Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 11181 - 11200 of 29238

Bird species with larger than average brains have lower levels of a key stress hormone, an analysis of nearly 200 avian studies has concluded. Such birds keep their stress down by anticipating or learning to avoid problems more effectively than smaller-brained counterparts, researchers suggest. Birds in the wild lead a stressful life. Constantly spotting predators lurking in the trees or sensing dramatic changes in temperature is essential for survival, but can leave birds on the edge of a nervous breakdown. Reading these cues triggers changes in the birds’ metabolism, particularly increases in the stress hormone corticosterone. A sharp release of the hormone within 1 to 2 minutes after a cue triggers an emergency response and prepares birds to react quickly to the threat. However, regular exposure to the dangers of the wild and, hence, to high levels of this hormone, has serious health consequences and shortens life expectancy. Not all birds respond to stress in the same way, however, notes Daniel Sol an ornithologist at the Centre for Ecological Research and Forestry Applications in Cerdanyola del Vallès, Spain. He and colleagues have for years looked at the differences between big-brained birds, such as crows and parrots, and those with smaller brains, such as chickens and quails. The former survive better in nature and are also more successful at establishing a community in a new environment. In their new work, they connect brain size to handling stress. Sol; Ádám Lendvai, an evolutionary biologist at the College of Nyíregyháza in Hungary; and colleagues scoured the avian research literature to find studies that had measured corticosterone levels in birds in varying situations. © 2012 American Association for the Advancement of Science

Keyword: Emotions; Hormones & Behavior
Link ID: 18631 - Posted: 09.11.2013

By Dwayne Godwin and Jorge Cham Dwayne Godwin is a neuroscientist at the Wake Forest University School of Medicine. Jorge Cham draws the comic strip Piled Higher and Deeper at www.phdcomics.com. © 2013 Scientific American

Keyword: Emotions; Learning & Memory
Link ID: 18630 - Posted: 09.11.2013

Sarah Zhang Fathers with smaller testes are more involved in child care, and their brains are also more responsive when looking at photos of their own children, according to research published online today in the Proceedings of the National Academy of Sciences1. Evolutionary biologists have long observed a trade-off in male primates between mating efforts to produce more offspring and the time males spend caring for their progeny. For instance, male chimpanzees, which are especially promiscuous, sport testes that are twice as big as those of humans, make a lot of sperm and generally do not provide paternal care. By contrast, male gorillas have relatively small testes and protect their young. The latest study suggests that humans, whose paternal care varies widely, show evidence of both approaches. The analysis1 incorporates measures of testicular volume, brain activity and paternal behaviour, notes Peter Gray, an anthropologist at the University of Nevada, Las Vegas, who was not involved in the study. “We’ve got something that pulls those strands together, and it does so in a really interesting way.” The research team — led by James Rilling, an anthropologist at Emory University in Atlanta, Georgia — set out to investigate why some fathers are more involved in child care than others. The researchers recruited 70 fathers of children aged between one and two years, and scanned the men’s brains and testes in a magnetic resonance imaging (MRI) machine. The fathers and the children's mothers also filled out surveys rating the fathers' commitment to child care. © 2013 Nature Publishing Group

Keyword: Sexual Behavior; Hormones & Behavior
Link ID: 18629 - Posted: 09.10.2013

By Scicurious Effective treatments for drug addiction have been hard to come by. There’s behavioral interventions, methadone maintenance for heroin users, nicotine patches for smokers, antabuse for acoholics, but while all of these are effective in a minority of users, they aren’t effective in all. Many require repeat behaviors that are difficult for addicts. As examples: getting to the methadone center every day can be difficult if you have bad transportation. Alcoholics often need to go to AA meetings several times a week if not several times a day. Antabuse make you feel like crap when you drink…and all you have to do is NOT take it. Nicotine patches don’t tend to scratch the smoking itch in the same way. In the case of cocaine, where is there no drug intervention option at all, when you have someone who is in serious danger of overdose, you need something to take away the effects of the cocaine. Something to work immediately. Enter the idea of a vaccine against cocaine. For those used to thinking about vaccines as things that fight chicken pox and whooping cough, the idea of a vaccine against a drug can seem a little foreign. But it’s a concept that’s been in development for some time. Not so much in the context of vaccinating against potential cocaine use, but as a way to help people get off the drug. But the question still remains: will it work? The idea is to use a vaccine made of a drug that is very close to cocaine (norcocaine), combined with an inactivated virus. The presence of the virus causes the body’s immune system to try and fight it off, creating antibodies to different parts of the molecule, both the cocaine part and the virus part. The antibodies serve as a signal for other immune cells to come along and gobble up the cocaine. After the original vaccine is gone, the antibodies stay circulating in your blood, ready to attack is they see the cocaine signal again. © 2013 Scientific American

Keyword: Drug Abuse; Neuroimmunology
Link ID: 18628 - Posted: 09.10.2013

By Bruce Bower Babies have an ear for primeval dangers, a new study suggests. By age 9 months, infants pay special attention to sounds that have signaled threats to children’s safety and survival throughout human evolution, say psychologist Nicole Erlich of the University of Queensland, Australia, and her colleagues. Those sounds include a snake hissing, adults’ angry voices, a crackling fire, thunder claps and — as a possible indicator of a nearby but unseen danger — another infant’s cries. Noises denoting modern dangers, as well as pleasant sounds, failed to attract the same level of interest from 9-month-olds, Erlich and her colleagues report Aug. 27 in Developmental Science. People can learn to fear just about anything. But tens of thousands of years of evolution have primed infants’ brains to home in on longstanding perils, the scientists propose. “There is something special about evolutionarily threatening sounds that infants respond to,” Erlich says. Another study that supported that idea, by psychologist David Rakison of Carnegie Mellon University in Pittsburgh, found that 11-month-olds rapidly learn to associate fearful faces with images of snakes and spiders (SN: 9/26/09, p. 11). “There is now a coherent argument that infants are biologically prepared in at least two sensory systems to learn quickly which evolutionarily relevant objects to fear,” Rakison says. © Society for Science & the Public 2000 - 2013

Keyword: Hearing; Evolution
Link ID: 18627 - Posted: 09.10.2013

By Sandra G. Boodman, Amy Epstein Gluck remembers how relieved she felt when it seemed that the vision of her youngest child, 9-month-old Sam, might turn out to be normal. Months earlier, doctors had worried that he was blind, possibly as the result of an inherited disorder or a brain tumor. But subsequent tests and consultations with pediatric specialists in Washington and Baltimore instead suggested a temporary developmental delay. Epstein Gluck and her husband, Ira Gluck, were so thrilled with Sam’s progress that they threw a big party to celebrate the end of an arduous year and, they hoped, their son’s frightening problem. But two months later, on Sam’s first birthday in February 2006, the pediatric ophthalmologist who had been treating him delivered news that made it clear a celebration had been premature. “It was such a blow,” Epstein Gluck recalled. On the way to Johns Hopkins, the couple had discussed finding a specialist closer to their Bethesda home, assuming they no longer needed a neuro-ophthalmologist. The ride home was somber: “I was so upset I couldn’t even recount the conversation,” she said. “I had thought we were done.” Instead, they were struggling with the implications of an unexpected finding that, more than a year later, would culminate in a new diagnosis. In March 2005, when Sam was about 5 weeks old, his mother noticed that his eyes would periodically oscillate back and forth. Epstein Gluck, whose other children were then 3 and 5, called her pediatrician. © 1996-2013 The Washington Post

Keyword: Vision; Development of the Brain
Link ID: 18626 - Posted: 09.10.2013

Two pioneers in the study of neural signaling and three researchers responsible for modern cochlear implants are winners of The Albert and Mary Lasker Foundation’s annual prize, announced today. The prestigious award honoring contributions in the medical sciences is often seen as a hint at future Nobel contenders. The prizes for basic and clinical research each carry a $250,000 honorarium. Richard Scheller of the biotech company Genentech and Thomas Südhof of Stanford University in Palo Alto, California, got their basic research Laskers for discovering the mechanisms behind rapid the release of neurotransmitters—the brain’s chemical messengers—into the space between neurons. This process underlies all communication among brain cells, and yet it was “a black box” before Scheller and Südhof’s work, says their colleague Robert Malenka, a synaptic physiologist at Stanford. The two worked independently in the late 1980s to identify individual proteins that mediate the process, and their development of genetically altered mice lacking these proteins was “an ambitious and high-risk approach,” Malenka says. Although “they weren’t setting out to understand any sort of disease,” their discoveries have helped unravel the genetic basis for neurological disorders such as Parkinson’s disease. This year’s clinical research prizes went to Graeme Clark, Ingeborg Hochmair, and Blake Wilson for their work to restore hearing to the deaf. In the 1970s, Hochmair and Clark of the cochlear implant company MED-EL in Innsbruck, Austria, and the University of Melbourne, respectively, were the first to insert multiple electrodes into the human cochlea to stimulate nerves that respond to different frequencies of sound. © 2012 American Association for the Advancement of Science

Keyword: Hearing; Robotics
Link ID: 18625 - Posted: 09.10.2013

By RONI JACOBSON We have seven deadly sins, seven days of the week, seven seas, seven dwarfs. The recurrence of the number seven so impressed the cognitive psychologist George A. Miller that, in an oft-cited paper in 1956, he wrote, “My problem is that I have been persecuted by an integer.” Miller went on to describe several experiments where seven pieces of information — plus or minus two — appeared to be the limit of what our minds could retain in the short term. Since then, Miller’s theory — that our short-term memory can hold about seven items before we start to forget them — has been refined. It is now understood that the capacity of short-term memory depends on several factors, including age, attention and the type of information presented. For instance, long words like “onomatopoeia” and “reciprocate” take up more memory span than short words like “cat” and “ball.” Grouping smaller bits of information into a meaningful unit, like a word of many syllables or an abstract concept, is called “chunking,” and our ability to retain information decreases as the chunk becomes more complex. Psychologists now believe that we can recall about four chunks of information at a time, which works out to approximately six letters, five one-syllable words and seven digits. As for the ubiquity of the number seven, Miller came to suspect that that is just a coincidence. © 2013 The New York Times Company

Keyword: Learning & Memory
Link ID: 18624 - Posted: 09.10.2013

By Athena Andreadis Recently, two studies surfaced almost simultaneously that led to exclamations of “Vulcan mind meld!”, “Zombie armies!” and “Brains in jars!” One is the announcement by Rajesh Rao and Andrea Stocco of Washington U. that they “achieved the first human-to-human brain interface”. The other is the Nature paper by Madeline Lancaster et al about stem-cell-derived “organoids” that mimic early developmental aspects of the human cortex. My condensed evaluation: the latter is far more interesting and promising than the former, which doesn’t quite do what people (want to) think it’s doing. The purported result of brain interfacing hit many hot buttons that have been staples of science fiction and Stephen King novels: primarily telepathy, with its fictional potential for non-consensual control. Essentially, the sender’s EEG (electroencephalogram) output was linked to the receiver’s TMS (transcranial magnetic stimulation) input. What the experiment actually did is not send a thought but induce a muscle twitch; nothing novel, given the known properties of the two technologies. The conditions were severely constrained to produce the desired result and I suspect the outcome was independent of the stimulus details: the EEG simply recorded that a signal had been produced and the TMS apparatus was positioned so that a signal would elicit a movement of the right hand. Since both sender and receiver were poised over a keyboard operating a video game, the twitch was sufficient to press the space bar, programmed by the game to fire a cannon. © 2013 Scientific American

Keyword: Robotics
Link ID: 18623 - Posted: 09.10.2013

By Nathan Seppa A tiny probe equipped with a laser might reveal what the human eye doesn’t always see: the difference between a tumor and healthy tissue. A new study suggests the device might provide brain surgeons with a roadmap as they go about the delicate business of removing tumors. Surgeons try to excise as much of brain tumors as possible, but they risk harming the patient if they remove healthy tissue. “This problem,” says surgeon Daniel Orringer of the University of Michigan in Ann Arbor, “has vexed brain surgeons for as long as they have taken out tumors,” since the first half of the 20th century. “Basically, we do it by feel — the texture, color and vascularity of the tissues. Tumors tend to bleed a little more than normal brain.” Although removing and testing tissue samples, or biopsies, can help to characterize the tissue at the tumor margins, it’s a cumbersome and time-consuming process. In the new study, Orringer and his colleagues instead exposed such borderline brain tissues to a weak laser. Then they used Raman spectroscopy, a technique that reveals vibrations of specific chemical bonds in tissues. The revved up form of Raman spectroscopy that the researchers used is sensitive enough to distinguish between proteins and lipids. Since tumors are higher in protein than healthy brain tissue, the authors designed the technique to present protein signatures as blue images on a screen, and lipids as green. © Society for Science & the Public 2000 - 2013

Keyword: Brain imaging
Link ID: 18622 - Posted: 09.09.2013

By ERIC R. KANDEL THESE days it is easy to get irritated with the exaggerated interpretations of brain imaging — for example, that a single fMRI scan can reveal our innermost feelings — and with inflated claims about our understanding of the biological basis of our higher mental processes. Such irritation has led a number of thoughtful people to declare that we can never achieve a truly sophisticated understanding of the biological foundation of complex mental activity. In fact, recent newspaper articles have argued that psychiatry is a “semi-science” whose practitioners cannot base their treatment of mental disorders on the same empirical evidence as physicians who treat disorders of the body can. The problem for many people is that we cannot point to the underlying biological bases of most psychiatric disorders. In fact, we are nowhere near understanding them as well as we understand disorders of the liver or the heart. But this is starting to change. Consider the biology of depression. We are beginning to discern the outlines of a complex neural circuit that becomes disordered in depressive illnesses. Helen Mayberg, at Emory University, and other scientists used brain-scanning techniques to identify several components of this circuit, two of which are particularly important. One is Area 25 (the subcallosal cingulate region), which mediates our unconscious and motor responses to emotional stress; the other is the right anterior insula, a region where self-awareness and interpersonal experience come together. These two regions connect to the hypothalamus, which plays a role in basic functions like sleep, appetite and libido, and to three other important regions of the brain: the amygdala, which evaluates emotional salience; the hippocampus, which is concerned with memory; and the prefrontal cortex, which is the seat of executive function and self-esteem. All of these regions can be disturbed in depressive illnesses. © 2013 The New York Times Company

Keyword: Brain imaging; Depression
Link ID: 18621 - Posted: 09.09.2013

by Jon White Ever tried beetroot custard? Probably not, but your brain can imagine how it might taste by reactivating old memories in a new pattern. Helen Barron and her colleagues at University College London and Oxford University wondered if our brains combine existing memories to help us decide whether to try something new. So the team used an fMRI scanner to look at the brains of 19 volunteers who were asked to remember specific foods they had tried. Each volunteer was then given a menu of 13 unusual food combinations – including beetroot custard, tea jelly, and coffee yoghurt – and asked to imagine how good or bad they would taste, and whether or not they would eat them. "Tea jelly was popular," says Barron. "Beetroot custard not so much." When each volunteer imagined a new combination, they showed brain activity associated with each of the known ingredients at the same time. It is the first evidence to suggest that we use memory combination to make decisions, says Barron. Journal reference: Nature Neuroscience, doi: 10.1038/nn.3515 © Copyright Reed Business Information Ltd.

Keyword: Learning & Memory; Brain imaging
Link ID: 18620 - Posted: 09.09.2013

By Josh Shaffer DURHAM It’s not often that the high-minded world of neuroscience collides with the corny, old-fashioned art of ventriloquism. One depends on dummies; the other excludes them. But a Duke University study uses puppet-based comedy to demonstrate the complicated inner workings of the brain and shows what every ventriloquist knows: The eye is more convincing than the ear. The study, which appears in the journal PLOS ONE, seeks to explain how the brain combines information coming from two different senses. How, asks Duke psychology and neuroscience professor Jennifer Groh, does the brain determine where a sound is coming from? In your eyes, the retina takes a snapshot, she said. It makes a topographic image of what’s in front of you. But the ears have nothing concrete to go on. They have to rely on how loud the sound is, how far away and from what direction. That’s where a ventriloquist comes in, providing a model for this problem. With a puppet, the noise and the movement are coming from different places. So how does the brain fix this and choose where to look? Duke researchers tested their hypotheses on 11 people and two monkeys, placing them in a soundproof booth.

Keyword: Attention; Vision
Link ID: 18619 - Posted: 09.09.2013

by Andy Coghlan Smokers keen to quit are just as likely to be successful if they use electronic cigarettes as they are with nicotine patches, the "gold standard" quitting aid. The findings come ahead of a critical debate in the European Parliament on 8 October to decide whether e-cigarettes should be regulated as medicinal products, which would drastically reduce their availability. When smokers attempt to quit, it is the cutting out of nicotine – the addictive component of tobacco – that triggers withdrawal symptoms. E-cigarettes, which physically resemble real cigarettes, provide a compensatory nicotine hit, without the toxic brew of carcinogenic compounds. Previous studies conducted on e-cigarettes alone have shown that they help smokers quit, but no one knew if they performed as well as nicotine patches. To find out, the New Zealand government funded a head-to-head comparison study. Chris Bullen and his colleagues at the National Institute for Health Innovation in Auckland gave e-cigarettes to 289 smokers who were trying to quit. A separate group of 295 people were given nicotine patches, while 73 received dummy nicotine-free e-cigarettes. Six months later, the team asked participants if their attempts to quit had been a success. Those who had used the nicotine e-cigarettes had the highest success rate: 7.3 per cent had managed to stay away from tobacco. Of the nicotine patch users, 5.8 per cent had quit. And of those taking the placebo around 4 per cent were successful. © Copyright Reed Business Information Ltd.

Keyword: Drug Abuse
Link ID: 18618 - Posted: 09.09.2013

Brian Owens Gut bacteria from lean mice can invade the guts of obesity-prone cage-mates and help their new hosts to fight weight gain. Researchers led by Jeffrey Gordon, a biologist at Washington University in St. Louis, Missouri, set out to find direct evidence that gut bacteria have a role in obesity. The team took gut bacteria from four sets of human twins in which one of each pair was lean and one was obese, and introduced the microbes into mice bred to be germ-free. Mice given bacteria from a lean twin stayed slim, whereas those given bacteria from an obese twin quickly gained weight, even though all the mice ate about the same amount of food. The team wondered whether the gut microbiota of either group of mice would be influenced by mice with one type living in close quarters with animals harbouring the other type. So the scientists took mice with the ‘lean’ microbiota and placed them in a cage with mice with the ‘obese’ type before those mice had a chance to start putting on weight. “We knew the mice would readily exchange their microbes,” Gordon says — that is, eat each other’s faeces. Sure enough, the populations of bacteria in the obese-type mice changed to match those of their lean cage-mates, and their bodies remained lean, the team writes today in Science1. © 2013 Nature Publishing Group,

Keyword: Obesity
Link ID: 18617 - Posted: 09.07.2013

By Meghan Rosen Skinniness could be contagious. Gut bacteria from thin people can invade the intestines of mice carrying microbes from obese people. And these invaders can keep mice from getting tubby, researchers report in the Sept. 6 Science. “It’s very surprising,” says molecular microbiologist Andreas Schwiertz of the University of Giessen in Germany, who was not involved in the work. “It’s like a beneficial infection.” But the benefits come with a catch. The invading microbes drop in and get to work only when mice eat healthy food. Even fat-blocking bacteria can’t fight a bad diet, suggests study leader Jeffrey Gordon, a microbiologist at Washington University in St. Louis. In recent years, researchers have collected clues that suggest that gut microbes can tweak people’s metabolism. Fat and thin people have different microbes teeming in their intestines, for example. And normal-weight mice given microbes from obese mice pack on extra fat, says coauthor Vanessa Ridaura, also of Washington University. These and other hints have led researchers to experiment with fecal transplants to flush out bad gut microbes and dump in good ones. The transplants can clear up diarrhea and may even help some obese people regain insulin sensitivity. But feces can house dangerous microbes as well as friendly ones. “We want to make therapies that are more standardized — and more appealing,” says gastroenterologist Josbert Keller of the Haga Teaching Hospital in The Hague, Netherlands. © Society for Science & the Public 2000 - 2013

Keyword: Obesity
Link ID: 18616 - Posted: 09.07.2013

By Tamar Haspel, American eaters love a good villain. Diets that focus on one clear bad guy have gotten traction even as the bad guy has changed: fat, carbohydrates, animal products, cooked food, gluten. And now Robert Lustig, a pediatric endocrinologist at the University of California at San Francisco, is adding sugar to the list. His book “ Fat Chance: Beating the Odds Against Sugar, Processed Food, Obesity, and Disease ” makes the case that sugar is almost single-handedly responsible for Americans’ excess weight and the illnesses that go with it. “Sugar is the biggest perpetrator of our current health crisis,” says Lustig, blaming it for not just obesity and diabetes but also for insulin resistance, cardiovascular disease, stroke, even cancer. “Sugar is a toxin,” he says. “Pure and simple.” His target is one particular sugar: fructose, familiar for its role in making fruit sweet. Fruit, though, is not the problem; the natural sugar in whole foods, which generally comes in small quantities, is blameless. The fructose in question is in sweeteners — table sugar, high-fructose corn syrup, maple syrup, honey and others — which are all composed of the simple sugars fructose and glucose, in about equal proportions. Although glucose can be metabolized by every cell in the body, fructose is metabolized almost entirely by the liver. There it can result in the generation of free radicals ( damaged cells that can damage other cells) and uric acid ( which can lead to kidney disease or gout ), and it can kick off a process called de novo lipogenesis, which generates fats that can find their way into the bloodstream or be deposited on the liver itself. These byproducts are linked to obesity, insulin resistance and the group of risk factors linked to diabetes, heart disease and stroke. (Lustig gives a detailed explanation of fructose metabolism in a well-viewed YouTube video called “Sugar: The Bitter Truth.”) © 1996-2013 The Washington Post

Keyword: Obesity; Chemical Senses (Smell & Taste)
Link ID: 18615 - Posted: 09.07.2013

By Caitlin Kirkwood Do NOT EAT the chemicals. It is the #1 laboratory safety rule young scientists learn to never break and for good reason; it keeps lab citizens alive and unscathed. However, if it hadn’t been for the careless, rule-breaking habits of a few rowdy scientists ingesting their experiments, many artificial sweeteners may never have been discovered. Perhaps the strangest anecdote for artificial sweetener discovery, among tales of inadvertent finger-licking and smoking, is that of graduate student Shashikant Phadnis who misheard instructions from his advisor to ‘test’ a compound and instead tasted it. Rather than keeling over, he identified the sweet taste of sucralose, the artificial sweetener commonly known today as Splenda. Artificial sweeteners like Splenda, Sweet’N Low, and Equal provide a sweet taste without the calories. Around World War II, in response to a sugar shortage and evolving cultural views of beauty, the target consumer group for noncaloric sweetener manufacturers shifted from primarily diabetics to anyone in the general public wishing to reduce sugar intake and lose weight. Foods containing artificial sweeteners changed their labels. Instead of cautioning ‘only for consumption by those who must restrict sugar intake’, they read for those who ‘desire to restrict’ sugar. Today, the country is in the middle of a massive debate about the health implications of artificial sweeteners and whether they could be linked to obesity, cancer, and Alzheimer disease. It’s a good conversation to have because noncaloric sweeteners are consumed regularly in chewing gums, frozen dinners, yogurts, vitamins, baby food, and particularly in diet sodas. © 2013 Scientific American

Keyword: Chemical Senses (Smell & Taste); Obesity
Link ID: 18614 - Posted: 09.07.2013

Inner-ear problems could be a cause of hyperactive behaviour, research suggests. A study on mice, published in Science, said such problems caused changes in the brain that led to hyperactivity. It could lead to the development of new targets for behaviour disorder treatments, the US team says. A UK expert said the study's findings were "intriguing" and should be investigated further. Behavioural problems such as ADHD are usually thought to originate in the brain. But scientists have observed that children and teenagers with inner-ear disorders - especially those that affect hearing and balance - often have behavioural problems. However, no causal link has been found. The researchers in this study suggest inner-ear disorders lead to problems in the brain which then also affect behaviour. The team from the Albert Einstein College of Medicine of Yeshiva University in New York noticed some mice in the lab were particularly active - constantly chasing their tails. They were found to be profoundly deaf and have disorders of the inner ear - of both the cochlea, which is responsible for hearing, and the vestibular system, which is responsible for balance. The researchers found a mutation in the Slc12a2 gene, also found in humans. Blocking the gene's activity in the inner ears of healthy mice caused them to become increasingly active. BBC © 2013

Keyword: ADHD; Hearing
Link ID: 18613 - Posted: 09.07.2013

By Bruce Bower Strange things happen when bad singers perform in public. Comedienne Roseanne Barr was widely vilified in 1990 after she screeched the national anthem at a major league baseball game. College student William Hung earned worldwide fame and a recording contract in 2004 with a tuneless version of Ricky Martin’s hit song “She Bangs” on American Idol. Several singers at karaoke bars in the Philippines have been shot to death by offended spectators for mangling the melody of Frank Sinatra’s “My Way.” For all the passion evoked by pitch-impaired vocalists, surprisingly little is known about why some people are cringe-worthy crooners. But now a rapidly growing field of research is beginning to untangle the mechanics of off-key singing. The new results may improve scientists’ understanding of how musical abilities develop and help create a toolbox of teaching strategies for aspiring vocalists. Glimpses are also emerging into what counts as “in tune” to the mind’s ear. It seems that listeners are more likely to label stray notes as in tune when those notes are sung as opposed to played on a violin. Running through this new wave of investigations is a basic theme: There is one way to carry a tune and many ways to fumble it. “It’s kind of amazing that any of us can vocally control pitch enough to sing well,” says psychologist Peter Pfordresher of the University at Buffalo, New York. Still, only about 10 percent of adults sing poorly, several reports suggest (although some researchers regard that figure as an underestimate). Some of those tune-challenged crooners have tone deafness, a condition called amusia, which afflicts about 4 percent of the population. Genetic and brain traits render these folks unable to tell different musical notes apart or to recognize a tune as common as “Happy Birthday.” Amusia often — but curiously, not always — results in inept singing. Preliminary evidence suggests that tone-deaf individuals register pitch changes unconsciously, although they can’t consciously decide whether one pitch differs from another. © Society for Science & the Public 2000 - 2013

Keyword: Hearing
Link ID: 18612 - Posted: 09.07.2013