Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By James Gallagher Health and science reporter, BBC News The damage caused by concussion can be detected months after the injury and long after patients feel like they have recovered, brain scans show. Concussion has become highly controversial in sport, with concerns raised that players are putting their brain at risk. Researchers at the University of New Mexico said athletes may be being returned to action too quickly. While UK doctors said the attitude to head injury was "too relaxed" in sport. Debate over concussion and head injury has lead to resignations over new rules in rugby, controversy in football after a player was kept on the field after being knocked out, and has been a long-standing issue in American football. Concussion is an abnormal brain function that results from an external blast, jolt or impact to the head. Even if the knock does not result in a skull fracture, the brain can still experience a violent rattling that leads to injury. Because the brain is a soft gelatinous material surrounded by a rigid bony skull, such traumatic injuries can cause changes in brain function, such as bleeding, neuron damage and swelling. Research shows that repetitive concussions increase the risk of sustained memory loss, worsened concentration or prolonged headaches. Long-term The US study, published in the journal Neurology, compared the brains of 50 people who had mild concussion with 50 healthy people. BBC © 2013
Keyword: Brain Injury/Concussion
Link ID: 18951 - Posted: 11.21.2013
By JOYCE COHEN Earlier this fall, Seattle Seahawks fans at CenturyLink Field broke the world record for loudest stadium crowd with a skull-splitting 136.6 decibels. That volume, as the Seahawks’ website boasts, hits the scale somewhere between “serious hearing damage” and “eardrum rupture.” Just weeks later, Kansas City Chiefs fans at Arrowhead Stadium topped that number with 137.5 screaming decibels of their own. The measuring method used for the Guinness World Record has an edge of gimmickry. That A-weighted peak measurement, reached for a split second near the measuring device, displays the highest possible readout. For a vulnerable ear, however, game-day noise isn’t just harmless fun. With peaks and troughs, the decibel level of noise reaching a typical spectator averages in the mid-90s, but for a longer time. Such noise is enough to cause permanent damage and to increase the likelihood of future damage. “The extent to which hearing-related issues get so little attention is amazing and troubling,” said M. Charles Liberman, a professor of otology at Harvard Medical School and director of a hearing research lab at the Massachusetts Eye and Ear Infirmary. “Many people are damaging their ears with repeated noise exposure such that their hearing abilities will significantly diminish as they age, much more so than if they were more careful,” he said. Ears are deceptive. Even if they seem to recover from the muffling, ringing and fullness after a rousing game, they don’t really recover. It’s not just the tiny sensory cells in the cochlea that are damaged by noise, Dr. Liberman said, but also the nerve fibers between the ears and the brain that degrade over time. Copyright 2013 The New York Times Company
Keyword: Hearing
Link ID: 18950 - Posted: 11.21.2013
Jessica Wright A tiny fiber-optic probe inserted into the reward center of the mouse brain monitors how the mouse feels about meeting a peer — or a golf ball. The unpublished technique was presented last week at the at the 2013 Society for Neuroscience annual meeting in San Diego. Mice feel the most satisfaction when sniffing another mouse’s rear and when walking away from a golf ball, the study found. The new technique is one of only a few ways to read the electrical activity of neurons in freely moving mice and is the most noninvasive, making it ideal for monitoring social interactions. The method takes advantage of a fluorescent molecule that lights up only in the presence of calcium, which rushes into the cell when neurons fire. The researchers used mice engineered to express this molecule only in neurons that make dopamine — the chemical messenger that mediates a sense of reward — in the ventral tegmental area (VTA). The researchers placed the cable in the VTA, the source of most of the brain’s dopamine neurons. The fiber-optic cable is 400 micrometers in diameter, and could probably be half that size, says Lisa Gunaydin, who developed the method as a graduate student in Karl Deisseroth’s lab at Stanford University in California. When neurons expressing the fluorescent molecule fire, the cable reads these as a series of spikes. In the study, the researchers gave thirsty mice sweet water and, as expected, their dopamine activity in the VTA spiked each time they drank. When the mice interact with a new mouse, or a golf ball, the dopamine neurons fire more on the first encounter but dull with repeated visits, suggesting that the mice are most excited by novelty. © Copyright 2013 Simons Foundation
Keyword: Drug Abuse
Link ID: 18949 - Posted: 11.21.2013
By Helen Briggs BBC News A condition where people experience a mixing of the senses, such as tasting words, has been linked with autism. Research suggests synaesthesia is nearly three times as common in adults with autism spectrum disorder than in the general population. The two conditions may share common features such as unusual wiring of the brain, say UK scientists. The study helps understanding of how people with autism experience life, says the National Autistic Society. Synaesthesia is a condition where one sense automatically triggers another. Some people experience tastes when they read or hear words, some perceive numbers as shapes, others see colours when they hear music. People with synaesthesia might say: "The letter q is dark brown," or: "The word 'hello' tastes like coffee," for example. Following anecdotal evidence of links between synaesthesia and Asperger's syndrome, researchers at the Autism Research Centre at Cambridge University set out to test the idea. More than 200 study participants - 164 adults diagnosed with high-functioning autism or Asperger's syndrome, and 97 adults without autism - were asked to fill in questionnaires to measure synaesthesia and autism traits. The study found one in five adults with autism spectrum conditions - a range of related developmental disorders, including autism and Asperger's syndrome - had synaesthesia compared with about 7% of people with no signs of the disorders. Prof Simon Baron-Cohen, who led the research, told BBC News: "Synaesthesia involves a mixing of the senses and it's a very subjective private experience, so the only way we know it's happening is if you ask people to report on their experiences. BBC © 2013
Keyword: Autism
Link ID: 18948 - Posted: 11.20.2013
By Rahul K. Parikh, The message showed up on my desk one day while I was seeing a patient. Its choppy shorthand read: “Admits to injecting testosterone. Now decreased libido. Call back to discuss.” The caller was a 15-year-old lacrosse player who hadn’t been part of my practice long. Like many boys in his age group, he rarely came to the office. When I responded to his message later that afternoon, the young man carried his end of the conversation with the typical terseness of a teenager. “Where did you get the steroids?” I asked. “On the Internet.” “How long did you use them?” “A few months.” “And what are you experiencing now?” He told me his nipples were sore and swollen. “I’ve been more tired and moody as well.” My patient was experiencing classic side effects of steroid use. About 6 percent of teenagers admit to using performance-enhancing drugs, according to a recent survey, though it’s easy to assume that that number is low. How many teens would admit to using such drugs, even anonymously to a researcher? And yet here was one teen, forced by the drug’s side effect, having to make an embarrassing confession to me and his family. (Details of this case have been altered to protect patient privacy.) Despite my patient’s fear, I was confident that a young, healthy teenager who briefly used steroids would bounce back, though it might take some time — and patience — for his symptoms to dissipate. When I explained this to my patient, he told me that he wanted his testosterone level tested, to make sure there wasn’t something more seriously wrong. I got the sense that he thought there was some way I could magically undo the harm he had caused himself. I paused and considered his request, which came across more like an order. © 1996-2013 The Washington Post
Keyword: Hormones & Behavior; Sexual Behavior
Link ID: 18947 - Posted: 11.20.2013
Ewen Callaway New genome sequences from two extinct human relatives suggest that these ‘archaic’ groups bred with humans and with each other more extensively than was previously known. The ancient genomes, one from a Neanderthal and one from a different archaic human group, the Denisovans, were presented on 18 November at a meeting at the Royal Society in London. They suggest that interbreeding went on between the members of several ancient human-like groups living in Europe and Asia more than 30,000 years ago, including an as-yet unknown human ancestor from Asia. “What it begins to suggest is that we’re looking at a ‘Lord of the Rings’-type world — that there were many hominid populations,” says Mark Thomas, an evolutionary geneticist at University College London who was at the meeting but was not involved in the work. The first Neanderthal1 and the Denisovan2 genome sequences revolutionized the study of ancient human history, not least because they showed that these groups interbred with anatomically modern humans, contributing to the genetic diversity of many people alive today. All humans whose ancestry originates outside of Africa owe about 2% of their genome to Neanderthals; and certain populations living in Oceania, such as Papua New Guineans and Australian Aboriginals, got about 4% of their DNA from interbreeding between their ancestors and Denisovans, who are named after the cave in Siberia’s Altai Mountains where they were discovered. The cave contains remains deposited there between 30,000 and 50,000 years ago. © 2013 Nature Publishing Group
Keyword: Evolution
Link ID: 18946 - Posted: 11.20.2013
By BENEDICT CAREY Curing insomnia in people with depression could double their chance of a full recovery, scientists are reporting. The findings, based on an insomnia treatment that uses talk therapy rather than drugs, are the first to emerge from a series of closely watched studies of sleep and depression to be released in the coming year. A student demonstrating equipment at Colleen Carney’s sleep lab at Ryerson University. Dr. Carney is the lead author of a new report about the effects of insomnia treatment on depression. The new report affirms the results of a smaller pilot study, giving scientists confidence that the effects of the insomnia treatment are real. If the figures continue to hold up, the advance will be the most significant in the treatment of depression since the introduction of Prozac in 1987. Depression is the most common mental disorder, affecting some 18 million Americans in any given year, according to government figures, and more than half of them also have insomnia. Experts familiar with the new report said that the results were plausible and that if supported by other studies, they should lead to major changes in treatment. “It would be an absolute boon to the field,” said Dr. Nada L. Stotland, professor of psychiatry at Rush Medical College in Chicago, who was not connected with the latest research. “It makes good common sense clinically,” she continued. “If you have a depression, you’re often awake all night, it’s extremely lonely, it’s dark, you’re aware every moment that the world around you is sleeping, every concern you have is magnified.” The study is the first of four on sleep and depression nearing completion, all financed by the National Institute of Mental Health. They are evaluating a type of talk therapy for insomnia that is cheap, relatively brief and usually effective, but not currently a part of standard treatment. © 2013 The New York Times Company
Keyword: Depression; Sleep
Link ID: 18945 - Posted: 11.19.2013
Dara Mohammadi At the beginning of next year, Clive Holmes will attempt to do something remarkable. But you'd never guess it from meeting this mild-mannered psychiatrist with a hint of a Midlands accent. In fact, you could be sitting in his office in the Memory Assessment and Research Centre at Southampton University and be unaware that he was up to anything out of the ordinary – save for a small whiteboard behind his desk, on which he's drawn a few amorphous blobs and squiggles. These, he'll assure you, are components of the immune system. As a psychiatrist, he's had little formal training in immunology, but has spent much of his time of late trying to figure how immune cells in the body communicate with others in the brain. These signals into the brain, he thinks, accelerate the speed at which neurons – nerve cells in the brain – are killed in late-stage Alzheimer's disease and at the beginning of next year he hopes to test the idea that blocking these signals can stop or slow down disease progression. If he shows any dent on disease progression, he would be the first to do so. Despite the billions of pounds pumped into finding a cure over the last 30 years, there are currently no treatments or prevention strategies. "Drug development has been largely focused on amyloid beta," says Holmes, referring to the protein deposits that are characteristically seen in the brains of people with Alzheimer's and are thought to be toxic to neurons, "but we're seeing that even if you remove amyloid, it seems to make no difference to disease progression." © 2013 Guardian News and Media Limited
Keyword: Alzheimers
Link ID: 18944 - Posted: 11.19.2013
By Sandra G. Boodman, Dorsey Davidge felt her thrumming anxiety burst into barely controlled panic as she watched her 14-year-old daughter Cate Chapin struggle to get from her bedroom to the bathroom. During the last week of January, the eighth-grader contracted what appeared to be a bad case of the flu. After a week, a doctor decided she had pneumonia, a diagnosis that was later changed to a possible infectious disease. Davidge, a single mother who lives in McLean, had maintained her equanimity during the early days of Cate’s illness. But when she saw that her older daughter was unable to walk 10 feet without stopping midway to rest, she was shocked by how cadaverous-looking Cate had become in a matter of weeks. “I was really scared for the first time,” Davidge said. “She was incredibly weak, and I thought, “ ‘Oh, my God, my child is just wasting away.’ ” By then, the 5-foot-2 Cate, a skinny 95 pounds before she got sick, had shriveled to a little over 80 pounds. She had no appetite, was barely drinking anything and seemed unable to consume more than a quarter of a bagel at a sitting. “That day was the last straw,” Davidge recalled. She telephoned Cate’s pediatrician, who agreed that the girl needed to be admitted immediately to a Northern Virginia hospital. It would take another harrowing month — which included the insertion of a feeding tube to help restore Cate’s weight, consultations with a bevy of specialists and numerous tests — before doctors figured out what was actually wrong, a diagnosis made possible after Cate developed a seemingly unrelated condition that sent her to an ophthalmologist. © 1996-2013 The Washington Post
Keyword: Anorexia & Bulimia
Link ID: 18943 - Posted: 11.19.2013
By EMILY ANTHES Humans have no exclusive claim on intelligence. Across the animal kingdom, all sorts of creatures have performed impressive intellectual feats. A bonobo named Kanzi uses an array of symbols to communicate with humans. Chaser the border collie knows the English words for more than 1,000 objects. Crows make sophisticated tools, elephants recognize themselves in the mirror, and dolphins have a rudimentary number sense. Anolis evermanni lizards normally attack their prey from above. The lizards were challenged to find a way to access insects that were kept inside a small hole covered with a tightfitting blue cap. And reptiles? Well, at least they have their looks. In the plethora of research over the past few decades on the cognitive capabilities of various species, lizards, turtles and snakes have been left in the back of the class. Few scientists bothered to peer into the reptile mind, and those who did were largely unimpressed. “Reptiles don’t really have great press,” said Gordon M. Burghardt, a comparative psychologist at the University of Tennessee at Knoxville. “Certainly in the past, people didn’t really think too much of their intelligence. They were thought of as instinct machines.” But now that is beginning to change, thanks to a growing interest in “coldblooded cognition” and recent studies revealing that reptile brains are not as primitive as we imagined. The research could not only redeem reptiles but also shed new light on cognitive evolution. Because reptiles, birds and mammals diverged so long ago, with a common ancestor that lived 280 million years ago, the emerging data suggest that certain sophisticated mental skills may be more ancient than had been assumed — or so adaptive that they evolved multiple times. © 2013 The New York Times Company
Keyword: Evolution; Intelligence
Link ID: 18942 - Posted: 11.19.2013
Female mice that compete in promiscuous environments have sexier smelling sons, research has found. Scientists in Utah, US, studied the pheromones produced in the urine of male mice. They found that those whose mothers competed for mates were more sexually attractive to females. But this success was short-lived: their life spans were shorter than mice with monogamous parents. Adam Nelson from the University of Utah completed the study alongside senior author Prof Wayne Potts. It is published in the journal Proceedings of the National Academy of Sciences. "Only recently have we started to understand that environmental conditions experienced by parents can influence the characteristics of their offspring. This study is one of the first to show this kind of 'epigenetic' process working in a way that increases the mating success of sons," said Prof Potts. Epigenetics is the study of how differences in a parent's environment can influence how its offspring's genes are expressed. The researchers studied domestic mice which are usually paired in a cage and therefore breed with only one partner. To reintroduce the social competition wild mice experience, lab mice were kept in "mouse barns" which were large enclosures divided by mesh to create territories. The mice were able to climb over the mesh to access nest boxes, feeding stations and drinking water. BBC © 2013
Keyword: Sexual Behavior; Aggression
Link ID: 18941 - Posted: 11.19.2013
By JOHN TIERNEY How aggressive is the human female? When the anthropologist Sarah B. Hrdy surveyed the research literature three decades ago, she concluded that “the competitive component in the nature of women remains anecdotal, intuitively sensed, but not confirmed by science.” Science has come a long way since then, as Dr. Hrdy notes in her introduction to a recent issue of Philosophical Transactions of the Royal Society devoted entirely to the topic of female aggression. She credits the “stunning” amount of new evidence partly to better research techniques and partly to the entry of so many women into scientific fields once dominated by men. The existence of female competition may seem obvious to anyone who has been in a high-school cafeteria or a singles bar, but analyzing it has been difficult because it tends be more subtle and indirect (and a lot less violent) than the male variety. Now that researchers have been looking more closely, they say that this “intrasexual competition” is the most important factor explaining the pressures that young women feel to meet standards of sexual conduct and physical appearance. The old doubts about female competitiveness derived partly from an evolutionary analysis of the reproductive odds in ancient polygynous societies in which some men were left single because dominant males had multiple wives. So men had to compete to have a chance of reproducing, whereas virtually all women were assured of it. But even in those societies, women were not passive trophies for victorious males. They had their own incentives to compete with one another for more desirable partners and more resources for their children. And now that most people live in monogamous societies, most women face the same odds as men. In fact, they face tougher odds in some places, like the many college campuses with more women than men. © 2013 The New York Times Company
Keyword: Aggression; Sexual Behavior
Link ID: 18940 - Posted: 11.19.2013
by Erika Engelhaupt When I was in graduate school, I once gassed out my lab with the smell of death. I was studying the products of plant decomposition, and I had placed copious quantities of duckweed into large tubs and let the mix decompose for a few weeks. Duckweed is a small floating aquatic plant; it looks harmless enough. But when I dragged my tubs into the lab and set up a pump and filtration system, all hell broke loose. The filter clogged, the back pressure threw the hose off the pump, and a spray of decomposed mess flew all over a poor professor who had come in to help. For the rest of the day, he smelled like a pile of dead raccoons. That day, I learned about cadaverine and putrescine. These two molecules are produced during the decomposition of proteins, when the amino acids lysine and ornithine break down, and they are largely responsible for the smell of rotting flesh. My mistake in the lab was to think that rotting plants are more innocuous than rotting animals. Duckweed, it turns out, has such high protein levels that it’s used as animal feed, and those proteins, like any proteins, can create a deathly stench. The smells of cadaverine and putrescine tend to provoke a strong reaction (as I learned once the duckweed stench subsided and my labmates were able to return to the lab). But not every animal finds the odors disgusting. Carrion flies, rats and other animals that eat or lay eggs in dead things are attracted to the molecules. So researchers have started to look for exactly how animals tune in to these smells. Pinning down animals' odor detectors gives researchers a way to study aversion or attraction to certain objects. And understanding how these behavioral responses work will, I believe, help researchers clarify why humans feel the distinct emotion known as disgust. © Society for Science & the Public 2000 - 2013.
Keyword: Chemical Senses (Smell & Taste); Emotions
Link ID: 18939 - Posted: 11.16.2013
By Tanya Lewis and LiveScience SAN DIEGO — Being a social butterfly just might change your brain: In people with a large network of friends and excellent social skills, certain brain regions are bigger and better connected than in people with fewer friends, a new study finds. The research, presented here Tuesday (Nov. 12) at the annual meeting of the Society for Neuroscience, suggests a connection between social interactions and brain structure. "We're interested in how your brain is able to allow you to navigate in complex social environments," study researcher MaryAnn Noonan, a neuroscientist at Oxford University, in England, said at a news conference. Basically, "how many friends can your brain handle?" Noonan said. Scientists still don't understand how the brain manages human behavior in increasingly complex social situations, or what parts of the brain are linked to deviant social behavior associated with conditions like autism and schizophrenia. Studies in macaque monkeys have shown that brain areas involved in face processing and in predicting the intentions of others are larger in animals living in large social groups than in ones living in smaller groups. To investigate these brain differences in humans, Noonan and her colleagues at McGill University, in Canada, recruited 18 participants for a structural brain-imaging study. They asked people how many social interactions they had experienced in the past month, in order to determine the size of their social networks. As was the case in monkeys, some brain areas were enlarged and better connected in people with larger social networks. In humans, these areas were the temporal parietal junction, the anterior cingulate cortex and the rostral prefrontal cortex, which are part of a network involved in "mentalization" — the ability to attribute mental states, thoughts and beliefs to another. © 2013 Scientific American
Keyword: Learning & Memory; Evolution
Link ID: 18938 - Posted: 11.16.2013
by Bob Holmes When it comes to evolution, there is no such thing as perfection. Even in the simple, unchanging environment of a laboratory flask, bacteria never stop making small tweaks to improve their fitness. That's the conclusion of the longest-running evolutionary experiment carried out in a lab. In 1988, Richard Lenski of Michigan State University in East Lansing began growing 12 cultures of the same strain of Escherichia coli bacteria. The bacteria have been growing ever since, in isolation, on a simple nutrient medium – a total of more than 50,000 E. coli generations to date. Every 500 generations, Lenski freezes a sample of each culture, creating an artificial "fossil record". This allows him to resurrect the past and measure evolutionary progress by comparing how well bacteria compete against each other at different points in the evolutionary process. No upper limit After 10,000 generations, Lenski thought that the bacteria might approach an upper limit in fitness beyond which no further improvement was possible. But the full 50,000 generations of data show that isn't the case. When pitted against each other in an equal race, new generations always grew faster than older ones. In other words, fitness never stopped increasing. Their results fit a mathematical pattern known as a power law, in which something can increase forever, but at a steadily diminishing rate. "Even if we extrapolate it to 2.5 billion generations, there's no obvious reason to think there's an upper limit," says Lenski. © Copyright Reed Business Information Ltd.
Keyword: Evolution
Link ID: 18937 - Posted: 11.16.2013
Helen Shen To researchers who study how living things move, the octopus is an eight-legged marvel, managing its array of undulating appendages by means of a relatively simple nervous system. Some studies have suggested that each of the octopus’s tentacles has a 'mind' of its own, without rigid central coordination by the animal’s brain1. Now neuroscientist Guy Levy and his colleagues at the Hebrew University in Jerusalem report that the animals can rotate their bodies independently of their direction of movement, reorienting them while continuing to crawl in a straight line. And, unlike species that use their limbs to move forward or sideways relative to their body's orientation, octopuses tend to slither around in all directions. The team presented its findings on 10 November at the annual meeting of the Society for Neuroscience in San Diego, California. The new description of octopus movement is “not how one would imagine that would happen, but it seems to give a lot of control to the animal", says Gal Haspel, a neuroscientist at the New Jersey Institute of Technology in Newark. Haspel studies worm locomotion, and he was also surprised by the researchers’ report that the octopus pushes itself with worm-like contractions of its tentacles. Different combinations flex together to produce movement in different directions. Levy, who began the research as part of a project to design and control flexible, octopus-like robots, says that the work could also help to uncover basic biological principles of locomotion. Levy’s team deconstructed octopus movement using a transparent tank rigged with a system of mirrors and video cameras, in which they tested nine adult common octopuses (Octopus vulgaris). © 2013 Nature Publishing Group
Keyword: Movement Disorders; Evolution
Link ID: 18936 - Posted: 11.16.2013
When President Obama announced his plan to explore the mysteries of the human brain seven months ago, it was long on ambition and short on details. Now some of the details are being sketched in. They will include efforts to restore lost memories in war veterans, create tools that let scientists study individual brain circuits and map the nervous system of the fruit fly. The Defense Advanced Projects Agency, or DARPA, which has committed more than $50 million to the effort, offered the clearest plan. The agency wants to focus on treatments for the sort of brain disorders affecting soldiers who served in Iraq and Afghanistan, according to , deputy director of . "That is our constituency," Ling said at a news conference at the Society for Neuroscience meeting in San Diego. A colored 3-D MRI scan of the brain's white matter pathways traces connections between cells in the cerebrum and the brainstem. So DARPA will be working on problems including PTSD and traumatic brain injuries, Ling says. In particular, the agency wants to help the soldier who has "a terribly damaged brain and has lost a significant amount of declarative memory," Ling said. "We would like to restore that memory." DARPA hopes to do that with an implanted device that will take over some functions of the brain's hippocampus, an area that's important to memory. The agency has already used a device that does this in rodents, Ling said, and the goal is to move on to people quickly. The agency plans to use the same approach that created a better in record time, Ling said. "We went from idea to prototype in 18 months," he says. This undated X-ray image from the Cleveland Clinic shows electrodes implanted in a patient's brain. The method, known as deep brain stimulation, has traditionally been used to treat diseases such as Parkinson's, but new research indicates it could be helpful for patients with obsessive-compulsive disorder. ©2013 NPR
Keyword: Stress; Learning & Memory
Link ID: 18935 - Posted: 11.16.2013
by Jessica Griggs, San Diego Pregnant women may pass on the effects of stress to their fetus by way of bacterial changes in their vagina, suggests a study in mice. It may affect how well their baby's brain is equipped to deal with stress in adulthood. The bacteria in our body outnumber our own cells by about 10 to 1, with most of them found in our gut. Over the last few years, it has become clear that the bacterial ecosystem in our body – our microbiome – is essential for developing and maintaining a healthy immune system. Our gut bugs also help to prevent germs from invading our bodies, and help to absorb nutrients from food. A baby gets its first major dose of bacteria in life as it passes through its mother's birth canal. En route, the baby ingests the mother's vaginal microbes, which begin to colonise the newborn's gut. Chris Howerton, then at the University of Pennsylvania in Philadelphia, and his colleagues wanted to know if this initial population of bacteria is important in shaping a baby's neurological development, and whether that population is influenced by stress during pregnancy. The first step was to figure out what features of the mother's vaginal microbiome might be altered by stress, and then see if any of those changes were transmitted to the offspring's gut. © Copyright Reed Business Information Ltd
Keyword: Development of the Brain; Stress
Link ID: 18934 - Posted: 11.16.2013
by Laura Sanders SAN DIEGO — Teenagers’ brains are wired to confront a threat instead of retreating, research presented November 10 at the annual Society for Neuroscience meeting suggests. The results may help explain why criminal activity peaks during adolescence. Kristina Caudle of Weill Cornell Medical College in New York City and colleagues tested the impulse control of 83 people between ages 6 and 29. In the experiment, participants were asked to press a button when a photo of a happy face quickly flashed before them. They were told not to press the button when a face had a threatening expression. When confronted with the threatening faces, people between the ages of 13 and 17 were more likely to impulsively push the button than children and adults were, the team found. Brain scans revealed that activity in an area called the orbital frontal cortex peaked in teens when they successfully avoided pushing the button, suggesting that this region curbs the impulse to react, Caudle said. It’s not clear why children don’t have the same impulsive reaction to threatening faces. More studies could determine how the relevant brain systems grow and change, Caudle said. © Society for Science & the Public 2000 - 2013.
Keyword: Development of the Brain; Attention
Link ID: 18933 - Posted: 11.16.2013
by Jessica Griggs, San Diego Glugging lots of sugary drinks won't just make you fat, it might also lead to changes in the brain that have been linked to cancer and Alzheimer's – at least in rats. This finding comes from the first analysis of how sugary drinks affect proteins in the brain. It showed that 20 per cent of the proteins produced in a brain region related to decision-making were altered in rats that drank sugary drinks compared with those given water. It is well established that drinking sugar-sweetened drinks is linked to obesity and diabetes, as well as increasing the risk of cardiovascular problems. A recent estimate put the number of deaths associated with soft drinks at 184,000 a year globally. But the effects of sugar-rich drinks on the brain have received much less attention. "For many people around the world, soft drinks are their sole source of liquid, or at least they provide a very high proportion of their daily calories", says Jane Franklin at the behavioural neuropharmacology lab at Macquarie University in Sydney, Australia, who carried out the study. "We know that soft drinks are bad for the body, so it's reasonable to assume that they aren't doing anything good for your brain either". To find out, Franklin and her colleague Jennifer Cornish gave 24 adult rats either water or a solution of water containing 10 per cent sugar – about the proportion you would find in an average can of soft drink – for 26 days. © Copyright Reed Business Information Ltd.
Keyword: Obesity
Link ID: 18932 - Posted: 11.16.2013