Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
Alice Roberts It's the rutting season. From Richmond Park to the Isle of Rum, red deer hinds will be gathering, and the stags that have spent the past 10 months minding their own business in bachelor groups are back in town, with one thing on their minds. A mature male that has netted himself a harem is very dedicated. He practically stops eating, focusing instead on keeping his hinds near and his competitors at bay. If you're a red deer stag, one of the ways you make sure that your adversaries know you mean business – and that you're big – is roaring. And you don't let up. You can keep roaring all day, and through the night too, twice a minute, if necessary. While female red deer prefer the deeper roars of larger stags, roaring also appears to be part of how stags size one another up, before deciding whether or not to get engaged in a full-on physical fight. Most confrontations are settled without locking antlers. In male red and fallow deer, the voicebox or larynx is very low in the throat – and gets even lower when they roar. Strap-like muscles that attach to the larynx contract to drag it down towards the breastbone – lengthening the vocal tract and deepening the stag's roar. Deepening the voice exaggerates body size. Over generations, stags with deeper roars presumably had more reproductive success, so the position of the larynx moved lower and lower in the neck. When a red deer stag roars his larynx is pulled down so far that it contacts the front of his breastbone – it couldn't get any lower. In human evolution, much is made of the low position of the larynx in the neck. So much, in fact, that it has been considered to be a uniquely human trait, and intrinsically linked to that other uniquely human trait: spoken language. But if red and fallow deer also have low larynges, that means, first, that we're not as unusual as we like to think we are, and second, that there could be other reasons – that are nothing to do with speaking – for having a descended larynx. © 2013 Guardian News and Media Limited
Keyword: Sexual Behavior; Hearing
Link ID: 18751 - Posted: 10.07.2013
Smart, successful, and well-connected: a good description of Albert Einstein … and his brain. The father of relativity theory didn’t live to see modern brain imaging techniques, but after his death his brain was sliced into sections and photographed. Now, scientists have used those cross-sectional photos to reveal a larger-than-average corpus callosum—the bundle of nerve fibers connecting the brain’s two hemispheres. Researchers measured the thickness of the famous noggin’s corpus callosum (the lighter-colored, downward-curving region at the center of each hemisphere, above) at various points along its length, and compared it to MRIs from 15 elderly men and 52 young, healthy ones. The thickness of Einstein’s corpus callosum was greater than the average for both the elderly and the young subjects, the team reported online last week in the journal Brain. The authors posit that in Einstein’s brain, more nerve fibers connected key regions such as the two sides of the prefrontal cortex, which are responsible for complex thought and decision-making. Combined with previous evidence that parts of the physicist’s brain were unusually large and intricately folded, the researchers suggest that this feature helps account for his extraordinary gifts. © 2013 American Association for the Advancement of Science
Keyword: Intelligence; Laterality
Link ID: 18750 - Posted: 10.07.2013
By EILEEN POLLACK Last summer, researchers at Yale published a study proving that physicists, chemists and biologists are likely to view a young male scientist more favorably than a woman with the same qualifications. Presented with identical summaries of the accomplishments of two imaginary applicants, professors at six major research institutions were significantly more willing to offer the man a job. If they did hire the woman, they set her salary, on average, nearly $4,000 lower than the man’s. Surprisingly, female scientists were as biased as their male counterparts. The new study goes a long way toward providing hard evidence of a continuing bias against women in the sciences. Only one-fifth of physics Ph.D.’s in this country are awarded to women, and only about half of those women are American; of all the physics professors in the United States, only 14 percent are women. The numbers of black and Hispanic scientists are even lower; in a typical year, 13 African-Americans and 20 Latinos of either sex receive Ph.D.’s in physics. The reasons for those shortages are hardly mysterious — many minority students attend secondary schools that leave them too far behind to catch up in science, and the effects of prejudice at every stage of their education are well documented. But what could still be keeping women out of the STEM fields (“STEM” being the current shorthand for “science, technology, engineering and mathematics”), which offer so much in the way of job prospects, prestige, intellectual stimulation and income? As one of the first two women to earn a bachelor of science degree in physics from Yale — I graduated in 1978 — this question concerns me deeply. I attended a rural public school whose few accelerated courses in physics and calculus I wasn’t allowed to take because, as my principal put it, “girls never go on in science and math.” Angry and bored, I began reading about space and time and teaching myself calculus from a book. When I arrived at Yale, I was woefully unprepared. The boys in my introductory physics class, who had taken far more rigorous math and science classes in high school, yawned as our professor sped through the material, while I grew panicked at how little I understood. The only woman in the room, I debated whether to raise my hand and expose myself to ridicule, thereby losing track of the lecture and falling further behind. © 2013 The New York Times Company
Keyword: Sexual Behavior
Link ID: 18749 - Posted: 10.05.2013
The discovery of "missing" genes could help scientists understand how autism develops, a study suggests. US researchers looked at the genetic profiles of more than 431 people with an autistic spectrum disorder (ASD) and 379 without. They found those with an ASD were more likely to have just one copy of certain genes, when they should have had two. UK experts said genetic factors were one promising area of research into the causes of autism. About 1% of the population has an ASD. They can run in families - but scientists have not identified a cause. Gene deletions or additions happen in everyone - it is why people are different. It is which genes are affected that determines what the effect is. 'Mis-wiring' There were far more gene deletions in the ASD group, and they were more likely to have multiple deletions. Writing in the American Journal of Human Genetics, the team from Mount Sinai suggests this "mis-wiring" could alter the activity of nerve cells in the brain. Prof Joseph Buxbaum, who led the research team, said: "This is the first finding that small deletions impacting one or two genes appear to be common in autism, and that these deletions contribute to risk of development of this disorder." BBC © 2013
Keyword: Autism; Genes & Behavior
Link ID: 18748 - Posted: 10.05.2013
By Gary Stix Psychological depression is more than an emotional state. Good evidence for that comes from emerging new uses for a technology already widely prescribed for Parkinson’s patients. The more neurologists and surgeons learn about the aptly named deep brain stimulation, the more they are convinced that the currents from the technology’s implanted electrodes can literally reboot brain circuits involved with the mood disorder. Thomas Schlaepfer, a psychiatrist from the University of Bonn Hospital and a leading expert in researching deep brain stimulation, describes in the interview that follows the workings of the technique and why it may help the severely depressed. Can you explain what deep brain stimulation is and what it is currently used for? Deep brain stimulation refers to the implantation of very small electrodes in both hemispheres of the brain, which are connected to a neurostimulator, usually placed under the skin on the right chest. This device is in size and function very similar to a heart pacemaker. It allows stimulations of different pulse width and frequency. Depending on the chosen stimulation parameters the electrodes in the brain are able to “neuromodulate” – to reversibly alter the function – of the surrounding brain tissue. Deep brain stimulation has gained widespread acceptance as a successful treatment for tremor associated with Parkinson’s disease. More than 80,000 patients worldwide have been treated with this method. Some see deep brain stimulation as a much less invasive and fully reversibly alternative to historical neurosurgical interventions, which require tiny amounts of brain tissue to be destroyed in order to have clinical effects. © 2013 Scientific American
Keyword: Depression
Link ID: 18747 - Posted: 10.05.2013
by Laura Sanders When I started to get out and about with Baby V, I occasionally experienced a strange phenomenon. Women would approach and coo some pleasant little noises. After an appropriate amount of time had passed, these strangers would lean in close and ask to smell my baby. I’m the first to admit that this sounds creepy. Truth be told, it is a little creepy. But now I completely get it. The joy from a single whiff of newborn far outweighs any trifling social conventions about personal space and body odors. So when women approach looking for a little hit of eau de bebe, I get sharey. By all means, ladies, lean in and smell away. Tiny babies smell very, very good. So good that I’m getting a little high from just thinking about how good babies smell. So good that people attempt to bottle and sell this scent (like this baby-head-scented spray— pleasant, but pales in comparison). So good that scientists really want to know why some women find this smell irresistible. Scientists recently studied the brains of women as they sniffed new baby scent. Two-day-old babies delivered the good stuff by wearing the same pajamas for two nights. Women then sniffed the odor extracted from the outfit while brain scans assessed neural activity. Overall, the 30 women in the study (who weren’t told what they were sniffing, by the way) rated the scent as mildly pleasant. As the intoxicating scent of newborn wafted into their brains, neural activity increased in areas of the brain linked to good feelings, called neostriate areas. In the brains of the 15 women who also happened to be mothers, the brain activity seemed stronger. (No word yet on what new baby smell does to dads’ brains.) © Society for Science & the Public 2000 - 2013.
Keyword: Chemical Senses (Smell & Taste); Sexual Behavior
Link ID: 18746 - Posted: 10.05.2013
by Ed Yong I’ve just arrived home from 14 hours of flying. The clocks on my phone and laptop have been ticking away the whole time, and it takes a few seconds to reset them to British time. The clocks in my body are more difficult. We run on a daily 24-hour body clock, which controls everything from our blood pressure to our temperature to how hungry we feel. It runs on proteins rather than gears. Once they’re built, these proteins stop their own manufacture after a slight delay, meaning that their levels rise and fall with a regular rhythm. These timers tick away inside almost all of our cells, and they’re synchronised by a tiny collection of 10,000 neurons at the bottom of our brain. It’s called the suprachiasmatic nucleus (SCN). It’s the master clock. It’s the conductor that keeps the orchestra in sync. The SCN is also sensitive to light. It gets signals from our eyes, which allows it to synchronise its ticking with the 24-hour cycle of day and night outside. The SCN is what connects the rhythms of our bodies with those of the planet. But when we travel far and fast, and suddenly land in a new time zone, the SCN becomes misaligned with the environment. It takes time to re-adjust, typically one day for every time zone crossed. In the meantime, our sleep is disrupted and our physiology goes weird. In other words: jet lag. But at Kyoto University, Yoshiaki Yamaguchi and Toru Suzuki have engineered mice that break this rule. They are, with apologies for the awful word, unjetlaggable. If you change the light in their cages to mimic an 8-hour time difference, they readjust almost immediately. Put them on a red-eye flight from San Francisco to London and they’d be fine.
Keyword: Biological Rhythms; Hormones & Behavior
Link ID: 18745 - Posted: 10.05.2013
Answer by Paul King, computational neuroscientist: The emerging view in neuroscience is that dreams are related to memory consolidation happening in the brain during sleep. This may include reorganizing and recoding memories in relation to emotional drives as well as transferring memories between brain regions. During the day, episodic memories (memories for events) are stored in the hippocampus, a region of the brain specialized for long-term memory that learns particularly quickly. At night, memories from this region appear to be transferred to the cerebral cortex, the region specialized for information processing, cognition, and knowledge. Studies in animals have found that during sleep, the neural activity of the hippocampus "replays" the events of the day. This replay happens faster than real-time, and sometimes happens in reverse. The activity replay is correlated with neural activity patterns in both the visual cortex (responsible for visual experience) and the prefrontal cortex (responsible for strategy, goals, and planning). The memory replay occurs during REM sleep and dreaming. Philosopher Daniel Dennett proposes the Dream Weaving party game: One person, the Dream Guesser is asked to leave the room, and while away, someone will share a dream with the group. When the Dream Guesser returns, their job will be to ask yes/no questions of random people in the group to attempt to reconstruct the plot of the dream. © 2013 The Slate Group, LLC.
Keyword: Sleep
Link ID: 18744 - Posted: 10.05.2013
By R. Douglas Fields Human beings are utterly dependent on a complex social structure for their survival. Since all behavior is controlled by the brain, human beings may have evolved specialized neural circuits that are responsible for compliance with society’s rules. A new study has identified such a region in the human brain, and researchers can increase or decrease a person’s good behavior by electrodes on the scalp that stimulate or inhibit this brain circuit. Individuals must adhere to rules of society, which are ultimately enforced by punishments ranging from peer criticism to severe legal sanctions. “Our findings suggest a neural mechanism that is specialized for social norm compliance,” says Christian Ruff, one of the researchers in this new study published in the October 4, 2013 edition of the journal Science. In addition to illuminating the neurobiological basis for the evolution of social structure in humans, this new finding suggests new therapeutic treatments for people who have problems complying with normal social behavior. “That this mechanism can be upregulated by brain stimulation indeed suggests that targeted influences on these neural processes (by brain stimulation or pharmacology) may help to ameliorate problems with social norm compliance in medical and forensic contexts,” he says. It was already known from fMRI studies that neural activity increased in a specific part of the human cerebral cortex when participants comply with social norms. This region is located in the prefrontal region of the right cerebral hemisphere, called the right lateral prefrontal cortex (rLPFC). However, a correlation between brain activity and behavior does not prove that this neural circuit causes people to comply with social norms. Such proof would require manipulating electrical activity in this brain region to see if people altered their behavior in terms of complying with social expectations. © 2013 Scientific American
Keyword: Emotions
Link ID: 18743 - Posted: 10.05.2013
By PAM BELLUCK Say you are getting ready for a blind date or a job interview. What should you do? Besides shower and shave, of course, it turns out you should read — but not just anything. Something by Chekhov or Alice Munro will help you navigate new social territory better than a potboiler by Danielle Steel. That is the conclusion of a study published Thursday in the journal Science. It found that after reading literary fiction, as opposed to popular fiction or serious nonfiction, people performed better on tests measuring empathy, social perception and emotional intelligence — skills that come in especially handy when you are trying to read someone’s body language or gauge what they might be thinking. The researchers say the reason is that literary fiction often leaves more to the imagination, encouraging readers to make inferences about characters and be sensitive to emotional nuance and complexity. “This is why I love science,” Louise Erdrich, whose novel “The Round House” was used in one of the experiments, wrote in an e-mail. The researchers, she said, “found a way to prove true the intangible benefits of literary fiction.” “Thank God the research didn’t find that novels increased tooth decay or blocked up your arteries,” she added. The researchers, social psychologists at the New School for Social Research in New York City, recruited their subjects through that über-purveyor of reading material, Amazon.com. To find a broader pool of participants than the usual college students, they used Amazon’s Mechanical Turk service, where people sign up to earn money for completing small jobs. Copyright 2013 The New York Times Company
Keyword: Emotions
Link ID: 18742 - Posted: 10.05.2013
by Colin Barras SHAKEN, scorched and boiled in its own juices, this 4000-year-old human brain has been through a lot. It may look like nothing more than a bit of burnt log, but it is one of the oldest brains ever found. Its discovery, and the story now being pieced together of its owner's last hours, offers the tantalising prospect that archaeological remains could harbour more ancient brain specimens than thought. If that's the case, it potentially opens the way to studying the health of the brain in prehistoric times. Brain tissue is rich in enzymes that cause cells to break down rapidly after death, but this process can be halted if conditions are right. For instance, brain tissue has been found in the perfectly preserved body of an Inca child sacrificed 500 years ago. In this case, death occurred at the top of an Andean mountain where the body swiftly froze, preserving the brain. However, Seyitömer Höyük – the Bronze Age settlement in western Turkey where this brain was found – is not in the mountains. So how did brain tissue survive in four skeletons dug up there between 2006 and 2011? Meriç Altinoz at Haliç University in Istanbul, Turkey, who together with colleagues has been analysing the find, says the clues are in the ground. The skeletons were found burnt in a layer of sediment that also contained charred wooden objects. Given that the region is tectonically active, Altinoz speculates that an earthquake flattened the settlement and buried the people before fire spread through the rubble. © Copyright Reed Business Information Ltd.
Keyword: Miscellaneous
Link ID: 18741 - Posted: 10.05.2013
Figuring out the next 99,999,999,900 neurons “We have a hundred billion neurons in each human brain,” said Nicholas Spitzer, a neurobiologist and co-director of the Kavli Institute for Brain and Mind at the University of California-San Diego (which is partnering with The Atlantic on this event). “Right now, the best we can do is to record the electrical activity of maybe a few hundred of those neurons. Gee, that’s not very impressive.” Spitzer and his team are trying to figure out what’s going on in the rest of those neurons, or brain cells – specifically, what "jobs" they have in the body. But first, a bit of Neuroscience 101: “As your readers may know, the nerve cells or neurons in the brain communicate with each other through the release of chemicals, called neurotransmitters,” Spitzer said. “This allows a motor neuron that makes a muscle contract signal to the muscle to say, ‘time to contract.’ It seems like kind of a clumsy way to organize a signaling system.” But sometimes, those neurons change "jobs" – a motor neuron might start signaling another function in the body, for example. "These issues have their origins in the Greek and Roman and Chinese philosophers." “We thought for a long time that the wiring of the brain was a little bit like the wiring of some sort of electronic device in that the connection of the wires in the ‘device,’ the brain, are fairly fixed. What we’re finding is that the wires can remain in place, but the function of the circuit and the connection of the wires can change,” Spitzer said. “This is something of a heresy.” © 2013 by The Atlantic Monthly Group
Keyword: Development of the Brain; Consciousness
Link ID: 18740 - Posted: 10.03.2013
Intelligence tests were first devised in the early twentieth century as a way to identify children who needed extra help in school. It was only later that the growing eugenics movement began to promote use of the tests to weed out the less intelligent and eliminate them from society, sparking a debate over the appropriateness of the study of intelligence that carries on to this day. But it was not the research that was problematic: it was the intended use of the results. As the News Feature on page 26 details, this history is never far from the minds of scientists who work in the most fraught areas of behavioural genetics. Although the ability to investigate the genetic factors that underlie the heritability of traits such as intelligence, violent behaviour, race and sexual orientation is new, arguments and attitudes about the significance of these traits are not. Scientists have a responsibility to do what they can to prevent abuses of their work, including the way it is communicated. Here are some pointers. First: be patient. Do not speculate about the possibility of finding certain results, or about the implications of those results, before your data have even been analysed. The BGI Cognitive Genomics group in Shenzhen, China, is studying thousands of people to find genes that underlie intelligence, but group members sparked a furore by predicting that studies such as theirs could one day let parents select embryos with genetic predispositions to high intelligence. Many other geneticists are sceptical that the project will even find genes linked to this trait. © 2013 Nature Publishing Group
Keyword: Genes & Behavior; Intelligence
Link ID: 18739 - Posted: 10.03.2013
Sarah C. P. Williams A person might be caught off-guard without an umbrella in a sudden downpour, but rain doesn’t catch insects by surprise. Moths, beetles, and aphids predict storms by sensing changes in air pressure and then alter their behavior, researchers have discovered. In particular, the new study finds that insects change their mating behaviors when the air pressure drops, which often precedes rain, or when the air pressure rises, which can signal strong winds. “People have observed before that birds, bats, and even fish respond to changes in [air] pressure,” says entomologist Maria Fernanda Peñaflor of the University of São Paulo in Brazil, a co-author of the new study. “This is the first time such behavior has been studied in insects.” Peñaflor and her colleagues knew that insect behavior was mediated by temperature, wind, and rainfall and wondered whether air pressure played a role as well. They first correlated air pressure data from a local meteorology station with the behavior of male cucurbit beetles (Diabrotica speciosa), green and yellow beetles about 6 millimeters long that feed on cucurbit vegetables, such as cucumbers, pumpkins, and squashes, in South America. They discovered that on days when the pressure was falling—indicating impending rain—the male beetles were less likely to walk in the direction of female pheromones, which they normally follow to pursue mates. To find out more, Peñaflor’s group collaborated with researchers at the University of Western Ontario in Canada who had a controlled pressure chamber in which they could perform experiments. © 2013 American Association for the Advancement of Science.
Keyword: Sexual Behavior
Link ID: 18738 - Posted: 10.03.2013
by Colin Barras It's like pulling a rabbit out of a hat. Researchers have reached inside the brain of a rat and pulled out neural stem cells – without harming the animal. Since the technique uses nanoparticles already approved for use in humans, it is hoped that it could be used to extract neural stem cells (NSCs) from people to treat conditions like Parkinson's, Huntington's and multiple sclerosis. Extracting NSCs from the person who needs them would avoid immune rejection – but they are difficult to remove safely. So Edman Tsang at the University of Oxford and his colleagues have developed a technique to safely fish out NSCs that originate in cavities in the brain called ventricles. Tsang's team coated magnetic nanoparticles with antibodies that bond tightly to a protein found on the surface of NSCs. They then injected the nanoparticles into the lateral ventricles of rats' brains. Six hours later, after the nanoparticles had bonded to the NSCs, the researchers used a magnetic field around the rats' heads to pull the stem cells together. They could then be sucked out of the brain with a syringe. After freeing the stem cells from the nanoparticles, the team found they could grow them in a dish, suggesting they were undamaged by the process. The rats, meanwhile, were back on their feet within hours of the surgery, showing no ill effects. © Copyright Reed Business Information Ltd.
Keyword: Stem Cells; Regeneration
Link ID: 18737 - Posted: 10.03.2013
By Lenny Bernstein, Joanna Leigh describes her life in black and white, before and after. Before the Boston Marathon bombing, she says, she had “just embarked on a really beautiful future” with a new doctoral degree in international development and a career as a consultant. Today, she says, she can’t work or drive and often gets lost, sometimes on her own block. Her vision is blurry, her hearing is diminished and her ears ring constantly. She struggles to cook dinner, do her laundry, fill out a form. Mostly, she sleeps. The cause of her difficulties, according to the physician who examined her, was a traumatic brain injury on April 15. But because Leigh, 39, walked home that day after she was knocked unconscious by the second bomb and never went to a hospital, she received just $8,000 from the One Fund charity for survivors. She said her medical and other expenses have reached $70,000. She is applying for disability payments and food stamps. One Fund payouts to everyone except 16 amputees and the families of the four people who were killed were based on the number of nights spent in the hospital. A single night was worth $125,000; 32 nights qualified victims for $948,000. The 143 people who were treated as outpatients received $8,000 each. In coming days, Leigh and four other attack survivors will petition the One Fund to develop a new plan for distributing the millions of dollars in donations the charity has received since the first payout. They are seeking a formula that takes into account injuries that were slow to reveal themselves. © 1996-2013 The Washington Post
Keyword: Brain Injury/Concussion
Link ID: 18736 - Posted: 10.03.2013
By NICHOLAS BAKALAR Depression may be an independent risk factor for Parkinson’s disease, a new study has found. In a retrospective analysis, researchers followed 4,634 patients with depression and 18,544 matched controls for 10 years. To rule out the possibility that depression is an early symptom of Parkinson’s disease, their analysis excluded patients who received a diagnosis of depression within five years of their Parkinson’s diagnosis. The average age of people with depression was 41, while it was 64 for those with both depression and Parkinson’s. The study, published online in Neurology, found that 66 patients with depression, or 1.42 percent, developed Parkinson’s disease, compared with 97, or 0.52 percent, among those who were not depressed. After controlling for age, sex, diabetes, hypertension and other factors, the researchers found clinical depression was associated with more than three times the risk for Parkinson’s disease. “Our paper does not convey the message that all depression leads to Parkinson’s disease,” said the senior author, Dr. Albert C. Yang, a professor of psychiatry at the National Yang-Ming University in Taiwan. “But particularly the depressed elderly and those with difficult-to-treat depression should be alert to the possibility of neurological disease and Parkinson’s.” Copyright 2013 The New York Times Company
Keyword: Depression; Parkinsons
Link ID: 18735 - Posted: 10.03.2013
By Travis Riddle Humans like being around other humans. We are extraordinarily social animals. In fact, we are so social, that simply interacting with other people has been shown to be use similar brain areas as those involved with the processing of very basic rewards such as food, suggesting that interacting with people tends to make us feel good. However, it doesn’t take much reflection to notice that the way people interact with each other has radically changed in recent years. Much of our contact happens not face-to-face, but rather while staring at screen-based digital representations of each other, with Facebook being the most prominent example. This raises a very fundamental question – how does online interaction with other people differ from interacting with people in person? One possible way these two interaction styles might differ is through how rewarding we find them to be. Does interacting with Facebook make us feel good as does interacting with people in real life? A recent paper suggests that the answer is “probably not.” In fact, the data from this paper suggest that the more we interact with Facebook, the worse we tend to feel. Researchers recruited participants from around a college campus. The participants initially completed a set of questionnaires, including one measuring their overall satisfaction with life. Following this, participants were sent text messages 5 times a day for two weeks. For each text, participants were asked to respond to several questions, including how good they felt at that moment, as well as how much they had used Facebook, and how much they had experienced direct interaction with others, since the last text. At the end of the two weeks, participants completed a second round of questionnaires. Here, the researchers once again measured participants’ overall satisfaction with life. © 2013 Scientific American
Keyword: Depression; Emotions
Link ID: 18734 - Posted: 10.02.2013
By DENISE GRADY Hormone therapy for menopause is one of the most divisive subjects in medicine, hailed by some as a boon to women’s comfort and well-being, vilified by others as a threat to health. A new analysis finds truth somewhere in the middle, reaffirming previous warnings that the drugs have more risks than benefits for most women — but also stating that the harms are low early in menopause and that hormones are “appropriate for symptom management in some women.” Dr. JoAnn E. Manson, the first author of the analysis and a professor of medicine at Harvard’s medical school, said in an interview that the findings “should not be used as a basis for denying women treatment if they’re in early menopause and have significant distressing symptoms.” The new report, published on Tuesday in The Journal of the American Medical Association, is based on long-term data from the Women’s Health Initiative, a large, federally funded study that turned medical thinking on its head a decade ago by uncovering the risks of hormones. The new report is the first to include extended follow-up data from the original health initiative study, an additional six to eight years’ worth of information on about 80 percent of the original participants. They took a combination of estrogen and progesterone, estrogen alone or placebos for several years. For combined hormones, for every 10,000 women taking the drugs, the new analysis found that there were six additional instances of heart problems, nine more strokes, nine more blood clots in the lungs and nine more cases of breast cancer. On the benefit side, there were six fewer cases of colorectal cancer, one fewer case of uterine cancer, six fewer hip fractures and one fewer death. Most of the effects wore off once the drugs were stopped, but the risk of breast cancer remained slightly elevated. © 2013 The New York Times Company
Keyword: Hormones & Behavior
Link ID: 18733 - Posted: 10.02.2013
By Shelly Fan Disclaimer: First things first. Please note that I am in no way endorsing nutritional ketosis as a supplement to, or a replacement for medication. As you’ll see below, data exploring the potential neuroprotective effects of ketosis are still scarce, and we don’t yet know the side effects of a long-term ketogenic diet. This post talks about the SCIENCE behind ketosis, and is not meant in any way as medical advice. The ketogenic diet is a nutritionist’s nightmare. High in saturated fat and VERY low in carbohydrates, “keto” is adopted by a growing population to paradoxically promote weight loss and mental well-being. Drinking coffee with butter? Eating a block of cream cheese? Little to no fruit? To the uninitiated, keto defies all common sense, inviting skeptics to wave it off as an unnatural “bacon-and-steak” fad diet. Yet versions of the ketogenic diet have been used to successfully treat drug-resistant epilepsy in children since the 1920s – potentially even back in the biblical ages. Emerging evidence from animal models and clinical trials suggest keto may be therapeutically used in many other neurological disorders, including head ache, neurodegenerative diseases, sleep disorders, bipolar disorder, autism and brain cancer. With no apparent side effects. Sound too good to be true? I feel ya! Where are these neuroprotective effects coming from? What’s going on in the brain on a ketogenic diet? In essence, a ketogenic diet mimics starvation, allowing the body to go into a metabolic state called ketosis (key-tow-sis). © 2013 Scientific American
Keyword: Obesity
Link ID: 18732 - Posted: 10.02.2013