Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 11221 - 11240 of 29369

By BRANDON A. GAUDIANO PROVIDENCE, R.I. — PSYCHOTHERAPY is in decline. In the United States, from 1998 to 2007, the number of patients in outpatient mental health facilities receiving psychotherapy alone fell by 34 percent, while the number receiving medication alone increased by 23 percent. This is not necessarily for a lack of interest. A recent analysis of 33 studies found that patients expressed a three-times-greater preference for psychotherapy over medications. As well they should: for patients with the most common conditions, like depression and anxiety, empirically supported psychotherapies — that is, those shown to be safe and effective in randomized controlled trials — are indeed the best treatments of first choice. Medications, because of their potential side effects, should in most cases be considered only if therapy either doesn’t work well or if the patient isn’t willing to try counseling. So what explains the gap between what people might prefer and benefit from, and what they get? The answer is that psychotherapy has an image problem. Primary care physicians, insurers, policy makers, the public and even many therapists are largely unaware of the high level of research support that psychotherapy has. The situation is exacerbated by an assumption of greater scientific rigor in the biologically based practices of the pharmaceutical industries — industries that, not incidentally, also have the money to aggressively market and lobby for those practices. For the sake of patients and the health care system itself, psychotherapy needs to overhaul its image, more aggressively embracing, formalizing and promoting its empirically supported methods. My colleague Ivan W. Miller and I recently surveyed the empirical literature on psychotherapy in a series of papers we edited for the November edition of the journal Clinical Psychology Review. It is clear that a variety of therapies have strong evidentiary support, including cognitive-behavioral, mindfulness, interpersonal, family and even brief psychodynamic therapies (e.g., 20 sessions). © 2013 The New York Times Company

Keyword: Depression
Link ID: 18722 - Posted: 09.30.2013

The Conservative government is launching a $1.3-billion free market in medical marijuana on Tuesday, eventually providing an expected 450,000 Canadians with quality weed. Health Canada is phasing out an older system on Monday that mostly relied on small-scale, homegrown medical marijuana of varying quality, often diverted illegally to the black market. In its place, large indoor marijuana farms certified by the RCMP and health inspectors will produce, package and distribute a range of standardized weed, all of it sold for whatever price the market will bear. The first sales are expected in the next few weeks, delivered directly by secure courier. "We're fairly confident that we'll have a healthy commercial industry in time," Sophie Galarneau, a senior official with the department, said in an interview. "It's a whole other ball game." The sanctioned birth of large-scale, free-market marijuana production comes as the Conservatives pillory Liberal Leader Justin Trudeau's campaign to legalize recreational marijuana. Health Canada is placing no limits on the number of these new capital-intensive facilities, which will have mandatory vaults and security systems. Private-dwelling production will be banned. Imports from places such as the Netherlands will be allowed. Already 156 firms have applied for lucrative producer and distributor status since June, with the first two receiving licences just last week. © CBC 2013

Keyword: Drug Abuse; Pain & Touch
Link ID: 18721 - Posted: 09.30.2013

By WILLIAM J. BROAD SCIENCE has looked into some strange things over the centuries — reports of gargantuan sea monsters, purported images of Jesus, sightings of alien spaceships and so on. When I first heard of spontaneous orgasm, while researching a book on yoga, including its libidinal cousin, tantra, I figured it was more allegory than reality and in any event would prove beyond the reach of even the boldest investigators. Well, I was wrong. It turns out science has tiptoed around the subject for more than a century and of late has made considerable progress in determining not only the neurophysiological basis of the phenomenon but also its prevalence. Men are mentioned occasionally. But sex researchers have found that the novel type of autoerotism shows up mainly in women. Ground zero for the research is Rutgers University, where scientists have repeatedly had female volunteers put their heads into giant machines and focus their attention on erotic fantasies — the scans reveal that the pleasure centers of their brains light up in ways indistinguishable from everyday orgasms. The lab atmosphere is no-nonsense, with plenty of lights and white coats and computer monitors. Subjects often thrash about so forcefully that obtaining clear images of their brains can be difficult. “Head movement is a huge issue,” Nan Wise, a doctoral candidate at Rutgers who helps run the project, said in an interview. “It’s hard to get a decent signal.” She said a volunteer’s moving her head more than two millimeters — less than a 10th of an inch — can make for a bad day in the lab. It is easy to dismiss this as a new kind of narcissism in search of scientific respectability, a kinky pleasure coming out of the shadows. Many YouTube videos now purport to show people using controlled breathing and erotic introspection to achieve what they describe as “thinking off” and “energy orgasms.” © 2013 The New York Times Company

Keyword: Sexual Behavior; Brain imaging
Link ID: 18720 - Posted: 09.30.2013

Neuroscience students at the University of Lethbridge are stepping into a maze of memory functions, hoping to help people with dementia or brain injuries through new research that tests people’s memory in the field. That is, the field outside Markin Hall on the U of L’s campus, where neuroscience PhD student Erin Zelinski has set up a life-sized version of a navigation experiment that until now has only been done locally with rats. In it, participants walk around the field until they reach an invisible target spot. When they do, they’ll hear a whistle letting them know they’re in the right place. Then, while researchers time their progress, following their every move with GPS and an overhead remote-controlled camera, participants must find their way back to the same spot two days later. The idea is to first study the brain functions of people without memory impairments so that researchers can later compare that data to a future study of people with memory loss. “We’re trying to describe what normal performance on this test looks like, so if you take a person who’s healthy and you have them perform the task, what we’ll see is that there will probably be commonalities that are going to emerge,” Zelinski said. “And then if you start to look at people that have memory impairments or a brain injury, when they perform the task there might be some things that are different. The better we are at characterizing it in normal people, the better we’re going to be at identifying where the impairments are in those individuals that are having memory problems.” © 1996-2013 The Lethbridge Herald

Keyword: Learning & Memory
Link ID: 18719 - Posted: 09.30.2013

By DAVID P. BARASH WAR is in the air. Sad to say, there’s nothing new about this. Nor is there anything new about the claim that war has always been with us, and always will be. What is new, it seems, is the degree to which this claim is wrapped in the apparent acquiescence of science, especially the findings of evolutionary biology with respect to a war-prone “human nature.” This year, an article in The National Interest titled “What Our Primate Relatives Say About War” answered the question “Why war?” with “Because we are human.” In recent years, a piece in New Scientist asserted that warfare has “played an integral part in our evolution” and an article in the journal Science claimed that “death in warfare is so common in hunter-gatherer societies that it was an important evolutionary pressure on early Homo sapiens.” The emerging popular consensus about our biological predisposition to warfare is troubling. It is not just scientifically weak; it is also morally unfortunate, as it fosters an unjustifiably limited vision of human potential. Although there is considerable reason to think that at least some of our hominin ancestors engaged in warlike activities, there is also comparable evidence that others did not. While it is plausible that Homo sapiens owed much of its rapid brain evolution to natural selection’s favoring individuals that were smart enough to defeat their human rivals in violent competition, it is also plausible that we became highly intelligent because selection favored those of our ancestors who were especially adroit at communicating and cooperating. Conflict avoidance, reconciliation and cooperative problem solving could also have been altogether “biological” and positively selected for. © 2013 The New York Times Company

Keyword: Aggression; Evolution
Link ID: 18718 - Posted: 09.30.2013

By Laura Sanders By hijacking connections between neurons deep within the brain, scientists forced full mice to keep eating and hungry mice to shun food. By identifying precise groups of cells that cause eating and others that curb it, the results begin to clarify the intricate web of checks and balances in the brain that control feeding. “This is a really important missing piece of the puzzle,” says neuroscientist Seth Blackshaw of Johns Hopkins University in Baltimore. “These are cell types that weren’t even predicted to exist.” A deeper understanding of how the brain orchestrates eating behavior could lead to better treatments for disorders such as anorexia and obesity, he says. Scientists led by Joshua Jennings and Garret Stuber of the University of North Carolina at Chapel Hill genetically tweaked mice so that a small group of neurons would respond to light. When a laser shone into the brain, these cells would either fire or, in a different experiment, stay quiet. These neurons reside in a brain locale called the bed nucleus of the stria terminalis, or BNST. Some of the message-sending arms of these neurons reach into the lateral hypothalamus, a brain region known to play a big role in feeding. When a laser activated these BNST neurons, the mice became ravenous, voraciously eating their food, the researchers report in the Sept. 27 Science. “As soon as you turn it on, they start eating and they don’t stop until you turn it off,” Stuber says. The opposite behavior happened when a laser silenced BNST neurons’ messages to the lateral hypothalamus: The mice would not eat, even when hungry. © Society for Science & the Public 2000 - 2013

Keyword: Obesity
Link ID: 18717 - Posted: 09.28.2013

Heather Saul Stress can make the world around us smell unpleasant, the results of a new study are suggesting. Researchers from the University of Wisconsin-Madison used powerful brain imaging technologies to examine how stress and anxiety "re-wire" the brain. A team of psychologists led by Professor Wen Li discovered that when a person experiences stress, emotion systems and olfactory processing in the brain become linked, making inoffensive smells become unpleasant. Although the emotion and olfactory systems within the brain are usually found next to each other, there is rarely 'crosstalk' between the two. Writing in the Journal of Neuroscience, Prof Li said results from their research will now help to uncover the biological mechanisms at work when a person feels stressed. Using functional MRI scans, the team analysed the brain activity of 12 participants after showing them images designed to induce anxiety as they smelled familiar, neutral odours. The subjects were then asked to rate the different smells before being shown the disturbing image and afterwards. The majority showed a more negative response to odours that they had previously considered neutral. This fuels a 'feedback loop' that heightens distress, and can even lead to clinical issues such as depression. Prof Li explained: "After anxiety induction, neutral smells become clearly negative." “In typical odor processing, it is usually just the olfactory system that gets activated,” says Li. “But when a person becomes anxious, the emotional system becomes part of the olfactory processing stream. © independent.co.uk

Keyword: Stress; Chemical Senses (Smell & Taste)
Link ID: 18716 - Posted: 09.28.2013

If you look at the facts and figures on the mental health charity Mind's website, you'll find that around 1 in 4 people will experience some sort of mental health problem each year. About 10% of these people will see their doctor and be diagnosed as having a mental health problem, and of this group, a small proportion will in turn be referred to specialist psychiatric care. Of these people, precisely none resemble the breathtakingly ignorant costumes that have recently been withdrawn from Tesco and Asda. If you want to know what someone with a mental health issue looks like, just look around you. One of the most common types of mental health issue is anxiety – about 9% of people in Britain meet the criteria for mixed anxiety and depression, for example. We all feel anxious from time to time, and that's not necessarily a bad thing. Isaac Marks and Randy Nesse argued in 1994 that anxiety is an important emotion that has been shaped during the course of human evolution. If we are in a potentially dangerous environment, being anxious increases our awareness of our surroundings and puts us in a state of physiological readiness to deal with any threats. However, when an anxiety response kicks in too often, and in situations where it is not needed, it becomes a debilitating problem. In serious cases, anxiety can make it incredibly hard for the person to function. There's now a wealth of research that is trying to tap into the mechanisms involved in both sub-clinical and clinical forms of anxiety. By understanding what happens when we become anxious, we might be able to get a clearer idea of how and why things go wrong in anxiety disorders. For example, a new study published this week in the Journal of Neuroscience has suggested one potential contributing factor – how smells are processed. © 2013 Guardian News and Media Limited

Keyword: Emotions; Chemical Senses (Smell & Taste)
Link ID: 18715 - Posted: 09.28.2013

By Tina Hesman Saey The sun exerts hegemony over biological rhythms of nearly every organism on Earth. But two studies now show the moon is no slouch. It controls the cadence of at least two different biological clocks: one set by tides and the other by moonlight. The clocks, both discovered in sea creatures, work independently of the circadian clock, which synchronizes daily rhythms with the sun. The studies demonstrate that the moon’s light and its gravitational pull, which creates tides, can affect the behavior of animals. “The moon has an influence, definitely,” says Steven Reppert, a neurobiologist at the University of Massachusetts Medical School in Worcester, who was not involved with either study. “Clearly for these marine organisms, it’s very powerful and important.” Scientists established decades ago that circadian clocks govern people’s daily cycles of such things as hormone levels, blood pressure and body temperature. Nearly every organism, including single-celled creatures, has some version. Circadian clocks are composed of protein gears. In a loop that takes roughly 24 hours, levels of some proteins rise and then fall, while others fall and then rise. Sunlight sets the clocks, but once a clock is set it will keep running, even when scientists keep organisms in constant darkness. © Society for Science & the Public 2000 - 2013

Keyword: Biological Rhythms
Link ID: 18714 - Posted: 09.28.2013

By Roy F. Baumeister It has become fashionable to say that people have no free will. Many scientists cannot imagine how the idea of free will could be reconciled with the laws of physics and chemistry. Brain researchers say that the brain is just a bunch of nerve cells that fire as a direct result of chemical and electrical events, with no room for free will. Others note that people are unaware of some causes of their behavior, such as unconscious cues or genetic predispositions, and extrapolate to suggest that all behavior may be caused that way, so that conscious choosing is an illusion. Scientists take delight in (and advance their careers by) claiming to have disproved conventional wisdom, and so bashing free will is appealing. But their statements against free will can be misleading and are sometimes downright mistaken, as several thoughtful critics have pointed out. Arguments about free will are mostly semantic arguments about definitions. Most experts who deny free will are arguing against peculiar, unscientific versions of the idea, such as that “free will” means that causality is not involved. As my longtime friend and colleague John Bargh put it once in a debate, “Free will means freedom from causation.” Other scientists who argue against free will say that it means that a soul or other supernatural entity causes behavior, and not surprisingly they consider such explanations unscientific. These arguments leave untouched the meaning of free will that most people understand, which is consciously making choices about what to do in the absence of external coercion, and accepting responsibility for one’s actions. Hardly anyone denies that people engage in logical reasoning and self-control to make choices. There is a genuine psychological reality behind the idea of free will. The debate is merely about whether this reality deserves to be called free will. Setting aside the semantic debate, let’s try to understand what that underlying reality is. © 2013 The Slate Group, LLC.

Keyword: Consciousness
Link ID: 18713 - Posted: 09.28.2013

by Megan Gannon, Live Science Deep in the cloud forests of Central America, two species of singing mice put on a high-pitched opera to mark their territory and stave off clashes, researchers discovered. Alston's singing mouse (Scotinomys teguina) and the Chiriqui singing mouse (S. xerampelinus) have overlapping lifestyles in the cloud forests of Costa Rica and Panama. But the tawny cousins seem to establish geographic boundaries so they can avoid competing with each other. "A long-standing question in biology is why some animals are found in particular places and not others," study researcher Bret Pasch, a postdoctoral fellow at the the University of Texas at Austin, said in a statement. "What factors govern the distribution of species across space?" As it turns out, a little communication between individuals affects the spread of both species as a whole. Both species of singing mice produce vocalizations that are barely audible to humans. As video footage of the mouse-y opera from the foggy forest floor shows, the creatures throw their heads back and belt out songs in the form of rapidly repeated notes, known as trills. The Alston's mouse in the clip even looks likes it's taking a bow after its solo. © 2013 Discovery Communications, LLC

Keyword: Aggression; Animal Communication
Link ID: 18712 - Posted: 09.28.2013

Mark Peplow Hormone-disrupting chemicals may be far more prevalent in lakes and rivers than previously thought. Environmental scientists have discovered that although these compounds are often broken down by sunlight, they can regenerate at night, returning to life like zombies. “The assumption is that if it’s gone, we don’t have to worry about it,” says environmental engineer Edward Kolodziej of the University of Nevada in Reno, joint leader of the study. “But we’re under-predicting their environmental persistence.” “Risk assessments have been built on the basis that light exposure is enough to break down these products,” adds Laura Vandenberg, an endocrinologist at the University of Massachusetts in Amherst who was not involved in the study. “This work undermines that idea completely.” Endocrine disruptors — pollutants that unbalance hormone systems — are known to harm fish, and there is growing evidence linking them to health problems in humans, including infertility and various cancers1. But pinpointing specific culprits from the vast array of trace chemicals in the environment has proved difficult. Indeed, concentrations of known endocrine disruptors in rivers often seem to be too low to explain harmful effects in aquatic wildlife, says Kolodziej. He and his colleague David Cwiertny, an environmental engineer at the University of Iowa in Iowa City, decided to find out whether the breakdown products of endocrine disruptors could be boosting their environmental impact. Their team focused on trenbolone acetate, a synthetic anabolic steroid used as a growth promoter in more than 20 million cattle in the United States each year (this practice is banned in the European Union). © 2013 Nature Publishing Group

Keyword: Hormones & Behavior; Sexual Behavior
Link ID: 18711 - Posted: 09.28.2013

By REED ABELSON THE first time Melissa Morelli was taken to the hospital, she was suicidal and cutting herself, her mother says. She was just 13, and she had been transferred to a psychiatric hospital, where she stayed for more than a week. Her doctors told her mother, Cathy Morelli, that it was not safe for Melissa to go home. But the family’s health insurance carrier would not continue to pay for her to remain in the hospital. The second time, the same thing happened. And the third and the fourth. Over the course of five months, Ms. Morelli took Melissa to the hospital roughly a dozen times, and each time the insurance company, Anthem Blue Cross, refused to pay for hospital care. “It was just a revolving door,” Ms. Morelli said. “You had not been getting better in a significant way,” Anthem explained in one letter sent directly to Melissa, then 14, in July 2012. “It does not seem likely that doing the same thing will help you get better.” Desperate to get help for her daughter, Ms. Morelli sought the assistance of Connecticut state officials and an outside reviewer. She eventually won all her appeals, and Anthem was forced to pay for the care it initially denied. All told, Melissa spent nearly 10 months in a hospital; she is now at home. Anthem, which would not comment on Melissa’s case, says its coverage decisions are based on medical evidence. Melissa’s treatment did not come cheap: it ultimately cost hundreds of thousands of dollars, Ms. Morelli said. Patients often find themselves at odds with health insurers, but the battles are perhaps nowhere so heated as with the treatment of serious mental illness. © 2013 The New York Times Company

Keyword: Depression; Schizophrenia
Link ID: 18710 - Posted: 09.28.2013

Ballet dancers develop differences in their brain structures to allow them to perform pirouettes without feeling dizzy, a study has found. A team from Imperial College London said dancers appear to suppress signals from the inner ear to the brain. Dancers traditionally use a technique called "spotting", which minimises head movement. The researchers say their findings may help patients who experience chronic dizziness. Dizziness is the feeling of movement when, in reality, you are still. For most it is an occasional, temporary sensation. But around one person in four experiences chronic dizziness at some point in their life. When someone turns or spins around rapidly, fluid in the vestibular organs of the inner ear can be felt moving through tiny hairs. Once they stop, the fluid continues to move, which can make a person feel like they are still spinning. Ballet dancers train hard to be able to spin, or pirouette, rapidly and repeatedly. They use a technique called spotting, focusing on a spot on the floor - as they spin, their head should be the last bit to move and the first to come back. In the study, published in the journal Cerebral Cortex, the team recruited 29 female ballet dancers and 20 female rowers of similar age and fitness levels. BBC © 2013

Keyword: Miscellaneous
Link ID: 18709 - Posted: 09.28.2013

By Todd Sherer Parkinson’s disease is coming to prime time. Tomorrow night Michael J. Fox returns to television as the star of his own sitcom nearly 15 years after retiring from Spin City to focus on finding a cure for his disease. Michael has been careful to emphasize that the show isn’t really about Parkinson’s. Based loosely on his real life, The Michael J. Fox Show mines laughs from the everyday trials and tribulations of family man Mike Henry as he resumes his TV news job following a Parkinson’s diagnosis. Yet simply by featuring a main character living with the disease, the show puts Parkinson’s into the national conversation. This is a good moment to consider how much work remains to be done in the realm of neurodegeneration research. The question we’ve heard most often at The Michael J. Fox Foundation is: After more than 20 years with Parkinson’s, how is Michael doing well enough to go back to work? There’s no simple answer. He acknowledges the good fortune he has in a loving, supportive family and financial independence, which have provided advantages in dealing with his disease. He says, “Everybody gets their own version of Parkinson’s. Different meds work for different people, and you’re always trying to find the perfect combination. I think I found what works for me right now. And I’m so lucky.” But the reality is that for the estimated five million Parkinson’s patients worldwide, the status quo is still not good enough. They are living with Parkinson’s movement difficulties and nonmotor symptoms such as mood and sleep disorders as well as cognitive impairment. Medication and therapies alleviate some symptoms, but create their own problems and fail to address all the effects of Parkinson’s. We have some disease-modifying treatments in clinical trials, but nothing on the market yet. The grim truth is that those diagnosed with Parkinson’s will get worse. And for every patient, a community is affected, as the impact of the disease ripples to loved ones and caregivers. This is a global problem, but one that we can solve. © 2013 Scientific American

Keyword: Parkinsons
Link ID: 18708 - Posted: 09.26.2013

by Colin Barras A man missing his lower leg has gained precise control over a prosthetic limb, just by thinking about moving it – all because his unused nerves were preserved during the amputation and rerouted to his thigh where they can be used to communicate with a robotic leg. The man can now seamlessly switch from walking on level ground to climbing stairs and can even kick a football around. During a traditional limb amputation, the main sensory nerves are severed and lose their function. In 2006, Todd Kuiken and his colleagues at the Rehabilitation Institute of Chicago in Illinois realised they could preserve some of that functionality by carefully rerouting sensory nerves during an amputation and attaching them to another part of the body. They could then use the rerouted nerve signals to control a robotic limb, allowing a person to control their prosthesis with the same nerves they originally used to control their real limb. Kuiken's team first attempted the procedure – which is called targeted muscle reinnervation (TMR) – on people who were having their arm amputated. Now, Kuiken's team has performed TMR for the first time on a man with a leg amputation. First, the team rerouted the two main branches of the man's sciatic nerve to muscles in the thigh above the amputation. One branch controls the calf and some foot muscles, the other controls the muscle running down the outside leg and some more foot muscles. © Copyright Reed Business Information Ltd

Keyword: Robotics
Link ID: 18707 - Posted: 09.26.2013

By Bruce Bower Cartoon ghosts have scared up evidence that the ability to visualize objects in one’s mind materializes between ages 3 and 5. When asked to pick which of two mirror-image ghost cutouts or drawings fit in a ghost-shaped hole, few 3-year-olds, a substantial minority of 4-year-olds and most 5-year-olds regularly succeeded, say psychologist Andrea Frick of the University of Bern, Switzerland, and her colleagues. Girls performed as well as boys on the task, suggesting that men’s much-studied advantage over women in mental rotation doesn’t emerge until after age 5, the researchers report Sept. 17 in Cognitive Development. Mental rotation is a spatial skill regarded as essential for science and math achievement. Most tasks that researchers use to assess mental rotation skills involve pressing keys to indicate whether block patterns oriented at different angles are the same or different. That challenge overwhelms most preschoolers. Babies apparently distinguish block patterns from mirror images of those patterns (SN: 12/20/08, p. 8), but it’s unclear whether that ability enables mental rotation later in life. Frick’s team studied 20 children at each of three ages, with equal numbers of girls and boys. Youngsters saw two ghosts cut out of foam, each a mirror image of the other. Kids were asked to turn the ghosts in their heads and choose the one that would fit like a puzzle piece into a ghost’s outline on a board. Over seven trials, the ghosts were tilted at angles varying from the position of the outline. The researchers used three pairs of ghost cutouts, for a total of 21 trials. © Society for Science & the Public 2000 - 2013

Keyword: Attention; Sexual Behavior
Link ID: 18706 - Posted: 09.26.2013

By Neuroskeptic The comparative anatomy of male and female brains is an incredibly popular topic. From teachers to cartoonists, everyone’s interested in it. One supposed dude-dame dimorphism is the width of the corpus callosum, the white matter bridge that connects the brain’s left and right hemispheres. Some studies suggest that women have a larger corpus callosum, relative to overall brain size, than men. This has led to a lot of speculation about how females, with their more ‘interconnected’ brains, are therefore better at things like multitasking: The corpus callosum is 30 percent more highly developed in the female brain… allowing information to flow more easily from one side of the brain to the other, which allows a woman to focus on more than one thing at a time. However, according to Eileen Luders and colleagues, that’s all a wash, because: Differences in Brain Volume Account for Apparent Sex Differences in Callosal Anatomy It’s been argued that women’s relatively larger corpus callosa may reflect the fact that men have larger brains, on average, and that the corpus callosum is relatively smaller in larger brains. In other words, the corpus callosum difference might be a side-effect of the true gender difference (perhaps the only one) – bigger male brains overall. Luders et al confirmed this with a clever technique: they looked in a large online brain database to find some extremely small male brains, and extremely large female ones. This, the two genders were matched on total size.

Keyword: Sexual Behavior; Brain imaging
Link ID: 18705 - Posted: 09.26.2013

By Tara Haelle A change in the way anorexia is diagnosed may make it easier to help more teens, not just thin ones, with the illness. Previously, overweight or obese teens were more likely to fall through the cracks when they developed anorexic behaviors. Now, the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) has broadened the disorder criteria by taking away the weight requirement. The change shifts the focus of the diagnosis from “being thin” to the behaviors of those with the illness. The previous criteria perpetuated the idea that anorexia is a weight disorder—rather than a psychological one. “A lot of people need help even if they don’t narrowly fit the definition of an illness,” says David Hahn, medical director of The Renfrew Center of Philadelphia. “This criteria makes clear that the behaviors, even without a very low weight, are pathologic and need to be addressed. The criteria may very much help pediatricians catch an eating disorder sooner and may teach the public and families to intervene more quickly if it’s understood that anorexia doesn’t only mean underweight.” Anorexia nervosa most often begins in adolescence and affects approximately 0.3 percent of teens. An additional 0.8 percent were found in one large study to have “subthreshold anorexia nervosa”—they showed the symptoms but did not meet all the criteria. Overall, about 6 percent of teens suffer from some kind of eating disorder, such as bulimia, binge-eating and other eating issues previously classified in the DSM-IV as “Eating Disorder—Not Otherwise Specified” (ED-NOS). © 2013 Scientific American

Keyword: Anorexia & Bulimia
Link ID: 18704 - Posted: 09.26.2013

By DENISE GELLENE Dr. David Hubel, who was half of an enduring scientific team that won a Nobel Prize for explaining how the brain assembles information from the eye’s retina to produce detailed visual images of the world, died on Sunday in Lincoln, Mass. He was 87. The cause was kidney failure, his son Carl said. Dr. Hubel (pronounced HUGH-bull) and his collaborator, Dr. Torsten Wiesel, shared the 1981 Nobel in Physiology or Medicine with Roger Sperry for discovering ways that the brain processes information. Dr. Hubel and Dr. Wiesel concentrated on visual perception, initially experimenting on cats; Dr. Sperry described the functions of the brain’s left and right hemispheres. Dr. Hubel’s and Dr. Wiesel’s work further showed that sensory deprivation early in life can permanently alter the brain’s ability to process images. Their findings led to a better understanding of how to treat certain visual birth defects. Dr. Hubel and Dr. Wiesel collaborated for more than two decades, becoming, as they made their discoveries, one of the best-known partnerships in science. “Their names became such a brand name that H&W rolled off the tongue as easily in the lab as A&W root beer did at lunch,” Robert H. Wurtz, a neuroscientist, wrote in a review article about their work. Before Dr. Hubel and Dr. Wiesel started their research in the 1950s, scientists had long believed that the brain functioned like a movie screen — projecting images exactly as they were received from the eye. Dr. Hubel and Dr. Wiesel showed that the brain behaves more like a microprocessor, deconstructing and then reassembling details of an image to create a visual scene. © 2013 The New York Times Company

Keyword: Development of the Brain; Vision
Link ID: 18703 - Posted: 09.25.2013