Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 10761 - 10780 of 29390

By JAMES GORMAN Males’ aggression toward each other is an old story throughout the animal kingdom. It’s not that females aren’t aggressive, but in many species, male-on-male battles are more common. Take fruit flies. “The males are more aggressive than females,” said David J. Anderson, a California Institute of Technology neuroscientist who knows their tussles well. Dr. Anderson runs a kind of fight club for fruit flies in his lab at Caltech, with the goal of understanding the deep evolutionary roots of very fundamental behaviors. Dr. Anderson, Kenta Asahina and a group of their colleagues recently identified one gene and a tiny group of neurons, sometimes as few as three, present only in the brains of male fruit flies, that can control aggression. The gene is also found in mammals, and has also been associated with aggression in some mammalian species, perhaps even in humans, although that is not clear. The discovery, reported in the journal Cell last month, does not tell the whole story of fly aggression. Some fighting is inextricably linked to food and mating, while the mechanism the scientists found is not. But it is a striking indication of how brain structure and chemistry work together, as well as a reminder that as different as humans and flies are, they are not always very far apart. The painstaking process of discovery, recounted step by step in the paper, gives a glimpse of modern brain research and the lengths to which scientists must go if they want to get down to the level of how neurons control behavior. “They did a huge amount of experiments,” said Ulrike Heberlein at the Janelia Farm research campus of the Howard Hughes Medical Institute. Dr. Heberlein also studies fly behavior and recently demonstrated another human-fly connection, showing that jilted male flies will turn to drink. © 2014 The New York Times Company

Keyword: Aggression
Link ID: 19203 - Posted: 02.04.2014

By BENEDICT CAREY BETHESDA, Md. — The police arrived at the house just after breakfast, dressed in full riot gear, and set up a perimeter at the front and back. Not long after, animal rights marchers began filling the street: scores of people, young and old, yelling accusations of murder and abuse, invoking Hitler, as neighbors stepped out onto their porches and stared. It was 1997, in Decatur, Ga. The demonstrators had clashed with the police that week, at the Yerkes National Primate Research Center at nearby Emory University, but this time, they were paying a personal call — on the house of the center’s director, inside with his wife and two teenage children. “I think it affected the three of them more than it did me, honestly,” said Dr. Thomas R. Insel, shaking his head at the memory. “But the university insisted on moving all of us to a safe place for a few days, to an ‘undisclosed location.’ “I’ll say this. I learned that if you’re going to take a stand, you’re going to make some people really angry — so you’d better believe in what you’re doing, and believe it completely.” For the past 11 years, Dr. Insel, a 62-year-old brain scientist, has run an equally contentious but far more influential outfit: the National Institute of Mental Health, the world’s leading backer of behavioral health research. The job comes with risk as well as power. Patient groups and scientists continually question the agency’s priorities, and politicians occasionally snipe at its decisions. Two previous directors resigned in the wake of inflammatory statements (one on marijuana laws, one comparing urban neighborhoods to jungles), and another stepped down after repeatedly objecting to White House decisions. © 2014 The New York Times Company

Keyword: Schizophrenia; Animal Rights
Link ID: 19202 - Posted: 02.04.2014

About two-thirds of people are left with ringing in their ears after a night out at a club, gig or pub, a poll suggests. Campaign group Action on Hearing Loss said the poll of 1,000 adults also showed a third would ignore the "safe level" on their music players. The group warns that people doing either increase the risk of tinnitus. DJ Paul Oakenfold urged people to wear ear defenders to gigs and to "turn down the volume". Half of those surveyed said they listened to music for between one and six hours a day - up to a third of their waking day - perhaps in the background at work or on their MP3 player on their way to and from work or studies. But one in five would not do anything differently to take any care of their hearing. Action on Hearing Loss warned that one in 10 people across the UK is affected by tinnitus every day, ranging from a "light buzzing" to a "constant roar" in the ears and head. It can affect everything from the ability to concentrate at work to getting to sleep at night. The poll also found that one in 10 people does not know what tinnitus is, with 3% thinking it was "big ears" and 4% a "repetitive strain injury". It has created an audio version of what tinnitus sounds like in order to raise awareness. Paul Breckell, chief executive of Action on Hearing Loss, said: "Listening to loud music for a long time can trigger tinnitus and is an indication of damaged hearing. BBC © 2014

Keyword: Hearing
Link ID: 19201 - Posted: 02.04.2014

By JEFF Z. KLEIN Hockey players who sustained concussions during a recent season experienced acute microstructural changes in their brains, according to a series of studies published in the Journal of Neurosurgery on Tuesday. “We’ve seen evidence of chronic injuries later in life from head trauma, and now we’ve seen this in current players,” said Dr. Paul Echlin, an Ontario sports concussion specialist who conducted the study in collaboration with Dr. Martha Shenton of Brigham and Women’s Hospital and researchers from Harvard Medical School, Massachusetts General Hospital and Western University of Canada. The researchers said these were the first studies in which an independent medical team used magnetic resonance imaging analysis before, during and after a season to measure the effects of concussions on athletes. Forty-five male and female Canadian university hockey players were observed by independent physicians during the 2011-12 season. All 45 players were given M.R.I. scans before and after the season. The 11 who received a concussion diagnosis during the season were given additional scans within 72 hours, two weeks and two months of the incident. The scans found microscopic white matter and inflammatory changes in the brains of individuals who had sustained a clinically diagnosed concussion during the period of the study. Additional analysis found that players who sustained a concussion during the study period or reported a history of concussions showed significant differences in their brains’ white matter microstructure compared with players who did not sustain a concussion, or who reported no history of concussions. © 2014 The New York Times Company

Keyword: Brain Injury/Concussion
Link ID: 19200 - Posted: 02.04.2014

By RONI CARYN RABIN Nearly a decade ago, researchers in Boston decided to see whether older men who were not in very good shape could benefit from daily doses of testosterone. The scientists recruited several hundred volunteers and gave them the hormone or a placebo. Those taking testosterone got stronger, compared with those taking the placebo, and they could carry a load up stairs faster. But they also had nearly five times the number of cardiovascular problems, including heart attacks and strokes, and safety monitors ended the trial early. Since those findings were published in 2010, studies of testosterone treatment have produced mixed results. A 2012 study of veterans aged 40 and over with low testosterone found that those treated with the hormone were less likely to die, but more recent reports, including one published last week, have documented an increase in cardiovascular risk in men over age 65 taking testosterone, as well as in younger men with a history of heart disease. Officials at the Food and Drug Administration said on Friday that they were reassessing the safety of testosterone products in light of the recent studies, and will investigate rates of stroke, heart attack and death in men using the drugs. In recent years, testosterone has been heavily promoted as a cure-all for low energy, low libido, depression and other ills among middle-aged men. “Low T” is a ubiquitous diagnosis, heard in television commercials and locker rooms. Between 2001 and 2011, hormone use by men 40 and over nearly quadrupled. By the end of that period, nearly one in 25 men in their 60s was taking testosterone. Though the drug is indicated for men with abnormally low testosterone levels, a condition called hypogonadism, doctors have been prescribing it to many men with normal levels. © 2014 The New York Times Company

Keyword: Hormones & Behavior; Sexual Behavior
Link ID: 19199 - Posted: 02.04.2014

Alice Roberts Just how special do you think you are? How different do you think you are from other animals? Do you think of yourself as an animal or do you see yourself, and your fellow humans, as somehow set apart from the rest of the animal kingdom? Most of us – and I would unashamedly label us as the sensible majority of the population – accept that evolution is the best explanation for the pattern of life that we observe on the planet, both living and fossilised. However much creationists bang on about evolution being "just a theory", it beautifully explains all the evidence we have to hand (and there's masses of that: anatomical, genetic, palaeontological, embryological), without a single piece of evidence having turned up that threatens to bring the whole edifice tumbling down around our ears. So, I'm hoping you're a sensible sort of person and that you consider evolution to be as true as the spherical nature of the Earth, or the fact that the Earth orbits the sun and not vice versa. But just how comfortable are you with the idea of being a product of evolution? I think it's still, even among the most enlightened of us, really hard to come to terms with the idea that we are just another animal. A naked ape. The third chimpanzee, even. You have to admit, science has done a very good job at bringing us down a peg or two, at knocking us off the pedestal of our own construction. We can no longer view ourselves as a special creation, something created in the image of a deity and close to angels (whatever they are or look like). We can no longer see ourselves as the ultimate destination, as the pinnacle of evolution, either. Our species is just a tiny twig on the massive, dense tree of life. But that's so difficult to stomach! © 2014 Guardian News and Media Limited

Keyword: Emotions; Evolution
Link ID: 19198 - Posted: 02.04.2014

By ABIGAIL ZUGER, M.D. In history’s long parade of pushy mothers and miserably obedient children, no episode beats Dr. Frank H. Netter’s for a happy ending. Both parties got the last laugh. Netter was born to immigrant parents in New York in 1906. He was an artist from the time he could grab a pencil, doodling through high school, winning a scholarship to art school, and enunciating intentions of making his living as an illustrator. Then his mother stepped in, and with an iron hand, deflected him to medicine. Frank’s siblings and cousins all had respectable careers, she informed him, and he would, too. To his credit, he lasted quite a while: through medical school, hospital training and almost an entire year as a qualified doctor. But he continued drawing the whole time, making sketches in his lecture notes to clarify abstruse medical concepts for himself, then doing the same for classmates and even professors. Then, fatefully, his work attracted the notice of advertising departments at pharmaceutical companies. In the midst of the Depression, he demanded and received $7,500 for a series of five drawings, many times what he might expect to earn from a full year of medical practice. He put down his scalpel for good. Thanks to a five-decade exclusive contract with Ciba (now Novartis), he ultimately became possibly the best-known medical illustrator in the world, creating thousands of watercolor plates depicting every aspect of 20th-century medicine. His illustrations were virtually never used to market specific products, but distributed free of charge to doctors as a public service, and collected into popular textbooks. © 2014 The New York Times Company

Keyword: Brain imaging
Link ID: 19197 - Posted: 02.04.2014

by Aviva Rutkin "He moistened his lips uneasily." It sounds like a cheap romance novel, but this line is actually lifted from quite a different type of prose: a neuroscience study. Along with other sentences, including "Have you got enough blankets?" and "And what eyes they were", it was used to build the first map of how the brain processes the building blocks of speech – distinct units of sound known as phonemes. The map reveals that the brain devotes distinct areas to processing different types of phonemes. It might one day help efforts to read off what someone is hearing from a brain scan. "If you could see the brain of someone who is listening to speech, there is a rapid activation of different areas, each responding specifically to a particular feature the speaker is producing," says Nima Mesgarani, an electrical engineer at Columbia University in New York City. Snakes on a brain To build the map, Mesgarani's team turned to a group of volunteers who already had electrodes implanted in their brains as part of an unrelated treatment for epilepsy. The invasive electrodes sit directly on the surface of the brain, providing a unique and detailed view of neural activity. The researchers got the volunteers to listen to hundreds of snippets of speech taken from a database designed to provide an efficient way to cycle through a wide variety of phonemes, while monitoring the signals from the electrodes. As well as those already mentioned, sentences ran the gamut from "It had gone like clockwork" to "Junior, what on Earth's the matter with you?" to "Nobody likes snakes". © Copyright Reed Business Information Ltd.

Keyword: Language; Brain imaging
Link ID: 19196 - Posted: 02.01.2014

by Laura Sanders Despite seeming like a bystander, your baby is attuned to your social life (assuming you have one, which, with a baby, would be amazing). Every time you interact with someone, your wee babe is watching, eagerly slurping up social conventions. Scientists already know that babies expect some social graces: They expect people in a conversation to look at each other and talk to other people, not objects, and are eager to see good guys rewarded and bad guys punished, scientists have found. Now, a new study shows that babies are also attuned to other people’s relationships, even when those relationships have nothing to do with them. Babies are pretty good at figuring out who they want to interact with. The answer in most cases: Nice people. And that makes sense. The helpless wailers need someone reliable around to feed, change and entertain them. So to find out how good babies are at reading other people’s social relationships, University of Chicago psychologists showed 64 9-month-old babies a video of two women eating. Sometimes the women ate from the same bowl and agreed that the food was delicious, or agreed that it was gross. Sometimes the women disagreed. Later, the women interacted again, either warmly greeting each other and smiling, or giving each other the cold shoulder, arms crossed with a “hmph.” Researchers then timed how long the babies spent looking at this last scene, with the idea that the longer the baby spent looking, the more surprising the scene was. © Society for Science & the Public 2000 - 2014.

Keyword: Development of the Brain; Emotions
Link ID: 19195 - Posted: 02.01.2014

By Molly Sharlach Reader, be proud. You’re a perceptual expert. As you read, your eyes alternately focus and move along each line of text in a seamless sequence honed over years of practice. Reading, recognizing faces and distinguishing colors or musical tones are all forms of perceptual expertise. To appreciate the visual skill involved in reading, turn a text upside down. You’ll stumble along in fits and starts, your eyes pausing longer and more often, each movement bringing less information to your brain. To assess how such neuro-ocular blundering might be improved, researchers at the University of British Columbia asked seven volunteers to practice reading novels upside down. After 30 half-hour sessions over a period of 10 weeks, they gained an average of 35 words per minute in reading speed on inverted text. This could be promising news for people with right hemianopia (hemi-uh-NOH-pee-uh), a condition that erases part of the right field of vision in both eyes. Any damage to the left occipital lobe of the brain, or the pathways connecting it to the eyes, can cause this disorder. Hemianopia, from the Greek for “half sight,” most often results from a stroke, but can also befall patients with multiple sclerosis, brain tumors or traumatic injuries. When we read, we see only three or four letters to the left of our eyes’ fixation point, but we pick up information 10 to 15 letters to the right. So in a society that reads from left to right, left hemianopia has little effect on reading ability, but right hemianopia can be devastating. Brain injury patients rank the inability to read among the most significant effects on their quality of life. © 2014 Scientific America

Keyword: Vision; Attention
Link ID: 19194 - Posted: 02.01.2014

By James Gallagher Health and science reporter, BBC News Cells taken from the donated eyes of dead people may be able to give sight to the blind, researchers suggest. Tests in rats, reported in Stem Cells Translational Medicine, showed the human cells could restore some vision to completely blind rats. The team at University College London said similar results in humans would improve quality of life, but would not give enough vision to read. Human trials should begin within three years. Donated corneas are already used to improve some people's sight, but the team at the Institute for Ophthalmology, at UCL, extracted a special kind of cell from the back of the eye. These Muller glia cells are a type of adult stem cell capable of transforming into the specialised cells in the back of the eye and may be useful for treating a wide range of sight disorders. In the laboratory, these cells were chemically charmed into becoming rod cells which detect light in the retina. Injecting the rods into the backs of the eyes of completely blind rats partially restored their vision. Brain scans showed that 50% of the electrical signals between the eye and the brain were recovered by the treatment. One of the researchers, Prof Astrid Limb, told the BBC what such a change would mean in people: "They probably wouldn't be able to read, but they could move around and detect a table in a room. BBC © 2014

Keyword: Vision; Glia
Link ID: 19193 - Posted: 02.01.2014

By LAUREN BRADY When I was 18 I watched my father perform what would be his final surgery. It was the summer of 2007 and I had just returned to Colorado after surviving my freshman year of film school at New York University. One day my dad invited me to observe a vitrectomy. And while I hadn’t a clue what this would entail I immediately accepted, honored by the invitation and determined not to faint. My father’s 21 years as an ophthalmologist produced over 15,000 operations, a private practice spanning three offices, and very little vacation time. While I sensed from an early age that the long hours were taxing on him I never felt an absence. In fact, my childhood was picturesque: two loving parents, a rowdy little brother whom I pushed around until he was big enough to push back, family trips in the Jeep to the Rocky Mountains. He was the dad with the Handycam at every soccer game and school play. He worked as a surgeon, but he lived for his children. The morning of the vitrectomy we left extra early because of a limp in my dad’s right leg that had appeared a few months earlier and had gradually worsened. He suspected it was a pinched nerve and had been meaning to get it checked out. In the interim, he had started using a chair during surgery. Walking toward the hospital entrance we encountered a fellow doctor who greeted me with the familiarity of someone who’d been exposed to years of my father’s wallet photos. He asked how I liked Greenwich Village, whether I had directed any films yet and if I had tried a bialy. We walked and talked until I noticed at one point that my dad was no longer part of the conversation. Turning around I realized he was a half block back pushing himself up from the ground. © 2014 The New York Times Company

Keyword: ALS-Lou Gehrig's Disease
Link ID: 19192 - Posted: 02.01.2014

By Jennifer Ouellette It was a brisk October day in a Greenwich Village café when New York University neuroscientist David Poeppel crushed my dream of writing the definitive book on the science of the self. I had naively thought I could take a light-hearted romp through genotyping, brain scans, and a few personality tests and explain how a fully conscious unique individual emerges from the genetic primordial ooze. Instead, I found myself scrambling to navigate bumpy empirical ground that was constantly shifting beneath my feet. How could a humble science writer possibly make sense of something so elusively complex when the world’s most brilliant thinkers are still grappling with this marvelous integration that makes us us? “You can’t. Why should you?” Poeppel asked bluntly when I poured out my woes. “We work for years and years on seemingly simple problems, so why should a very complicated problem yield an intuition? It’s not going to happen that way. You’re not going to find the answer.” Well, he was right. Darn it. But while I might not have found the Ultimate Answer to the source of the self, it proved to be an exciting journey and I learned some fascinating things along the way. 1. Genes are deterministic but they are not destiny. Except for earwax consistency. My earwax is my destiny. We tend to think of our genome as following a “one gene for one trait” model, but the real story is far more complicated. True, there is one gene that codes for a protein that determines whether you will have wet or dry earwax, but most genes serve many more than one function and do not act alone. Height is a simple trait that is almost entirely hereditary, but there is no single gene helpfully labeled height. Rather, there are several genes interacting with one another that determine how tall we will be. Ditto for eye color. It’s even more complicated for personality traits, health risk factors, and behaviors, where traits are influenced, to varying degrees, by parenting, peer pressure, cultural influences, unique life experiences, and even the hormones churning around us as we develop in the womb.

Keyword: Brain imaging; Genes & Behavior
Link ID: 19191 - Posted: 02.01.2014

Madhusree Mukerjee By displaying images on an iPad, researchers tested patients' ability to detect contrast after their vision was restored by cataract surgery. In a study of congenitally blind children who underwent surgery to restore vision, researchers have found that the brain can still learn to use the newly acquired sense much later in life than previously thought. Healthy infants start learning to discern objects, typically by their form and colour, from the moment they open their eyes. By the time a baby is a year old vision development is more or less complete, although refinements continue through childhood. But as the brain grows older, it becomes less adaptable, neuroscientists generally believe. "The dogma is that after a certain age the brain is unable to process visual inputs it has never received before," explains cognitive scientist Amy Kalia of the Massachusetts Institute of Technology (MIT) in Cambridge. Consequently, eye surgeons in India often refuse to treat children blinded by cataracts since infancy if they are over the age of seven. Such children are not usually found in wealthier countries such as the United States — where cataracts are treated as early as possible — but are tragically plentiful in India. In the study, which was published last week in Proceedings of the National Academy of Sciences1, Kalia and her collaborators followed 11 children enrolled in Project Prakash2, a humanitarian and scientific effort in India that provides corrective surgery to children with treatable cataracts and subsequently studies their visual abilities. ('Prakash' is Sanskrit for light.) © 2014 Nature Publishing Group

Keyword: Development of the Brain; Vision
Link ID: 19190 - Posted: 01.30.2014

Controversy delights Dick Swaab; brains delight him; complexity delights him, though I don't know if you'd get that from reading his book, We Are Our Brains, in which causal links are made quite casually, like a man doing a crossword with a pencil. The Dutch neurologist is, after a 50-year career, a giant in the field. He is a professor of neurobiology at the University of Amsterdam. His directorship of the Dutch Institute for Brain Research yielded material that has been sent to 500 other research groups in 25 countries. He has propounded groundbreaking theories in his specialist area: the impact on brain development in the womb. Nonetheless, his book, despite directing itself squarely to the layperson, has been miles more successful than he thought, selling 100,000 copies ("the publishers say they knew it would be a hit. But at the start, they only printed 3,000 copies. So I know that is not true."). There are a number of lines you might file under, "Well, there's a curiosity" (for instance: "In professional violinists, the part of the cerebral cortex that directs the fingers of the left hand is five times as large as it is in people who don't play a stringed instrument"). And yet the real fireworks of the book are both more predictable and more profound: Swaab says hormones and chemical substances in utero affect the development of our sexual orientation or, put more simply, you have a gay brain by the time you are born. Male and female brains have "hundreds of differences", which explain all the ways in which men and women are different; "phobia, impulsiveness, ADHD and depression later in life" can be traced back to a mother's fearfulness during pregnancy, which activates her baby's "fear axis". © 2014 Guardian News

Keyword: Sexual Behavior
Link ID: 19189 - Posted: 01.30.2014

By Meeri Kim, Neanderthal genes lurk among us. Small traces of Neanderthal DNA have been confirmed in the areas of the genome that affect skin and hair of modern humans, according to two new studies that also give clues as to which Neanderthal traits may have been helpful — or harmful — to the survival of our species. The studies, published online Wednesday in the journals Nature and Science, came to similar conclusions despite using vastly different methods of genomic analysis. For East Asian and European populations, genes that provide the physical characteristics of skin and hair have a high incidence of Neanderthal DNA — possibly lending toughness and insulation to weather the cold as early man emerged from Africa, the studies conclude. Neanderthals were thought to have already been adapted to a chillier, more northern environment. Perhaps most notably, Neanderthal DNA was not found in genes that influence testicles or the X chromosome, according to the Nature study, hinting that when the Neanderthal ventured outside his species for sex, the introduction of his DNA may have reduced male fertility in early humans. As a result, evolution wiped away the Neanderthal DNA that negatively affected procreation. “There’s strong evidence that when the two met and mixed, they were at the edge of biological compatibility,” said Nature study author and Harvard University geneticist David Reich. “The people who eventually survived and thrived had quite a bit of hurdles to overcome.” This is consistent with what is seen in nature: When two species mate that are sufficiently far away biologically, the resulting hybrids tend to have lowered fertility. Early humans and Neanderthals interbred about 40,000 to 80,000 years ago around the Middle East, during man’s migration out of Africa. © 1996-2014 The Washington Post

Keyword: Evolution; Genes & Behavior
Link ID: 19188 - Posted: 01.30.2014

By GINA KOLATA For many obese adults, the die was cast by the time they were 5 years old. A major new study of more than 7,000 children has found that a third of children who were overweight in kindergarten were obese by eighth grade. And almost every child who was very obese remained that way. Some obese or overweight kindergartners lost their excess weight, and some children of normal weight got fat over the years. But every year, the chances that a child would slide into or out of being overweight or obese diminished. By age 11, there were few additional changes: Those who were obese or overweight stayed that way, and those whose weight was normal did not become fat. “The main message is that obesity is established very early in life, and that it basically tracks through adolescence to adulthood,” said Ruth Loos, a professor of preventive medicine at the Icahn School of Medicine at Mount Sinai in New York, who was not involved in the study. These results, surprising to many experts, arose from a rare study that tracked children’s body weight for years, from kindergarten through eighth grade. Experts say they may reshape approaches to combating the nation’s obesity epidemic, suggesting that efforts must start much earlier and focus more on the children at greatest risk. The findings, to be published Thursday in The New England Journal of Medicine, do not explain why the effect occurs. Researchers say it may be a combination of genetic predispositions to being heavy and environments that encourage overeating in those prone to it. But the results do provide a possible explanation for why efforts to help children lose weight have often had disappointing results. The steps may have aimed too broadly at all schoolchildren, rather than starting before children enrolled in kindergarten and concentrating on those who were already fat at very young ages. © 2014 The New York Times Company

Keyword: Obesity; Development of the Brain
Link ID: 19187 - Posted: 01.30.2014

by Susan Milius Male bee flies fooled into trying to copulate with a daisy may learn from the awkward incident. Certain orchids and several forms of South Africa’s Gorteria diffusa daisy lure pollinators by mimicking female insects. The most effective daisy seducers row a dark, somewhat fly-shaped bump on one of their otherwise yellow-to-orange petals. Males of small, dark Megapalpus capensis bee flies go wild. But tests show the daisy’s victims waste less time trying to mate with a second deceptive daisy than with the first. “Far from being slow and stupid, these males are actually quite keen observers and fairly perceptive for a fly,” says Marinus L. de Jager of Stellenbosch University in South Africa. Males’ success locating a female bee fly drops in the presence of deceitful daisies, de Jager and Stellenbosch University colleague Allan Ellis say January 29 in the Proceedings of the Royal Society B. That’s the first clear demonstration of sexual deceit’s cost to a pollinator, Ellis says. Such evolutionary costs might push the bee fly to learn from mating mistakes. How long bee flies stay daisy-wary remains unknown. In other studies, wasps tricked by an Australian orchid forgot their lesson after about 24 hours. © Society for Science & the Public 2000 - 2014

Keyword: Learning & Memory; Evolution
Link ID: 19186 - Posted: 01.30.2014

|By Roni Jacobson There is nothing like a good night's sleep to help you feel your best the next day. Now scientists are finding that good sleep habits may do more than restore cognitive function on a nightly basis—they may also fortify the brain over the long term, according to a new study in the Journal of Neuroscience. Researchers at the University of Wisconsin–Madison found that during sleep, activity ramps up in genes that are involved in producing oligodendrocytes—brain cells responsible for coating neurons with myelin. Myelin is the brain's insulating material. The fatty substance surrounds the signal-transmitting tail that extends from every neuron, enabling electrical communications to travel quickly and efficiently to other neurons. Myelin deficiency is at the root of the neurodegenerative disease multiple sclerosis and can contribute to symptoms such as fatigue, vision and hearing impairment, and a loss of coordination. In this study, sleeping mice had heightened activity in the genes responsible for creating oligodendrocytes, but awake or sleep-deprived rodents showed greater activity in genes involved in cellular stress and death. Chiara Cirelli, a neuroscientist and author on the paper, suggests that sleep helps cells regenerate and repair themselves, by enabling the body to produce new myelin after it has deteriorated. Cellular repair probably takes weeks or even months, however, so pulling an occasional all-nighter is unlikely to disrupt the process. © 2014 Scientific American

Keyword: Sleep
Link ID: 19185 - Posted: 01.30.2014

by Ashley Yeager Monkeys may have rudimentary brain wiring that later evolved into the connections that gave humans the ability to understand language, think flexibly and make decisions. Brain scans of 25 humans and 25 macaques show that 11 components of the ventrolateral frontal cortex, located behind the temples, were similarly wired in both species. The results suggest that humans did not develop completely new and specialized brain systems for certain types of complex thought, researchers report January 28 in Neuron. The scans also show that macaques do not have the lateral frontal pole, which helps humans with strategic planning, decision-making and multitasking. © Society for Science & the Public 2000 - 2014.

Keyword: Evolution
Link ID: 19184 - Posted: 01.30.2014