Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 11201 - 11220 of 29412

by Stephanie Pappas, LiveScience Apes orphaned by the African bushmeat trade lack the social savvy of apes raised by their mothers, a new study finds. The study links the emotional development of bonobos (Pan paniscus), one of humans' closest living relatives, with the ability to interact nicely with others, echoing how human emotions develop. Bonobos who are good at soothing themselves out of a bad mood are more likely to comfort other bonobos in distress, researchers report today (Oct. 14) in the journal Proceedings of the National Academy of Sciences. "By measuring the expression of distress and arousal in great apes, and how they cope, we were able to confirm that efficient emotion regulation is an essential part of empathy," study researcher Frans de Waal, of Emory University's National Primate Research Center, said in a statement. PHOTOS: How Santino, the Chimp, Attacks Visitors Though animal emotions "have long been scientifically taboo," de Waal said, he and his colleagues suspected that emotions might have evolved similarly before the bonobo and human lines split about 6 million years ago. The researchers observed juvenile bonobos at a sanctuary near Kinshasa in the Democratic Republic of the Congo. They watched as the young primates fought, threw tantrums and comforted one another by hugging or stroking. (See Video of a Bonobo Hug) In 373 post-distress interactions (318 caused by fights and 55 caused by tantrums), the researchers found that the better a bonobo was at soothing his or her own emotions, the more likely he or she was to rush to aid a friend in need. A similar pattern is seen in human interactions, the researchers reported. © 2013 Discovery Communications, LLC.

Keyword: Emotions; Evolution
Link ID: 18785 - Posted: 10.15.2013

By JANE E. BRODY Fifty years ago, a revolution began in neonatal care that has preserved the physical and mental health, and often the lives, of thousands of babies: screening of newborns for inherited and congenital disorders. On Oct. 15, 1963, the first law requiring that all newborns be screened for phenylketonuria, or PKU, took effect in Massachusetts. PKU, an inherited metabolic disorder, afflicts one in 20,000 of the four million babies born each year in the United States. Children with PKU are missing an enzyme that converts the amino acid phenylalanine to tyrosine, and unless they remain on a special protein-restricted diet, the resulting buildup of phenylketone damages the brain and causes mental retardation and physical disabilities. Today every state tests babies at birth for PKU — and not just that. There are now more than 50 disorders that can be picked up through screening, 31 of which comprise the “core conditions” of the government’s Recommended Uniform Screening Panel. Other conditions are likely to be added to the panel in the future. All but two of them — hearing loss and critical congenital heart disease — can be detected by automated analysis of a few drops of dried blood from a heel stick done within a few days of birth. Giana Swift, a fifth grader in Sherman Oaks, Calif., was one of more than 12,500 babies who benefit from newborn screening each year. The story of her birth in October 2002 was recounted in The Times. Through a pilot screening program, Giana was found to have an inherited metabolic disorder called 3-MCC (3-methylcrotonyl-CoA carboxylase deficiency). It afflicts about 100 babies a year, rendering them unable to process the amino acid leucine. As with PKU, toxic byproducts of the unprocessed amino acid build up in the blood and damage the brain. Because she was tested at birth, Giana thrived, first on a special leucine-free baby formula, then on a diet nearly free of protein. Her grateful father, David Swift, 44, recently described Giana as “very bright, precocious, happy and a top athlete.” Copyright 2013 The New York Times Company

Keyword: Development of the Brain; Genes & Behavior
Link ID: 18784 - Posted: 10.14.2013

Kashmira Gander A team in Bristol have created an implant that encourages cells damaged by the disease to grow again. It does this through a system of tubes and catheters that pump proteins into patients’ brain once a month, potentially stopping the disease from progressing by encouraging the damaged cells to grow again. The port located behind a patient’s ear releases a protein called glial cell line-derived neurotrophic factor (GDNF). Six patients at Frenchay Hospital, Bristol, have trialled the system, and doctors are now looking for another 36 to help them continue their research. Dr Kieran Breen, director of research and innovation at Parkinson's UK, said: “For years, the potential of GDNF as a treatment for Parkinson's has remained one of the great unanswered research questions. ”This new study will take us one step closer to finally answering this question once and for all. “We believe GDNF could have the potential to unlock a new approach for treating Parkinson's that may be able to slow down and ultimately stop the progression of the condition all together. ”Currently there are very few treatments available for people with Parkinson's and none capable of stopping the condition from advancing.“ More than 127,000 people in the UK currently have the disease, which is caused when nerve cells in the brain die due to a lack of the chemical dopamine. Symptoms include slowness of movement, stiffness and tremors. © independent.co.uk

Keyword: Parkinsons; Trophic Factors
Link ID: 18783 - Posted: 10.14.2013

Monya Baker When Cris Niell said that he wanted to study how mice see, it did not go over well with more-senior neuroscientists. Mice are nocturnal and navigate largely using their noses and whiskers, so many researchers believed that the nursery rhyme — Three Blind Mice — was true enough to make many vision experiments pointless. The obvious alternative model was monkeys, which have large, forward-looking eyes and keen vision. What's more, scientists could rely on decades of established techniques using primates, and it is relatively straightforward to apply the results to the human visual system. “People were saying, 'studying vision in mice, that's crazy,'” Niell recalls. But he was convinced that the rodents offered unique opportunities. Since the 1960s, researchers have used cats and monkeys to uncover important clues about how the brain turns information from the eyes into images recognized by the mind. But to investigate that process at the cellular level, researchers must be able to manipulate and monitor neurons precisely — difficult in cats and monkeys, much easier in mice. If mice and primates turned out to process visual stimuli similarly, Niell thought, that discovery could unleash a torrent of data about how information is extracted from stimuli — and even, more generally, about how the brain works. He found a rare supporter in Michael Stryker at the University of California, San Francisco, who had already seen his share of crazy experiments in mouse vision. Stryker offered Niell a postdoctoral position in his lab, and the pair began setting up experiments in 2005. Nearly a decade later, the two researchers are in better company. At last year's annual meeting of the Society for Neuroscience, Niell attended packed sessions on mouse vision. © 2013 Nature Publishing Group

Keyword: Vision
Link ID: 18782 - Posted: 10.12.2013

Mind over matter. New research explains how abstract benefits of exercise—from reversing depression to fighting cognitive decline—might arise from a group of key molecules. While our muscles pump iron, our cells pump out something else: molecules that help maintain a healthy brain. But scientists have struggled to account for the well-known mental benefits of exercise, from counteracting depression and aging to fighting Alzheimer’s and Parkinson’s disease. Now, a research team may have finally found a molecular link between a workout and a healthy brain. Much exercise research focuses on the parts of our body that do the heavy lifting. Muscle cells ramp up production of a protein called FNDC5 during a workout. A fragment of this protein, known as irisin, gets lopped off and released into the bloodstream, where it drives the formation of brown fat cells, thought to protect against diseases such as diabetes and obesity. (White fat cells are traditionally the villains.) While studying the effects of FNDC5 in muscles, cellular biologist Bruce Spiegelman of Harvard Medical School in Boston happened upon some startling results: Mice that did not produce a so-called co-activator of FNDC5 production, known as PGC-1α, were hyperactive and had tiny holes in certain parts of their brains. Other studies showed that FNDC5 and PGC-1α are present in the brain, not just the muscles, and that both might play a role in the development of neurons. © 2013 American Association for the Advancement of Science.

Keyword: Depression
Link ID: 18781 - Posted: 10.12.2013

by Jack Flanagan Although dogs are said to be man's best friend, it doesn't mean they "get" us. At least, not like elephants seem to. Without any training, the giant herbivores can understand and follow our hand gestures – the first non-human animals known to be able to do so. Elephants have lived alongside humans for between 4000 and 8000 years. Despite their potential to be tamed, though, elephants have never been domesticated in the same way as dogs, cats and agricultural animals have. This hasn't prevented them from developing a number of human-like skills. In the wild, they are famously empathetic towards one another. In captivity, elephants have displayed a degree of self-awareness by being able to recognise themselves in a mirrorMovie Camera. Others have developed the teamwork necessary to coordinate and complete a task. In fact, one elephant has even learned some basic phrases in Korean – and another has been taught to paint by its parents. Arguably it was only a matter of time before they added another skill to their impressive repertoire. Hidden talent Pointing gestures are common enough among humans: from an early age babies naturally recognise the meaning behind them. We know that chimpanzees and even seals can do this too, but not without hours of training. It comes as a surprise, then, to discover that elephants can find hidden food once it is pointed out to them – without any prior lessons. © Copyright Reed Business Information Ltd.

Keyword: Intelligence; Evolution
Link ID: 18780 - Posted: 10.12.2013

By Deborah Kotz / Globe Staff As much as you may hate hearing honking traffic or rumbling trains breaking up the silence while you drift off to sleep, can such irritating noises do serious damage to your health? That’s a question researchers have been trying to answer for years, and they’ve come a bit closer to finding out in a new study looking at the impact of airplane noise in those who live close to airports. Two new studies published in the British Medical Journal this week found that living in a home directly in the flight-path of low-flying planes was associated with an increased risk of being hospitalized for heart disease or a stroke. One study, conducted by Boston-based researchers, examined Medicare records from 6 million seniors living near 89 U.S. airports and found that every 10 decibel level increase in noise from planes that seniors were exposed was linked to a 3.5 percent higher hospitalization rate for heart disease. (About 6 percent of the study population was hospitalized for heart problems during 2009 when the data was collected.) The second study, performed by British researchers, found that folks living near London’s Heathrow airport who were regularly exposed to the greatest levels of noise from planes—greater than 63 decibels which is louder than the sounds of close conversation—were more than 20 percent more likely to be hospitalized for a stroke or for heart disease than those with the least noise exposure. Neither study could prove that the airport noise led to more hospitalizations, but researchers controlled for certain factors like air pollution and road traffic noise which could also raise heart and stroke risks. They couldn’t control for others like smoking habits or diet. © 2013 NY Times Co.

Keyword: Stress; Stroke
Link ID: 18779 - Posted: 10.12.2013

by Laura Sanders After Baby V joined our team, one of the first things people would ask is, “Are you getting any sleep?” (The answer was, and is, no.) The recurring question highlights how sorely lacking sleep is for new parents. Capitalism noticed us tired parents, too: Countless products beckon exhausted families with promises of eight, 10, even 12 hours of blissful, uninterrupted sleep. You can buy special swaddles, white noise machines, swings that sway like a moving car and books upon books that whisper contradictory secrets of how to get your baby to sleep through the night. (If you don’t have time to read them all, mother-of-twins Ava Neyer helpfully breaks down all of the advice for you.) As the owner of a stack of such books, I was intrigued by this recent review: “Behavioral sleep interventions in the first six months of life do not improve outcomes for mothers or infants: A systematic review.” Excuse me? The Sleep Sheep, the Baby Whisperer and the Sleep Lady lied to me? At the behest of the United Kingdom’s National Institute for Health Research, Australians Pamela Douglas and Peter Hill combed through the existing scientific literature on sleep interventions looking for benefits. These interventions included delaying responses to infant cues (also known by its cold-hearted name of “crying it out”), sticking to a feeding or sleeping schedule and other ways that aim to teach a baby how to fall asleep without the need to eat or be held. After analyzing 43 studies on infant sleep interventions, the team concluded that these methods weren’t beneficial for babies younger than six months, or their mothers. The studies didn’t convincingly show that interventions curb infant crying, prevent sleep or behavioral problems later or protect against maternal depression, Douglas and Hill write in the September Journal of Developmental & Behavioral Pediatrics. © Society for Science & the Public 2000 - 2013.

Keyword: Sleep; Development of the Brain
Link ID: 18778 - Posted: 10.12.2013

Children whose mothers are depressed during pregnancy have a small increased risk of depression in adulthood, according to a UK study. Medical treatment during pregnancy could lower the risk of future mental health problems in the child, say researchers at Bristol University. The study followed the offspring of more than 8,000 mothers who had postnatal or antenatal depression. The risk is around 1.3 times higher than normal at age 18, it found. The study is published in JAMA Psychiatry. Lead researcher Dr Rebecca Pearson told the BBC: "Depression in pregnancy should be taken seriously and treated in pregnancy. It looks like there is a long-term risk to the child, although it is small." She said it was an association, not a causal link, and needed further investigation. Prof Carmine Pariante of King's College London's Institute of Psychiatry said the development of an individual's mental health did not start at birth but in the uterus. "The message is clear - helping women who are depressed in pregnancy will not only alleviate their suffering but also the suffering of the next generation." Prof Celso Arango of Gregorio Maranon General University Hospital, Madrid, said stress hormones may affect the child's development in the womb. "Women with depression would ideally be treated before getting pregnant, but if they are already pregnant when diagnosed with depression it is even more important that they are treated as it will impact on the mother and child." The researchers think different factors may be involved in antenatal and postnatal depression, with environmental factors such as social support having a bigger impact in postnatal depression. BBC © 2013

Keyword: Depression; Development of the Brain
Link ID: 18777 - Posted: 10.12.2013

by Erika Engelhaupt Could I interest you in eating the partially digested stomach contents of a porcupine? No? Maybe a spot of reindeer stomach, then. Still no? Well, that’s curious. The Western aversion to these dishes is odd, because people around the world have long partaken of — even delighted in — the delicacy known to medical science as chyme. That’s what becomes of food after it’s chewed, swallowed and mushed around in the stomach for a while with a healthy dose of hydrochloric acid. And, researchers now suggest, Neandertals were no exception. Eating chyme may even explain the presence of some puzzling plant matter found in Neandertal’s tartar-crusted teeth. Neandertals didn’t have great dental care, and in the last few years anthropologists have begun to take advantage of monstrous tartar buildup on fossilized teeth to figure out what the hominids ate. Various chemical signatures, starch grains and even tiny plant fossils called phytoliths get preserved in the tartar, also known as calculus. Just what Neandertals ate has been more of a puzzle than paleo dieters might have you believe. Isotope analyses of fossilized bones and teeth suggest Neandertals ate very high on the food chain, with high-protein diets akin to those of wolves or hyenas. But wear marks on their teeth suggest the Neandertal diet consisted of more animals in colder high-latitude areas, and more of a mix of plants and animals in warmer areas. Tartar analyses support the idea that Neandertals ate their veggies, and have also suggested the presence of plants considered inedible, or at least unpalatable and non-nutritious. These include some plants like yarrow and chamomile with medicinal value, so one team suggested Neandertals self-medicated. © Society for Science & the Public 2000 - 2013

Keyword: Evolution
Link ID: 18776 - Posted: 10.12.2013

Charlie Cooper Scientists have hailed an historic “turning point” in the search for a medicine that could beat Alzheimer's disease, after a drug-like compound was used to halt brain cell death in mice for the first time. Although the prospect of a pill for Alzheimer's remains a long way off, the landmark British study provides a major new pathway for future drug treatments. The compound works by blocking a faulty signal in brains affected by neurodegenerative diseases, which shuts down the production of essential proteins, leading to brain cells being unprotected and dying off. It was tested in mice with prion disease - the best animal model of human neurodegenerative disorders - but scientists said they were confident the same principles would apply in a human brain with debilitating brain diseases such as Alzheimer's or Parkinson's. The study, published today in the journal Science Translational Medicine, was carried out at the Medical Research Council's (MRC) Toxicology Unit at the University of Leicester. “It's a real step forward,” team leader Professor Giovanna Mallucci told The Independent. “It's the first time a substance has been given to mice that prevents brain disease. The fact that this is a compound that can be given orally, that gets into the brain and prevents brain disease, is a first in itself… We can go forward and develop better molecules and I can't see why preventing this process should only be restricted to mice. I think this probably will translate into other mammalian brains.” © independent.co.uk

Keyword: Alzheimers
Link ID: 18775 - Posted: 10.10.2013

By MICHAEL TORTORELLO SONOMA, Calif. — Here is a truth about children with autism: they grow up to become adults with autism. Advocates estimate that over the next decade some 500,000 such individuals will come of age in the United States. No one can say for sure what adulthood will hold for them. To start, where will everyone live and work? A 2008 Easter Seals study found that 79 percent of young adults with autism spectrum disorders continue to reside with their parents. A solid majority of them have never looked for a job. And yet the life expectancy of people with autism is more or less average. Here is another truth, then, about children with autism: they can’t stay at home forever. This realization — as obvious as it is worrying — has recently stirred the beginnings of a response from researchers, architects and, not least, parents. In 2009, a pair of academics, Kim Steele and Sherry Ahrentzen, collaborated on “Advancing Full Spectrum Housing,” a comprehensive design guideline for housing adults with autism. (An expanded book on the topic is scheduled to come out next year.) Perhaps the first development to closely follow their template is Sweetwater Spectrum, a residence for 16 adults whose abilities and disabilities span the full range of autism. The innovative $10.4 million project opened in January in the heart of California wine country, and its founding families and board hope to make Sweetwater a model for like-minded experiments across the country. “You hear about different organizations planning to do these things,” said Dr. Ahrentzen, a professor in the Shimberg Center for Housing Studies at the University of Florida, in Gainesville. But “it takes time to get all these different funding sources in place.” © 2013 The New York Times Company

Keyword: Autism
Link ID: 18774 - Posted: 10.10.2013

By Scott Barry Kaufman Brain training: yay or nay? It’s not so simple. As we all know, people differ quite a bit from one another in how much information they can maintain, manipulate, and transform in their heads at one time. Crucially, these differences relate to important outcomes, such as abstract reasoning, academic performance, reading comprehension, and the acquisition of new skills. The most consistent and least controversial finding in the literature is that working memory training programs produce reliable short-term improvements in both verbal and visuospatial working memory skills. On average, the effect sizes range from moderate to large, although the long-term sustainability of these effects is much more ambiguous. These effects are called near transfer effects, because they don’t transfer very far beyond the trained domain of cognitive functioning. What are far more controversial (and far more interesting) are far transfer effects. One particular class of far transfer effects that cognitive psychologists are particularly interested in are those that show increases in fluid intelligence: the deliberate but flexible control of attention to solve novel “on the spot” problems that cannot be perfomed by relying exclusively on previously learned habits, schemas, and scripts. Here is where we enter the swamp. Some studies have reported absolutely no effect of working memory training on fluid intelligence, whereas others have found an effect. The results are mixed and inconclusive. Various critics have rightfully listed a number of methodological flaws and alternative explanations that could explain the far transfer effects. © 2013 Scientific American

Keyword: Learning & Memory
Link ID: 18773 - Posted: 10.10.2013

by Nora Schultz A SIMPLE bedside scan could reveal an active mind hidden inside an unresponsive body. The method provides another tool for recognising consciousness in people who have been wrongly diagnosed as being in a vegetative state. Tests are also under way to use it to monitor people under general anaesthetic, to make sure they do not regain consciousness during an operation. The technique builds on recent research into the nature of consciousness. "Information that is processed consciously typically recruits several brain regions at once," says Jean-Rémi King at the Brain and Spine Institute (ICM) in Paris, France. Other information that enters the brain triggers unconscious activity – for instance, the righting reflex that helps us retain balance when we are pushed – and it only tends to activate one brain area. King and his colleague Jacobo Sitt, also at the ICM, reasoned that they could spot consciousness in people simply by playing them a series of beeps and then searching electroencephalogram (EEG) brain scan data for evidence that signals from different brain regions fluctuated in the same way as each other, suggesting that they were sharing information. They performed their tests on 75 people in a vegetative state, 67 minimally conscious people, 24 people who had recently regained consciousness after a coma, and 14 healthy controls. By running the EEG data through statistics software, the researchers found differences between the patterns from people who were fully conscious, those in a vegetative state, and those who were minimally conscious (Current Biology, doi.org/n42). © Copyright Reed Business Information Ltd.

Keyword: Consciousness
Link ID: 18772 - Posted: 10.10.2013

By ANAHAD O'CONNOR They are a mystery to researchers: people who are significantly overweight and yet show none of the usual metabolic red flags. Despite their obesity, they have normal cholesterol levels, healthy blood pressure levels and no apparent signs of impending diabetes. Researchers call them the metabolically healthy obese, and by some estimates they represent as many as a third of all obese adults. Scientists have known very little about them, but new research may shed some light on the cause of their unusual metabolic profile. A study in the journal Diabetologia has found that compared with their healthier counterparts, people who are obese but metabolically unhealthy have impaired mitochondria, the cellular powerhouses that harvest energy from food, as well as a reduced ability to generate new fat cells. Unlike fat tissue in healthy obese people, which generates new cells to help store fat as it accumulates, the fat cells of the unhealthy obese swell to their breaking point, straining the cellular machinery and ultimately dying off. This is accompanied by inflammation, and it leads to ectopic fat accumulation — the shuttling of fat into organs where it does not belong, like the liver, heart and skeletal muscle. A fatty liver frequently coincides with metabolic abnormalities, and studies suggest that it may be one of the causes of insulin resistance, the fundamental defect in Type 2 diabetes. In the healthy obese, however, the fat tends to remain in the subcutaneous padding just beneath the skin, where it appears to be fairly innocuous. “The group that doesn’t gain fat in the liver as they get obese seems to avoid inflammation and maintain their metabolic health,” said Dr. Jussi Naukkarinen, a research scientist specializing in internal medicine at the University of Helsinki. “There is a complete difference in how they react to obesity.” Copyright 2013 The New York Times Company

Keyword: Obesity
Link ID: 18771 - Posted: 10.10.2013

By ABBY ELLIN When binge eating disorder gained legitimacy as a full-fledged mental condition in the latest edition of the Diagnostic and Statistical Manual of Mental Disorders in May, many people in the eating disorders and obesity communities wondered: Will this inspire us to finally get along? It was a good question, since historically, the two groups have been at odds. Unlike people with anorexia or bulimia, who tend to be excessively thin, many binge eaters are overweight or obese. And much of the focus of anti-obesity efforts — listing calories at restaurants, banning cupcakes in schools, sending students home with body mass index “report cards” — are decried by eating disorder activists, who say such measures can encourage anorexia or bulimia. Anti-obesity activists, in turn, worry that the eating disorder community minimizes the medical risks of obesity, which the American Medical Association classified as a disease in June, and plays down the discrimination many obese people face. “They come out of different traditions,” said Kelly Brownell, dean of the Sanford School of Public Policy at Duke University. “Obesity was mainly dealt with in medical professions, and eating disorders were dealt with more in psychology professions.” But binge eating disorder, symptoms of which include consuming enormous amounts of food in a two-hour window without purging at least once a week for three months, could bridge the gap between the two worlds, while also reducing the stereotype that only thin people suffer from eating disorders. Copyright 2013 The New York Times Company

Keyword: Anorexia & Bulimia
Link ID: 18770 - Posted: 10.10.2013

by Bruce Bower Babies may start to learn their mother tongues even before seeing their mothers’ faces. Newborns react differently to native and foreign vowel sounds, suggesting that language learning begins in the womb, researchers say. Infants tested seven to 75 hours after birth treated spoken variants of a vowel sound in their home language as similar, evidence that newborns regard these sounds as members of a common category, say psychologist Christine Moon of Pacific Lutheran University in Tacoma, Wash., and her colleagues. Newborns deemed different versions of a foreign vowel sound to be dissimilar and unfamiliar, the scientists report in an upcoming Acta Paediatrica. “It seems that there is some prenatal learning of speech sounds, but we do not yet know how much,” Moon says. Fetuses can hear outside sounds by about 10 weeks before birth. Until now, evidence suggested that prenatal learning was restricted to the melody, rhythm and loudness of voices (SN: 12/5/09, p. 14). Earlier investigations established that 6-month-olds group native but not foreign vowel sounds into categories. Moon and colleagues propose that, in the last couple months of gestation, babies monitor at least some vowels — the loudest and most expressive speech sounds — uttered by their mothers. © Society for Science & the Public 2000 - 2013

Keyword: Language; Development of the Brain
Link ID: 18769 - Posted: 10.09.2013

By Helen Briggs BBC News The brain has a critical window for language development between the ages of two and four, brain scans suggest. Environmental influences have their biggest impact before the age of four, as the brain's wiring develops to process new words, say UK and US scientists. The research in The Journal of Neuroscience suggests disorders causing language delay should be tackled early. It also explains why young children are good at learning two languages. The scientists, based at King's College London, and Brown University, Rhode Island, studied 108 children with normal brain development between the ages of one and six. They used brain scans to look at myelin - the insulation that develops from birth within the circuitry of the brain. To their surprise, they found the distribution of myelin is fixed from the age of four, suggesting the brain is most plastic in very early life. Any environmental influences on brain development will be strongest in infanthood, they predict. This explains why immersing children in a bilingual environment before the age of four gives them the best chance of becoming fluent in both languages, the research suggests. BBC © 2013

Keyword: Language; Development of the Brain
Link ID: 18768 - Posted: 10.09.2013

by Andy Coghlan Swifts are said to spend most of their lives airborne, but no one has ever proved this. Now, a study suggests there's some truth to it: alpine swifts spend more than six consecutive months aloft, not even resting after migrating to north Africa following their breeding season in Europe. "Up to now, such long-lasting locomotive activity had been reported only for animals living in the sea," says Felix Liechti of the Swiss Ornithological Institute in Sempach. Liechti and his colleagues attached 1.5-gram data loggers to three alpine swifts (Tachymarptis melba) at a Swiss breeding site, and recaptured the birds the following year. The loggers recorded the birds' acceleration and geographic location. The measurements suggest that for 200 days, all three swifts remained airborne while migrating to and wintering in Africa. Liechti says researchers have previously asserted but never proved that newborn common swifts spend three years aloft before landing for breeding. "Amazing, truly amazing," says Carsten Egevang of the Greenland Institute of Natural Resources in Nuuk of Liechti's findings. "We knew that swifts stay on the wing for long periods, but 200 days is very impressive." The birds survive on airborne plankton, and almost certainly sleep on the wing too, Liechti says. "It has been assumed that the birds 'sleep' only for seconds, or use only one half of the brain while the other half is resting," he says. © Copyright Reed Business Information Ltd

Keyword: Sleep
Link ID: 18767 - Posted: 10.09.2013

By Stephen L. Macknik and Susana Martinez-Conde Dennis Rogers is an unassuming guy. He's on the short side. And though muscular, he doesn't come across as the kind of towering Venice Beach, muscle-bound Arnold that you might expect from someone billed as the World's Strongest Man. Rather he has the kind of avuncular intensity you find in a great automobile mechanic—a mechanic who happens to be able to lift an engine with one hand while using the fingertips of the other hand to wrench the spark plugs out. Like it's nothing. Rogers, who has been known to keep two U.S. Air Force fighter planes from blasting away in opposite directions by holding them back with his bare hands, performed at the most recent Gathering for Gardner—a conference that celebrates the interests of one of Scientific American's greatest columnists, the late mathemagician Martin Gardner. We asked Rogers about the source of his incredible powers after the show, and we were surprised to learn that he did not know. Bill Amonette of the University of Houston–Clear Lake found that Rogers could recruit an abnormally high number of muscle fibers. But was this ability because of a freak genetic mutation? Another possibility, which Rogers thinks is more likely, is the way he processes pain when he strains those muscles. What if, instead of superpowered muscles, Rogers has a normal—though extremely well exercised—body, and his abilities arise because he can withstand more pain than most mere mortals? He claims that he does feel pain and is actually scared of dentists. In fact, during one stunt in which he held back four souped-up Harley motorbikes with straps, he bit down so hard he split a tooth from top to bottom. Rather than taking his chances at the dentist, he reached into his mouth, clamped his viselike fingertips onto the broken tooth, and extracted it, root and all. Rogers reasons that, unlike in the dentist's office—where he has no control over the pain that is inflicted on him—he has direct executive control over pain that he inflicts on himself. “I know it's coming, I have an idea of what to expect and I can decide to ignore it,” he says. © 2013 Scientific American

Keyword: Pain & Touch; Emotions
Link ID: 18766 - Posted: 10.09.2013