Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 10841 - 10860 of 28882

By Tamar Haspel, American eaters love a good villain. Diets that focus on one clear bad guy have gotten traction even as the bad guy has changed: fat, carbohydrates, animal products, cooked food, gluten. And now Robert Lustig, a pediatric endocrinologist at the University of California at San Francisco, is adding sugar to the list. His book “ Fat Chance: Beating the Odds Against Sugar, Processed Food, Obesity, and Disease ” makes the case that sugar is almost single-handedly responsible for Americans’ excess weight and the illnesses that go with it. “Sugar is the biggest perpetrator of our current health crisis,” says Lustig, blaming it for not just obesity and diabetes but also for insulin resistance, cardiovascular disease, stroke, even cancer. “Sugar is a toxin,” he says. “Pure and simple.” His target is one particular sugar: fructose, familiar for its role in making fruit sweet. Fruit, though, is not the problem; the natural sugar in whole foods, which generally comes in small quantities, is blameless. The fructose in question is in sweeteners — table sugar, high-fructose corn syrup, maple syrup, honey and others — which are all composed of the simple sugars fructose and glucose, in about equal proportions. Although glucose can be metabolized by every cell in the body, fructose is metabolized almost entirely by the liver. There it can result in the generation of free radicals ( damaged cells that can damage other cells) and uric acid ( which can lead to kidney disease or gout ), and it can kick off a process called de novo lipogenesis, which generates fats that can find their way into the bloodstream or be deposited on the liver itself. These byproducts are linked to obesity, insulin resistance and the group of risk factors linked to diabetes, heart disease and stroke. (Lustig gives a detailed explanation of fructose metabolism in a well-viewed YouTube video called “Sugar: The Bitter Truth.”) © 1996-2013 The Washington Post

Keyword: Obesity; Chemical Senses (Smell & Taste)
Link ID: 18615 - Posted: 09.07.2013

By Caitlin Kirkwood Do NOT EAT the chemicals. It is the #1 laboratory safety rule young scientists learn to never break and for good reason; it keeps lab citizens alive and unscathed. However, if it hadn’t been for the careless, rule-breaking habits of a few rowdy scientists ingesting their experiments, many artificial sweeteners may never have been discovered. Perhaps the strangest anecdote for artificial sweetener discovery, among tales of inadvertent finger-licking and smoking, is that of graduate student Shashikant Phadnis who misheard instructions from his advisor to ‘test’ a compound and instead tasted it. Rather than keeling over, he identified the sweet taste of sucralose, the artificial sweetener commonly known today as Splenda. Artificial sweeteners like Splenda, Sweet’N Low, and Equal provide a sweet taste without the calories. Around World War II, in response to a sugar shortage and evolving cultural views of beauty, the target consumer group for noncaloric sweetener manufacturers shifted from primarily diabetics to anyone in the general public wishing to reduce sugar intake and lose weight. Foods containing artificial sweeteners changed their labels. Instead of cautioning ‘only for consumption by those who must restrict sugar intake’, they read for those who ‘desire to restrict’ sugar. Today, the country is in the middle of a massive debate about the health implications of artificial sweeteners and whether they could be linked to obesity, cancer, and Alzheimer disease. It’s a good conversation to have because noncaloric sweeteners are consumed regularly in chewing gums, frozen dinners, yogurts, vitamins, baby food, and particularly in diet sodas. © 2013 Scientific American

Keyword: Chemical Senses (Smell & Taste); Obesity
Link ID: 18614 - Posted: 09.07.2013

Inner-ear problems could be a cause of hyperactive behaviour, research suggests. A study on mice, published in Science, said such problems caused changes in the brain that led to hyperactivity. It could lead to the development of new targets for behaviour disorder treatments, the US team says. A UK expert said the study's findings were "intriguing" and should be investigated further. Behavioural problems such as ADHD are usually thought to originate in the brain. But scientists have observed that children and teenagers with inner-ear disorders - especially those that affect hearing and balance - often have behavioural problems. However, no causal link has been found. The researchers in this study suggest inner-ear disorders lead to problems in the brain which then also affect behaviour. The team from the Albert Einstein College of Medicine of Yeshiva University in New York noticed some mice in the lab were particularly active - constantly chasing their tails. They were found to be profoundly deaf and have disorders of the inner ear - of both the cochlea, which is responsible for hearing, and the vestibular system, which is responsible for balance. The researchers found a mutation in the Slc12a2 gene, also found in humans. Blocking the gene's activity in the inner ears of healthy mice caused them to become increasingly active. BBC © 2013

Keyword: ADHD; Hearing
Link ID: 18613 - Posted: 09.07.2013

By Bruce Bower Strange things happen when bad singers perform in public. Comedienne Roseanne Barr was widely vilified in 1990 after she screeched the national anthem at a major league baseball game. College student William Hung earned worldwide fame and a recording contract in 2004 with a tuneless version of Ricky Martin’s hit song “She Bangs” on American Idol. Several singers at karaoke bars in the Philippines have been shot to death by offended spectators for mangling the melody of Frank Sinatra’s “My Way.” For all the passion evoked by pitch-impaired vocalists, surprisingly little is known about why some people are cringe-worthy crooners. But now a rapidly growing field of research is beginning to untangle the mechanics of off-key singing. The new results may improve scientists’ understanding of how musical abilities develop and help create a toolbox of teaching strategies for aspiring vocalists. Glimpses are also emerging into what counts as “in tune” to the mind’s ear. It seems that listeners are more likely to label stray notes as in tune when those notes are sung as opposed to played on a violin. Running through this new wave of investigations is a basic theme: There is one way to carry a tune and many ways to fumble it. “It’s kind of amazing that any of us can vocally control pitch enough to sing well,” says psychologist Peter Pfordresher of the University at Buffalo, New York. Still, only about 10 percent of adults sing poorly, several reports suggest (although some researchers regard that figure as an underestimate). Some of those tune-challenged crooners have tone deafness, a condition called amusia, which afflicts about 4 percent of the population. Genetic and brain traits render these folks unable to tell different musical notes apart or to recognize a tune as common as “Happy Birthday.” Amusia often — but curiously, not always — results in inept singing. Preliminary evidence suggests that tone-deaf individuals register pitch changes unconsciously, although they can’t consciously decide whether one pitch differs from another. © Society for Science & the Public 2000 - 2013

Keyword: Hearing
Link ID: 18612 - Posted: 09.07.2013

Kelly Servick If keeping the brain spry were as simple as pumping iron, everyone would want to own the ultimate piece of cognitive exercise equipment. But designing activities to reverse the mental effects of aging is tricky. A new video game created by neuroscientists shows promise in reversing some signs of decline. Now, the researchers behind it aim to prove that video game training can be more than the latest workout craze. Games designed to keep the brain healthy as it ages have found an eager audience. “Many, many people have gotten into the business,” says neuropsychologist Glenn Smith of the Mayo Clinic in Rochester, Minnesota. The brain does appear to be capable of changing its structure and developing new skills over the course of a lifetime. But not all the products on the market are designed using scientific knowledge of the aging brain, and their ability to make meaningful, lasting changes hasn’t been proven, says Smith, who studies games as treatment for early signs of dementia. “There’s an awful lot of skepticism out there,” he says. The heart of the issue is whether practicing a video game can strengthen skills that are useful away from a computer. Early research showed that people could improve on computerized memory and speed tasks in the lab, Smith says. But it’s not clear whether these gains translate to everyday life. A recent trend puts more value in games that target the underlying problem—the decline in ability to remember and react as people age. © 2012 American Association for the Advancement of Science.

Keyword: Alzheimers; Learning & Memory
Link ID: 18611 - Posted: 09.05.2013

R. Douglas Fields The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative announced by US President Barack Obama in April seeks to map and monitor the function of neural connections in the entire brains of experimental animals, and eventually in the human cerebral cortex. Several researchers have raised doubts about the project, cautioning that mapping the brain is a much more complex endeavour than mapping the human genome, and its usefulness more uncertain. I believe that exploring neural networks and developing techniques with which to do so are important goals that should be vigorously supported. But simply scaling up current efforts to chart neural connections is unlikely to deliver the promised benefits — which include understanding perception, consciousness, how the brain produces memories, and the development of treatments for diseases such as epilepsy, depression and schizophrenia1. A major stumbling block is the project's failure to consider that although the human brain contains roughly 100 billion neurons, it contains billions more non-electrical brain cells called glia2. These reside outside the neuronal 'connectome' and operate beyond the reach of tools designed to probe electrical signalling in neurons. Dismissed as connective tissue when they were first described in the mid-1800s, glia have long been neglected in the quest to understand neuronal signalling. Research is revealing that glia can sense neuronal activity and control it3. Various studies also indicate that glia operate in diverse mental processes, for instance, in the formation of memories. They have a central role in brain injury and disease, and they are even at the root of various disorders — such as schizophrenia and Alzheimer's — previously presumed to be exclusively neuronal. That the word 'glia' was not uttered in any of the announcements of the BRAIN Initiative, nor written anywhere in the 'white papers' published in 2012 and 2013 in prominent journals outlining the ambitious plan1, 4, speaks volumes about the need for the community of neuroscientists behind the initiative to expand its thinking. © 2013 Nature Publishing Group

Keyword: Glia; Brain imaging
Link ID: 18610 - Posted: 09.05.2013

By Laura Sanders Rats spent hours in a state of chilly suspended animation after researchers injected a compound into the animals in a cold room. The animals’ heart rates slowed, brain activity became sluggish and body temperature plummeted. The research joins a small number of studies that attempt to induce the metabolically lethargic state known as torpor in animals that can’t normally slow their metabolism. “It’s a breakthrough” in understanding aspects of torpor, says neuroscientist Kelly Drew of the University of Alaska Fairbanks. Lowering the body temperature of a nonhibernating mammal is really hard, says Domenico Tupone of Oregon Health & Science University in Portland. As temperatures inside the body fall, several failsafe systems spring into action. Blood vessels near the skin squeeze tight to hold warmth in, the body starts to shiver and brown fat, a tissue that’s especially plentiful in newborns, starts to produce heat. But Tupone and colleagues bypassed the rats’ defenses against the cold with a compound that’s similar to adenosine, a molecule in the body that signals sleepiness. After about an hour in a room chilled to 15° Celsius, the rats grew lethargic. Their brain waves slowed, their blood pressure dropped and their heart grew sluggish, occasionally skipping beats. The rats’ core temperature dropped from about 38° to about 30° C, or 80° Fahrenheit, the authors report in the Sept. 4 Journal of Neuroscience. Tupone and his colleagues measured even lower temperatures in further experiments — rats’ core body temperature reached 15° C or about 57° F. “That is a pretty amazing temperature. No one has done this before,” he says. © Society for Science & the Public 2000 - 2013

Keyword: Miscellaneous
Link ID: 18609 - Posted: 09.05.2013

Elizabeth Pennisi Dolphins and bats don't have much in common, but they share a superpower: Both hunt their prey by emitting high-pitched sounds and listening for the echoes. Now, a study shows that this ability arose independently in each group of mammals from the same genetic mutations. The work suggests that evolution sometimes arrives at new traits through the same sequence of steps, even in very different animals. The research also implies that this convergent evolution is common—and hidden—within genomes, potentially complicating the task of deciphering some evolutionary relationships between organisms. Nature is full of examples of convergent evolution, wherein very distantly related organisms wind up looking alike or having similar skills and traits: Birds, bats, and insects all have wings, for example. Biologists have assumed that these novelties were devised, on a genetic level, in fundamentally different ways. That was also the case for two kinds of bats and toothed whales, a group that includes dolphins and certain whales, that have converged on a specialized hunting strategy called echolocation. Until recently, biologists had thought that different genes drove each instance of echolocation and that the relevant proteins could change in innumerable ways to take on new functions. But in 2010, Stephen Rossiter, an evolutionary biologist at Queen Mary, University of London, and his colleagues determined that both types of echolocating bats, as well as dolphins, had the same mutations in a particular protein called prestin, which affects the sensitivity of hearing. Looking at other genes known to be involved in hearing, they and other researchers found several others whose proteins were similarly changed in these mammals. © 2012 American Association for the Advancement of Science

Keyword: Hearing; Evolution
Link ID: 18608 - Posted: 09.05.2013

Scientists believe they have discovered a new reason why we need to sleep - it replenishes a type of brain cell. Sleep ramps up the production of cells that go on to make an insulating material known as myelin which protects our brain's circuitry. The findings, so far in mice, could lead to insights about sleep's role in brain repair and growth as well as the disease MS, says the Wisconsin team. The work is in the Journal of Neuroscience. Dr Chiara Cirelli and colleagues from the University of Wisconsin found that the production rate of the myelin making cells, immature oligodendrocytes, doubled as mice slept. The increase was most marked during the type of sleep that is associated with dreaming - REM or rapid eye movement sleep - and was driven by genes. In contrast, the genes involved in cell death and stress responses were turned on when the mice were forced to stay awake. Precisely why we need to sleep has baffled scientists for centuries. It's obvious that we need to sleep to feel rested and for our mind to function well - but the biological processes that go on as we slumber have only started to be uncovered relatively recently. Dr Cirelli said: "For a long time, sleep researchers focused on how the activity of nerve cells differs when animals are awake versus when they are asleep. "Now it is clear that the way other supporting cells in the nervous system operate also changes significantly depending on whether the animal is asleep or awake." The researchers say their findings suggest that sleep loss might aggravate some symptoms of multiple sclerosis (MS), a disease that damages myelin. BBC © 2013

Keyword: Sleep; Glia
Link ID: 18607 - Posted: 09.04.2013

Ed Yong Listen very carefully in the rainforests of Brazil and you might hear a series of quiet, high-pitched squeaks. These are the alarm calls of the black-fronted titi (Callicebus nigrifrons), a monkey with a rusty-brown tail that lives in small family units. The cries are loaded with information. Cristiane Cäsar, a biologist at the University of St Andrews, UK, and her colleagues report that the titis mix and match two distinct calls to tell each other about the type of predator that endangers them, as well as the location of the threat. Her results are published in Biology Letters1. Cäsar's team worked with five groups of titis that live in a private nature reserve in the Minas Gerais region of Brazil. When the researchers placed a stuffed caracara — a bird of prey — in the treetops, the titis gave out A-calls, which have a rising pitch. When the animals saw a ground-based threat — represented by an oncilla, a small spotted cat — they produced B-calls, sounds with a falling pitch. However, when the team moved the predator models around, the monkeys tweaked their calls. If the caracara was on the ground, the monkeys started with at least four A-calls before adding B-calls into the mix. If the oncilla was in a tree, the monkeys made a single introductory A-call before switching to B-calls. “A single call doesn’t really tell the recipient what’s happening, but they can infer the type of predator and its location by listening to the first five or six calls,” says co-author Klaus Zuberbühler of the University of Neuchâtel in Switzerland. “The five different groups were almost unanimous in their response. There was no deviation.” © 2013 Nature Publishing Group

Keyword: Animal Communication; Language
Link ID: 18606 - Posted: 09.04.2013

By Jason G. Goldman One of the key differences between humans and non-human animals, it is thought, is the ability to flexibly communicate our thoughts to others. The consensus has long been that animal communication, such as the food call of a chimpanzee or the alarm call of a lemur, is the result of an automatic reflex guided primarily by the inner physiological state of the animal. Chimpanzees, for example, can’t “lie” by producing a food call when there’s no food around and, it is thought, they can’t not emit a food call in an effort to hoard it all for themselves. By contrast, human communication via language is far more flexible and intentional. But recent research from across the animal kingdom has cast some doubt on the idea that animal communication always operates below the level of conscious control. Male chickens, for example, call more when females are around, and male Thomas langurs (a monkey native to Indonesia) continue shrieking their alarm calls until all females in their group have responded. Similarly, vervet monkeys are more likely sound their alarm calls when their are other vervet monkeys around, and less likely when they’re alone. The same goes for meerkats. And possibly chimps, as well. Still, these sorts of “audience effects” can be explained by lower-level physiological factors. In yellow-bellied marmots, small ground squirrels native to the western US and southwestern Canada, the production of an alarm call correlates with glucocorticoid production, a physiological measurement of stress. And when researchers experimentally altered the synthesis of glucocorticoids in rhesus macaques, they found a change in the probability of alarm call production. © 2013 Scientific American

Keyword: Language; Animal Communication
Link ID: 18605 - Posted: 09.04.2013

A "window to the brain" implant which would allow doctors to see through the skull and possibly treat patients has been devised by US researchers. It uses a see-through version of the same material used for hip implants. The team at University of California, Riverside, say it could allow lasers to be fired into the brain to treat neurological disorders. The implant was reported in the journal Nanomedicine: Nanotechnology, Biology and Medicine. The researchers say emerging laser-treatments in stroke and cancer care and brain imaging require access to the brain. However, they are limited as a part of the skull needs to be removed and replaced each time a treatment is performed. Instead the team of scientists have devised a transparent implant that would replace a small section of the skull. They have converted a material - yttria-stabilized zirconia that is used in some ceramic hip implants and dental crowns - to make it transparent. They argue the material would be safe to implant, but would also provide a window onto the brain. Professor of mechanical engineering, Guillermo Aguilar, said: "This is a case of a science fiction sounding idea becoming science fact, with strong potential for positive impact on patients. BBC © 2013

Keyword: Brain imaging
Link ID: 18604 - Posted: 09.04.2013

According to new research on epilepsy, zebrafish have certainly earned their stripes. Results of a study in Nature Communications suggest that zebrafish carrying a specific mutation may help researchers discover treatments for Dravet syndrome (DS), a severe form of pediatric epilepsy that results in drug-resistant seizures and developmental delays. Scott C. Baraban, Ph.D., and his colleagues at the University of California, San Francisco (UCSF), carefully assessed whether the mutated zebrafish could serve as a model for DS, and then developed a new screening method to quickly identify potential treatments for DS using these fish. This study was supported by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health and builds on pioneering epilepsy zebrafish models first described by the Baraban laboratory in 2005. Dravet syndrome is commonly caused by a mutation in the Scn1a gene, which encodes for Nav1.1, a specific sodium ion channel found in the brain. Sodium ion channels are critical for communication between brain cells and proper brain functioning. The researchers found that the zebrafish that were engineered to have the Scn1a mutation that causes DS in humans exhibited some of the same characteristics, such as spontaneous seizures, commonly seen in children with DS. Unprovoked seizure activity in the mutant fish resulted in hyperactivity and whole-body convulsions associated with very fast swimming. These types of behaviors are not seen in normal healthy zebrafish.

Keyword: Epilepsy
Link ID: 18603 - Posted: 09.04.2013

by Adam Gopnik Good myths turn on simple pairs— God and Lucifer, Sun and Moon, Jerry and George—and so an author who makes a vital duo is rewarded with a long-lived audience. No one in 1900 would have thought it possible that a century later more people would read Conan Doyle’s Holmes and Watson stories than anything of George Meredith’s, but we do. And so Gene Roddenberry’s “Star Trek,” despite the silly plots and the cardboard-seeming sets, persists in its many versions because it captures a deep and abiding divide. Mr. Spock speaks for the rational, analytic self who assumes that the mind is a mechanism and that everything it does is logical, Captain Kirk for the belief that what governs our life is not only irrational but inexplicable, and the better for being so. The division has had new energy in our time: we care most about a person who is like a thinking machine at a moment when we have begun to have machines that think. Captain Kirk, meanwhile, is not only a Romantic, like so many other heroes, but a Romantic on a starship in a vacuum in deep space. When your entire body is every day dissolved, reënergized, and sent down to a new planet, and you still believe in the ineffable human spirit, you have really earned the right to be a soul man. Writers on the brain and the mind tend to divide into Spocks and Kirks, either embracing the idea that consciousness can be located in a web of brain tissue or debunking it. For the past decade, at least, the Spocks have been running the Enterprise: there are books on your brain and music, books on your brain and storytelling, books that tell you why your brain makes you want to join the Army, and books that explain why you wish that Bar Refaeli were in the barracks with you. The neurological turn has become what the “cultural” turn was a few decades ago: the all-purpose non-explanation explanation of everything. Thirty years ago, you could feel loftily significant by attaching the word “culture” to anything you wanted to inspect: we didn’t live in a violent country, we lived in a “culture of violence”; we didn’t have sharp political differences, we lived in a “culture of complaint”; and so on. In those days, Time, taking up the American pursuit of pleasure, praised Christopher Lasch’s “The Culture of Narcissism”; now Time has a cover story on happiness and asks whether we are “hardwired” to pursue it. © 2013 Condé Nast.

Keyword: Brain imaging; Consciousness
Link ID: 18602 - Posted: 09.03.2013

By Scicurious For my food week post, I’m going at it a little differently. We spend a lot of time talking about food, thinking about whether it’s good for us, bad for us, which aspects of it are good or bad for us. We talk about why we crave some foods vs others, and we talk about why some foods taste disgusting. We talk about whether you’d want to replace your entire diet with a chalky fluid substance. Foodies spend a lot of time taking pictures of it, diet mags spend a lot of time talking about how to eat less of it. Food is surrounded by a culture that permeates almost everything we put in our mouths. But food is more than what we like or don’t like. Food is more than a relationship between our stomach and our tongues and noses. There is a very strong relationship between food and your brain, and when it goes wrong, the results can be devastating. There is anorexia, where there is distorted body perception, huge fear of weight gain, and food restriction so severe it can kill. On the opposite end, there is binge eating, uncontrollable eating that people are unable to stop, despite health consequences and social stigma. Critical to both of these problems are issues with “reward”. Food needs to be rewarding, it needs to make you crave it, want more of it, seek it out, work to obtain it. We need to crave food because if we didn’t, we’d all starve to death due to lack of motivation. In binge eating, though, that craving becomes an obsession. And it’s a dangerous one. People who binge eat severely are at risk for obesity, heart problems, diabetes, and other health problems. There is also a lot of anxiety, depression, guilt, and other mental distress that goes along with binge eating. This is more than just a need for portion control or more exercise. It’s a serious compulsion and mental illness, and it shouldn’t be taken lightly. © 2013 Scientific American

Keyword: Anorexia & Bulimia; Obesity
Link ID: 18601 - Posted: 09.03.2013

by Jennifer Viegas Goldfish not only listen to music, but they also can distinguish one composer from another, a new study finds. The paper adds to the growing body of evidence that many different animals understand music. For the study, published in the journal Behavioural Processes, Shinozuka and colleagues Haruka Ono and Shigeru Watanabe played two pieces of classical music near goldfish in a tank. The pieces were Toccata and Fugue in D minor by Johann Sebastian Bach and The Rite of Spring by Igor Stravinsky. The scientists trained the fish to gnaw on a little bead hanging on a filament in the water. Half of the fish were trained with food to gnaw whenever Bach played and the other half were taught to gnaw whenever Stravinsky music was on. The goldfish aced the test, easily distinguishing the two composers and getting a belly full of food in the process. The fish were more interested in the vittles than the music, but earlier studies on pigeons and songbirds suggest that Bach is the preferred choice, at least for birds. “These pieces can be classified as classical (Bach) and modern (Stravinsky) music,” Shinozuka explained. “Previously we demonstrated that Java sparrows preferred classical over modern music. Also, we demonstrated Java sparrows could discriminate between consonance and dissonance.” © 2013 Discovery Communications, LLC.

Keyword: Hearing; Learning & Memory
Link ID: 18600 - Posted: 09.03.2013

by Michael Marshall Life is tough when you're small. It's not just about getting trodden on by bigger animals. Some of the tiniest creatures struggle to make their bodies work properly. This leads to problems that us great galumphing humans will never experience. For instance, the smallest frogs are prone to drying out because water evaporates so quickly from their skin. Miniature animals can't have many offspring, because there is no room in their bodies to grow them. One tiny spider has even had to let its brain spill into its legs, because its head is too small to accommodate it. Gardiner's Seychelles frog is one of the smallest vertebrates known to exist, at just 11 millimetres long. Its tiny head is missing parts of its ears, which means it shouldn't be able to hear anything. It can, though, and that is thanks to its big mouth. One of only four species in the genus Sechellophryne, Gardiner's Seychelles frog is a true rarity. It is confined to a few square kilometres of two islands in the Seychelles, and even if you visit its habitat you're unlikely to see it. That's because the frog spends most of its time in moist leaf litter, so that it doesn't dry out. It eats tiny insects and other invertebrates. When it comes to hearing, it is sadly under-equipped. Unlike most frogs, it doesn't have an external eardrum. Inside its head, it does have the amphibian equivalent of a cochlea, which is the bit that actually detects sounds. But it doesn't have a middle ear to transmit the sound to the cochlea, and is also missing a bone called the columella that would normally help carry the sound. © Copyright Reed Business Information Ltd.

Keyword: Hearing; Evolution
Link ID: 18599 - Posted: 09.03.2013

By STUART ELLIOTT Electronic cigarettes may be a creation of the early 21st century, but critics of the devices say manufacturers are increasingly borrowing marketing tactics that are more reminiscent of the heady days of tobacco in the mid-1900s. With American smokers buying e-cigarettes at a record pace — annual sales are expected to reach $1.7 billion by year’s end — e-cigarette makers are opening their wallets wide, spending growing sums on television commercials with celebrities, catchy slogans and sports sponsorships. Those tactics can no longer be used to sell tobacco cigarettes, but are readily available to the industry because it is not covered by the laws or regulations that affect the tobacco cigarette industry. The e-cigarette industry is also spending lavishly on marketing methods that are also still available to their tobacco brethren, including promotions, events, sample giveaways and print ads. The Blu eCigs brand — which recently added the actress Jenny McCarthy to its roster of star endorsers, joining the actor Stephen Dorff — spent $12.4 million on ads in major media for the first quarter of this year compared with $992,000 in the same period a year ago, according to the Kantar Media unit of WPP. And ad spending in a category that Kantar Media calls smoking materials and accessories, which includes products like pipes and lighters in addition to e-cigarettes, has skyrocketed: from $2.7 million in 2010 to $7.2 million in 2011 to $20.8 million last year. In the first quarter of 2013, Kantar Media reported, category ad spending soared again, reaching $15.7 million, compared with $2 million in the same period a year ago. In fact, that $15.7 million total exceeded the spending for ads in major media for tobacco cigarettes, at $13.9 million, according to Kantar Media. © 2013 The New York Times Company

Keyword: Drug Abuse
Link ID: 18598 - Posted: 09.03.2013

By Michele Solis Loneliness is bad for our health, according to a robust body of research. And isolation is known to shorten lives—but experts were not sure if the real culprit was the pain and stress of loneliness, as opposed to a lack of social connectedness. Now psychologists have untangled the two factors and discovered that even superficial contact with other people may improve our health. Led by Andrew Steptoe of University College London, the study surveyed 6,500 people aged 52 or older about their social contacts and experiences of loneliness. After seven years, the researchers followed up to see who had died. Initially, people rated as highly lonely seemed to die at a higher rate than those with low or average scores. Yet this difference disappeared when taking into account a person's health. Greater social isolation, however, came with an increased incidence of death: 21.9 percent of people ranked as highly isolated died compared with 12.3 percent of less isolated people. After taking into account health and other demographic factors, this difference amounted to a 1.26-fold increase in mortality associated with high social isolation. The findings, published online on March 25 in the Proceedings of the National Academy of Sciences USA, suggest that even brief social contact that does not involve a close emotional bond—such as small talk with a neighbor or a bus driver—could extend a person's life. Although the results hint that city living or group homes may be beneficial, Steptoe says they do not negate the downside of loneliness. “There's ample evidence that loneliness relates to well-being and other health outcomes besides death,” he says. “But our study suggests a broader view of beneficial social relationships. They're not simply to do with close emotional relationships.” © 2013 Scientific American,

Keyword: Emotions; Stress
Link ID: 18597 - Posted: 09.03.2013

By TOM FIELDS-MEYER I was looking in my closet, choosing a shirt, when I lost my mind. Four hours later, I’m in the E.R., and I don’t know how I got here. My wife, Shawn, stands at my bedside, her expression alternating between reassuring and dismayed. Next to her, a doctor in his mid-50s calmly tells me he’s going to name three objects. “I want you to hold these in your mind,” he says. “Apple, table, penny.” I nod, noticing a semicircle of young interns behind him, listening intently. Then the doctor asks me to multiply 17 times 3. “I’m not very good at math,” I say. He waits. “Let’s see. Twenty times 3 is 60, minus 6.” I pause, correcting myself. “No, minus 9. Fifty-one?” “Good.” He smiles. “Now, what were those three objects I named?” I can’t recall the objects. I barely remember that he listed them. Flustered, I purse my lips and slowly shake my head, looking at Shawn. She fills in the blanks for me: I woke up, took a shower, and when I stepped out, I seemed disoriented. I sat down on the bed. “Wait, remind me, what are we doing today?” I asked her. “Do I need to remind you again? We’re having lunch at the Swerdlows’.” I didn’t remember that. I put a hand on my forehead, then lay on my back. “What day is it?” I asked her. Concerned by my blank stare, Shawn shot me questions: Do you know who came over last night? (I didn’t.) Do you remember what we argued about yesterday morning? (I couldn’t.) © 2013 The New York Times Company

Keyword: Learning & Memory
Link ID: 18596 - Posted: 09.02.2013