the activity, or expression, of genes for of different proteins. After screening the blood samples, the scientists “score” a list of candidate biomarker genes by searching for related results in a large database of studies by other groups using a program that Niculescu compares to the Google page-ranking algorithm. In previous published studies, Niculescu and other groups have used the technique to probe for biomarkers in disorders such as bipolar disorder, psychosis, and alcoholism. © 2012 American Association for the Advancement of Science.

Keyword: Depression
Link ID: 18530 - Posted: 08.20.2013

By ANAHAD O'CONNOR Nationwide, roughly a third of all visits to emergency rooms for injuries are alcohol related. Now a new study suggests that certain beverages may be more likely to be involved than others. The study, carried out over the course of a year at the Johns Hopkins Hospital in Baltimore, found that five beer brands were consumed most often by people who ended up in the emergency room. They were Budweiser, Steel Reserve, Colt 45, Bud Ice and Bud Light. Three of the brands are malt liquors, which typically contain more alcohol than regular beer. Four malt liquors accounted for nearly half of the beer consumption by emergency room patients, even though they account for less than 3 percent of beer consumption in the general population. Previous studies have found that alcohol frequently plays a role in emergency room admissions, especially those stemming from car accidents, falls, homicides and drownings, said the lead author of the study, David H. Jernigan of the Johns Hopkins Bloomberg School of Public Health. The new study, published in the journal Substance Use and Misuse, is the first to look at whether certain brands or types of liquor are overrepresented. Dr. Jernigan said that the breakdown of liquor consumption in the study may be particular to Baltimore, and that he and his colleagues are hoping to study other cities as well. The findings could have policy implications, potentially influencing labeling requirements and marketing for higher-alcohol beers, Dr. Jernigan said. Copyright 2013 The New York Times Company

Keyword: Drug Abuse; Aggression
Link ID: 18529 - Posted: 08.20.2013

By Scott Barry Kaufman So yea, you know how the left brain is really realistic, analytical, practical, organized, and logical, and the right brain is so darn creative, passionate, sensual, tasteful, colorful, vivid, and poetic? No. Just no. Stop it. Please. Thoughtful cognitive neuroscientists such as Rex Jung, Darya Zabelina, Andreas Fink, John Kounios, Mark Beeman, Kalina Christoff, Oshin Vartanian, Jeremy Gray, Hikaru Takeuchi and others are on the forefront of investigating what actually happens in the brain during the creative process. And their findings are overturning conventional notions surrounding the neuroscience of creativity. The latest findings from the real neuroscience of creativity suggest that the right brain/left brain distinction is not the right one when it comes to understanding how creativity is implemented in the brain. Creativity does not involve a single brain region or single side of the brain. Instead, the entire creative process– from the initial burst of inspiration to the final polished product– consists of many interacting cognitive processes and emotions. Depending on the stage of the creative process, and what you’re actually attempting to create, different brain regions are recruited to handle the task. Importantly, many of these brain regions work as a team to get the job done, and many recruit structures from both the left and right side of the brain. In recent years, evidence has accumulated suggesting that “cognition results from the dynamic interactions of distributed brain areas operating in large-scale networks.” © 2013 Scientific American

Keyword: Laterality; Attention
Link ID: 18528 - Posted: 08.20.2013

By April Neale An innovative two-part series, "Brains on Trial with Alan Alda," airing Wednesday, September 11 and 18, 2013, 10-11 p.m. on PBS (check local listings), explores how the growing ability to separate truth from lies, even decode people’s thoughts and memories, may radically affect how criminal trials are conducted in the future. As brain scanning techniques advance, their influence in criminal cases is becoming critically important. Brains on Trial centers around the trial of a fictional crime: a robbery staged in a convenience store that has been filmed by the store’s security cameras. A teenager stands accused of the attempted murder of the store clerk’s wife who was shot during the crime. While the crime is fictional, the trial is conducted before a real federal judge and argued by real practicing attorneys. The program is divided into two-parts: the first hour examines the guilt phase of the trial concluding with the jury’s verdict; the second hour looks at the sentencing phase, when arguments for and against a severe sentence are heard. As the trial unfolds, Alda visits with neuroscientists whose research has already influenced some Supreme Court decisions, as well as Duke University law professor Nita Farahany, a member of the Presidential Commission for the Study of Bioethical Issues. On these visits, neuroscientists show how functional MRIs and other brain scanning techniques are exploring lie detection, facial recognition, memory decoding, racial bias, brain maturity, intention, and even emotions. The research Alda discovers is at the center of a controversy as to how this rapidly expanding ability to peer into people’s minds and decode their thoughts and feelings could – or should – affect trials like the one presented in the program. As DNA evidence has played a major role in exonerating innocent prisoners, Brains on Trial asks if neuroscience can make the criminal justice system more just.

Keyword: Miscellaneous
Link ID: 18527 - Posted: 08.20.2013

By Brady Dennis, Insomniacs of the world: If you think taking a long run today will make you sleep better tonight, think again. While exercise has long been a prescription for insomnia, new research suggests that exercise doesn’t immediately translate into a better night’s sleep — unless you stick with it for months. A study published Thursday in the Journal of Clinical Sleep Medicine found that aerobic exercise can lead to more rest at night for people who suffer from existing sleep problems, but only if they maintain an exercise regimen for roughly four months. “Exercise isn’t a quick fix. . . . It takes some time and effort,” the study’s lead author, Kelly Glazer Baron, a clinical psychologist and director of the behavioral sleep program at Northwestern University’s Feinberg School of Medicine, said in an interview. “It’s a long-term relationship.” Studies have long suggested that aerobic exercise can contribute to better sleeping habits. But much of the research on the daily effects of exercise on sleep was conducted with healthy sleepers. Tuesday’s study, by contrast, looked at the long-term effects of exercise in people already suffering from sleep disorders. © 1996-2013 The Washington Post

Keyword: Sleep
Link ID: 18526 - Posted: 08.19.2013

The EnChroma Color Blindness Test measures the type and extent of color vision deficiency. The test takes between 2-5 minutes to complete. Your test results may be anonymously recorded on our server for quality assurance purposes. This test is not a medical diagnosis. Please consult an eye care professional for more information regarding color vision deficiency. Copyright 2013 EnChroma, Inc.

Keyword: Vision
Link ID: 18525 - Posted: 08.19.2013

A few weeks back, I wrote about special lenses that were developed to give doctors “a clearer view of veins and vasculature, bruising, cyanosis, pallor, rashes, erythema, and other variations in blood O2 level, and concentration,” especially in bright light. But these lenses turned out to have an unintended side effect: they “may cure red-green colorblindness.” I’m severely red-green colorblind, so I was eager to try these $300 lenses. Turns out they didn’t help me; the company said that my colorblindness is too severe. They have helped many others, though (their Amazon reviews makes that clear). After my column appeared, I heard from another company that makes color-enhancing glasses — this time, specifically for red-green colorblind folks. The company’s called EnChroma, and the EnChroma Cx sunglasses are a heartbeat-skipping $600 a pair. “Our lenses are specifically designed to address color blindness,” the company wrote to me, “and utilize a 100+ layer dielectric coating we engineered for this precise purpose by keeping the physiology of the eyes of colorblind people in mind.” I asked to try out a pair. (You can, too: there’s a 30-day money-back guarantee.) To begin, you figure out which kind of colorblindness you have — Protan or Deutan — by taking the test at enchroma.com. Turns out I have something called Strong Protan. (“Protanomaly is a type of red-green color vision deficiency related to a genetic anomaly of the L-cone (i.e. the red cone).”) I’d never heard of it, but whatever. © 2013 The New York Times Company

Keyword: Vision
Link ID: 18524 - Posted: 08.19.2013