Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
Schizophrenia and related mental illnesses can have a devastating effect on people who suffer from them, often making it impossible for them to work or maintain normal social relationships. Antipsychotic drugs are usually the first line of defense, but they can have serious side effects. A new study concludes that psychological approaches could be an alternative for patients who either can’t or won’t take medication, although some critics continue to question the effectiveness of these interventions. Schizophrenia, which can involve hallucinations, delusions, paranoia, emotional problems, and severe difficulty focusing on daily tasks, affects about 1% of populations worldwide. More than 20 antipsychotic medications, such as risperidone, haloperidol, and clozapine, are now on the market, and they are often effective in temporarily relieving the worse symptoms. But when taken for extended periods, such drugs can cause uncontrollable muscle movements, serious weight gain, and higher risk of heart attacks. In recent years, a number of psychiatrists and psychologists have begun to advocate psychological approaches, including an approach called cognitive behavioral therapy (CBT), as an adjunct to antipsychotic drugs. With CBT, which has long been shown to be effective for depression and anxiety disorders, a therapist takes the subject through a series of guided steps designed to explore alternative interpretations and explanations of what he or she is experiencing, with the goal of changing both outlook and behavior. A schizophrenic patient who is having hallucinations might be encouraged to stop trying to fight them off or suppress them, for example, or to stop engaging with voices in his or her head, to test how strong such symptoms really are and how much control they exert over the subject’s life. The technique also involves what practitioners call “normalization”: The patient might be reassured that hearing voices and seeing things that are not there is an experience that many normal people have from time to time, thus reducing some of the anxiety that makes sufferers feel distressed and isolated. © 2014 American Association for the Advancement of Science
Keyword: Schizophrenia
Link ID: 19227 - Posted: 02.08.2014
by Clare Wilson SOMETIMES you find out more about how something works by turning it off. That seems to be true for mirror neurons, the brain cells implicated in traits ranging from empathy and learning to language acquisition. Mirror neurons are said to help us interpret other people's behaviour, but this has yet to be shown convincingly in experiments. Now a study that briefly disabled these cells might give a better idea of what they do. Mirror neurons were discovered in the 1990s when an Italian team was measuring electrical activity in the brains of monkeys. In the region that controls movement, some of the neurons that fire to carry out a particular action – such as grasping an apple – also fired when the monkey saw another animal do the same thing. The tempting conclusion was that these neurons help interpret others' behaviour. Further work suggested that people also have this system, and some researchers claimed that conditions where empathy is lacking, such as autism or psychopathy, could arise from defective mirror neurons. Yet there has been little evidence to back this up and critics argued that mirror neuron activity could just be some sort of side effect of witnessing action. Powerful magnetic fields are known to temporarily disrupt brain cell activity, and a technique called transcranial magnetic stimulation (TMS) is increasingly used in the lab to dampen specific areas of the brain. © Copyright Reed Business Information Ltd.
Keyword: Vision; Movement Disorders
Link ID: 19226 - Posted: 02.08.2014
Ewen Callaway A study in mice and rats suggests that an imbalance in chloride ions during a child's development in the womb could be a factor for autism. Children with autism typically begin showing obvious symptoms, such as trouble making eye contact and slow language development, a year or more after birth. A study in mice and rats now hints that prenatal drug treatment could head off these problems. The findings, reported today in Science1, do not suggest that autism spectrum disorders can be prevented in children. But researchers not involved in the study say that they add support to a controversial clinical trial suggesting that some children with autism benefited from taking a common diuretic medication called bumetanide2. In that trial, a team led by neuroscientist Yehezkel Ben-Ari at the Mediterranean Institute of Neurobiology in Marseille gave 60 children bumetanide or a placebo daily for three months. Children who had less severe forms of autism showed mild improvements in social behaviour after taking the drug, and almost no adverse side effects were observed (see 'Diuretic drug improves symptoms of autism'). But autism researchers greeted the results with caution. Many pointed out that the study did not provide a clear biological mechanism that could explain how the drug improved the symptoms of the disorder. The latest study is an attempt to answer such criticisms by identifying a role for the neurotransmitter GABA. Studies in humans and animals have suggested that GABA, which in healthy people typically inhibits the activity in neurons, is altered in autism and instead activates some brain cells. © 2014 Nature Publishing Group,
Keyword: Autism
Link ID: 19225 - Posted: 02.08.2014
Memory can be altered by new experience, and isn't nearly as accurate as courtroom testimony might have us believe, a new study suggests. The results suggest a cheeky answer to the question posed by comedian Richard Pryor: "Who you gonna believe: me, or your lyin' eyes?" Turns out, Pryor was onto something. The brain behind our eyes can distort reality or verify it, based on subsequent experience. And somewhat paradoxically, the same area of the brain appears to be strongly involved in both activities, according to a study published online Tuesday in the Journal of Neuroscience. Northwestern University cognitive neuroscientist Donna Bridge was testing how memory is either consolidated or altered, by giving 17 subjects a deceptively simple task. They studied the location of dozens of objects briefly flashed at varied locations on a standard computer screen, then were asked to recall the object's original location on a new screen with a different background. When subjects were told to use a mouse to drag the re-presented object from the center of the new screen to the place where they recalled it had been located, 16 of 17 got it wrong, by an average of about 3 inches. When the same subjects then were given three choices - the original location, the wrong guess and a neutral spot between them - they almost unfailingly dragged the object to the incorrectly recalled location, regardless of the background screen. Their new memory was false. © 2014 Hearst Communications, Inc.
Keyword: Learning & Memory
Link ID: 19224 - Posted: 02.08.2014
by Laura Sanders When the president of the United States makes a request, scientists usually listen. Physicists created the atomic bomb for President Roosevelt. NASA engineers put men on the moon for President Kennedy. Biologists presented their first draft of the human genetic catalog to an appreciative President Clinton. So when President Obama announced an ambitious plan to understand the brain in April 2013, people were quick to view it as the next Manhattan Project, or Human Genome Project, or moon shot. But these analogies may not be so apt. Compared with understanding the mysterious inner workings of the brain, those other endeavors started with an end in sight. In a human brain, 85 billion nerve cells communicate via trillions of connections using complex patterns of electrical jolts and more than 100 different chemicals. A pea-sized lump of brain tissue contains more information than the Library of Congress. But unlike those orderly shelved and cataloged books, the organization of the brain remains mostly indecipherable, concealing the mysteries underlying thought, learning, emotion and memory. Still, as with other challenging enterprises prompted by presidential initiatives, success would change the world. A deep understanding of how the brain works, and what goes wrong when it doesn’t, could lead to a dazzling array of treatments for brain disorders — from autism and Alzheimer’s disease to depression and drug addiction — that afflict millions of people around the world. |© Society for Science & the Public 2000 - 2013.
Keyword: Brain imaging
Link ID: 19223 - Posted: 02.08.2014
| by Nina Bahadur Addiction and eating disorder recovery site Rehabs.com worked with digital marketing agency Fractl on a project looking at the origins of Body Mass Index (BMI) measurements, and how the bodies of ideal women have compared to national averages over time. And their findings show that models and movie stars are getting smaller than the average American woman at unprecedented rates. Though BMI measurements don't distinguish between fat and muscle, and are thus fairly inaccurate in determining whether someone is obese or not, BMI data from the past makes for interesting comparisons. According to the Center for Disease Control, the BMI of the average American women has steadily increased over the past half a century, from 24.9 in 1960 to 26.5 in the present day. In a similar vein, Rehabs.com found that the difference between models' weights and the weight of the average American woman has grown from 8 percent in 1975 to over 23 percent today. The bottom line? There's more of a noticeable gap between the bodies of idealized women and everyday people. Picking up on this disparity, brands like Dove, Debenham's and H&M have made efforts to include diverse body types in their catalogs and ads. Organizations like The Representation Project are working to educate women and girls about media literacy and how to handle the sexualized images of women we see on television, billboards and the Internet. (Of course, we still have a very long way to go.) In addition to the work of brands and organizations, looking back on the "ideal" women throughout the past century tells us just how arbitrary any vision of "the perfect body" is. Sex symbols have varied in terms of body shape, height, weight and tone, from the hourglass figure of Mae West to the waif-like Kate Moss. Though the diversity of these icons is limited -- they are all white, and none could be accurately described as plus-size -- it's gratifying to see that different body types have been construed as sexy, and likely will be again. © 2014 TheHuffingtonPost.com, Inc
Keyword: Anorexia & Bulimia
Link ID: 19222 - Posted: 02.08.2014
Women have a poorer quality of life after a stroke than men, a study has found. The US research, published in Neurology, assessed the mental and physical health of 1,370 patients three months and a year after a stroke. Women had more depression and anxiety, pain and discomfort, and more restricted mobility. UK experts said women tended to have strokes later, and might therefore need more support. But the study did say more people survive a stroke now than 10 years ago because of improved treatment and prevention. The researchers at Wake Forest Baptist Medical Center, North Carolina, looked at patients who had had a stroke or transient ischaemic attack (TIA), also known as a mini-stroke. Quality of life is calculated using a formula that assesses mobility, self-care, everyday activities, depression/anxiety and pain. At three months, women were more likely than men to report problems with mobility, pain and discomfort, anxiety and depression, but the difference was greatest in those aged over 75. After a year, women still had lower quality-of-life scores overall than men but the difference between them was smaller. Support needs Prof Cheryl Bushnell, who led the study, said: "We found that women had a worse quality of life than men up to 12 months following a stroke." BBC © 2014
Keyword: Stroke; Sexual Behavior
Link ID: 19221 - Posted: 02.08.2014
By Veronique Greenwood Young animals are capable of some pretty astounding feats of navigation. To a species like ours, whose native sense of direction isn’t much to speak of—have you ever seen a human baby crawl five thousand miles home?—the intercontinental odysseys some critters make seem incomprehensible. Arctic tern chicks take part in the longest migration on Earth—more than ten thousand miles (16,000 km)—almost as soon as they fledge. Soon after hatching, young sea turtles take to the waves and confidently paddle many thousands of miles to feeding grounds. Young Chinook salmon likewise make their way from freshwater hatching grounds to specific feeding areas in the open ocean. Biologists know that these species are able to sense things that humans can’t, from the Earth’s magnetic field to extremely faint scents, that could help with navigation. But they may also be inheriting some specific knowledge of the paths they have to follow. A paper in this week’s Current Biology reports that young salmon appear to possess an inborn map of the geomagnetic field that can help them get where they need to go. The researchers, who are primarily based at Oregon State University, performed a series of experiments with Chinook salmon less than a year old that were born and raised in a hatchery and had not yet taken part in a migration. They placed the salmon in pools surrounded by magnetic coils that they could tune to mimic the Earth’s magnetic field at various points in and around the salmons’ feeding grounds. (Kenneth Lohmann at University of North Carolina, Chapel Hill, who has done similar studies that established that baby sea turtles have inborn maps, is also an author of the paper.) © 2014 Time Inc.
Keyword: Animal Migration
Link ID: 19220 - Posted: 02.08.2014
| by Isaac Saul Multi-step puzzles can be difficult for humans, but what if I told you there was a bird that could solve them on its own? In this BBC special, Dr. Alex Taylor has set up an eight-step puzzle to try and stump one of the smartest crows he's seen in captivity. They describe the puzzle as "one of the most complex tests of the animal mind ever." This isn't the first time crows' intelligence has been tested, either. Along with being problem solvers, these animals have an eerie tendency towards complex human-like memory skills. Through several different studies, we've learned that crows can recognize faces, communicate details of an event to each other and even avoid places they recognize as dangerous. This bird, dubbed "007" for its crafty mind, flies into the caged puzzle and spends only seconds analyzing the puzzle before getting down to business. Despite the puzzle's difficulty, the bird only seems to be stumped momentarily. At the end of the puzzle is a food reward, but how he gets there is what will really blow your mind. © 2014 TheHuffingtonPost.com, Inc
Keyword: Intelligence; Learning & Memory
Link ID: 19219 - Posted: 02.08.2014
By Joel Achenbach, The death last Sunday of Oscar-winning actor Philip Seymour Hoffman at age 46 focused media attention on the nationwide surge in heroin use and overdoses. But the very real heroin epidemic is framed by an even more dramatic increase since the beginning of the century in overdoses from pharmaceutical drugs known as opioids. These are, in effect, tandem epidemics — an addiction crisis driven by the powerful effects on the human brain of drugs derived from morphine. Prescription opioids are killing Americans at more than five times the rate that heroin is, according to the most recent numbers from the Centers for Disease Control and Prevention. These drugs are sold under such familiar brand names as OxyContin, Vicodin and Percocet and can be found in medicine cabinets in every precinct of American society. They’re also sold illicitly on the street or crushed and laced into heroin. There have been numerous efforts by law enforcement agencies to crack down on “pill mills” that dispense massive amounts of the pharmaceuticals, as well as regulations aimed at preventing users from “doctor shopping” to find someone who will write a prescription. Those efforts have had the unintended effect, officials say, of driving some people to heroin in recent years as their pill supply dries up. © 1996-2014 The Washington Post
Keyword: Drug Abuse
Link ID: 19218 - Posted: 02.08.2014
Dinsa Sachan Could being visually impaired have had a role in the musical genius of Stevie Wonder and Ray Charles? A study provides some clues by showing that adult mice kept in the dark quickly develop sharper hearing and become better at distinguishing pitch and frequency. The improvements were correlated with adaptations in the brain — such as strengthening of connections between neurons — that normally happen only early in life. For their study, published today in Neuron1, Hey-Kyoung Lee, a neuroscientist at Johns Hopkins University in Baltimore, Maryland, and her collaborators selected two sets of healthy adult mice. They kept the first group in a darkened environment for a week, while the other was exposed to natural light. The team used electrodes to measure activity in neurons in the animals' primary auditory cortex — the part of the brain that processes what a sound is, how loud it is and where it comes from. The researchers played sounds of different frequencies and intensities to the mice, and watched how their brain cells reacted. The results “showed that neurons in visually deprived animals can 'hear' much softer sounds” than in control animals, says Lee. “They also have much finer discrimination ability as far as identifying pitch goes.” Previous studies have found that changes in the auditory cortex take a long time, and that people who become blind early in life adapt better than those who lose their sight later. The team's findings, however, show that some modifications can occur rapidly in the adult brain, she says. “Moreover,” she adds, “the changes in the auditory cortex were achieved by changes in the strength of synaptic connections. These were believed to be unchangeable in adults.” © 2014 Nature Publishing Group
|By Carl Erik Fisher After 22 years of failed treatments, including rehabilitation, psychotherapy and an array of psychiatric medications, a middle-aged Dutch man decided to take an extraordinary step to fight his heroin addiction. He underwent an experimental brain surgery called deep brain stimulation (DBS). At the University of Amsterdam, researchers bored small holes in his skull and guided two long, thin probes deep into his head. The ends of the probes were lined with small electrodes, which were positioned in his nucleus accumbens, a brain area near the base of the skull that is associated with addiction. The scientists ran the connecting wires under his scalp, behind his ear and down to a battery pack sewn under the skin of his chest. Once turned on, the electrodes began delivering constant electrical pulses, much like a pacemaker, with the goal of altering the brain circuits thought to be causing his drug cravings. At first the stimulation intensified his desire for heroin, and he almost doubled his drug intake. But after the researchers adjusted the pulses, the cravings diminished, and he drastically cut down his heroin use. Neurosurgeries are now being pursued for a variety of mental illnesses. Initially developed in the 1980s to treat movement disorders, including Parkinson's disease, DBS is today used to treat depression, dementia, obsessive-compulsive disorder, substance abuse and even obesity. Despite several success stories, many of these new ventures have attracted critics, and some skeptics have even called for an outright halt to this research. © 2014 Scientific American
Keyword: Drug Abuse; Parkinsons
Link ID: 19216 - Posted: 02.06.2014
by Douglas Heaven We have the world at our fingertips. A sense of touch can sometimes be as important as sight, helping us to avoid crushing delicate objects or ensuring that we hold on firmly when carrying hot cups of coffee. Now, for the first time, a person who lost his left hand has had a near-natural sense of touch restored thanks to a prosthesis. "I didn't realise it was possible," says Dennis Aabo Sørensen, who is so far the only person to have been fitted with the new prosthesis. "The feeling is very close to the sensation you get when you touch things with your normal hand." To restore Sørensen's sense of touch, Silvestro Micera at the Swiss Federal Institute of Technology in Lausanne and his colleagues implanted tiny electrodes inside the ulnar and median nerve bundles in Sørensen's upper arm. Between them, the ulnar nerve – which runs down to the little finger and ring finger – and the median nerve – which runs down to the index and middle fingers – carry sensations from most of the hand, including the palm. The team then connected the electrodes to pressure sensors on the fingertips and palm of a robotic prosthetic hand via cables running down the outside of Sørensen's arm. When he used the hand to grasp an object, electrical signals from the pressure pads were fired directly into the nerves, providing him with a sense of touch. Getting to grips The electrical signals were calibrated so that Sørensen could feel a range of sensation, from the slightest touch to firm pressure just below his pain threshold, depending on the strength of his grip. © Copyright Reed Business Information Ltd.
Keyword: Pain & Touch; Robotics
Link ID: 19215 - Posted: 02.06.2014
By Matt McGrath Environment correspondent, BBC News Successful professional cyclists are seen as more handsome than their struggling colleagues, according to new research. Women rated facial attractiveness among riders in the 2012 Tour de France, won by Britain's Sir Bradley Wiggins. The top 10% of performers were rated on average as 25% better looking than the laggards. The scientists conclude that humans have evolved to recognise athletic performance in faces. The research has been published in the Royal Society journal, Biology Letters. Some biologists argue that evolution has shaped women to select mates on the basis that they would either make good fathers or would pass on good genes. Healthy, physically fit men would on average be seen as more attractive by women. A number of other studies in recent years have suggested that women have a sophisticated radar for athletic performance, rating those with greater sporting skill as more attractive. This new work, though, set out to test if the same applied to more inherent physical qualities such as stamina and endurance. Cycle of life Dr Erik Postma, from the Institute of Evolutionary Biology at the University of Zurich, asked people to rate the attractiveness of 80 professional cyclists from the 2012 Tour de France. The cyclists were all of a similar physical stature, were tanned and around the same age. BBC © 2014
Keyword: Sexual Behavior; Evolution
Link ID: 19214 - Posted: 02.06.2014
By Deborah Kotz / Globe Staff Public health officials, politicians, and smoking researchers cheered the Wednesday announcement from CVS Caremark that they will stop selling cigarettes and other tobacco products at CVS pharmacy stores by October. President Obama, a former smoker, said CVS is setting a “powerful example” and that will help public health efforts to reduce smoking-related deaths and illnesses. The American Public Health Association called it a “historic decision,” and the American Association of Cancer Research called it a “visionary move.” Dozens of other anti-smoking organizations and medical organizations—whose physicians treat the lung cancer, emphysema, and heart disease caused by smoking—proferred their approval and hope that other big chain pharmacies would follow suit. “CVS made a very compelling argument today that if you’re in the business of healthcare, you shouldn’t be in the business of selling tobacco products,” said Vince Willmore, spokesperson for the Campaign for Tobacco-Free Kids. “We’ll be taking that argument to every store with a pharmacy to make sure this is a catalyst for them.” Whether the CVS decision will result in fewer smokers remains unknown, said Margaret Reid, who directs tobacco control efforts at the Boston Public Health Commission, but added that it will certainly make tobacco products less readily available to smokers. When Boston implemented a ban on tobacco sales in pharmacies five years ago, it resulted in 85 fewer tobacco retailers in the city—about a 10 percent drop in the number of places permitted to sell cigarettes, cigars, and chewing tobacco. © 2014 Boston Globe Media Partners, LLC
Keyword: Drug Abuse
Link ID: 19213 - Posted: 02.06.2014
By James Gallagher Health and science reporter, BBC News Changing the way people think about and deal with schizophrenia could be as effective as drugs, say researchers. Cognitive behavioural therapy is an officially recommended treatment, but is available to less than 10% of patients in the UK with schizophrenia. A study published in the Lancet indicates CBT could help the many who refuse antipsychotic medication. Experts say larger trials are needed. About four-in-10 patients benefit from taking antipsychotic medication. But the drugs do not work for the majority and they cause side-effects such as type 2 diabetes and weight gain. Up to half of patients with schizophrenia end up not taking the drugs. The study looked at cognitive behaviour therapy in 74 people. The therapy works by identifying an individual patient's problem - such as hearing voices, paranoid thinking or no longer going out of the house - and developing techniques to deal with them. Prof Tony Morrison, director of the psychosis research unit at Greater Manchester West Mental Health Foundation Trust, said: "We found cognitive behavioural therapy did reduce symptoms and it also improved personal and social function and we demonstrated very comprehensively it is a safe and effective therapy." It worked in 46% of patients, approximately the same as for antipsychotics - although a head-to-head study directly comparing the two therapies has not been made. Douglas Turkington, professor of psychiatry at Newcastle University, said: "One of our most interesting findings was that when given the option, most patients were agreeable to trying cognitive therapy." BBC © 2014
Keyword: Schizophrenia
Link ID: 19212 - Posted: 02.06.2014
Posted by Maria Konnikova On a typical workday morning, if you’re like most people, you don’t wake up naturally. Instead, the ring of an alarm clock probably jerks you out of sleep. Depending on when you went to bed, what day of the week it is, and how deeply you were sleeping, you may not understand where you are, or why there’s an infernal chiming sound. Then you throw out your arm and hit the snooze button, silencing the noise for at least a few moments. Just another couple of minutes, you think. Then maybe a few minutes more. It may seem like you’re giving yourself a few extra minutes to collect your thoughts. But what you’re actually doing is making the wake-up process more difficult and drawn out. If you manage to drift off again, you are likely plunging your brain back into the beginning of the sleep cycle, which is the worst point to be woken up—and the harder we feel it is for us to wake up, the worse we think we’ve slept. (Ian Parker wrote about the development of a new drug for insomnia in the magazine last week.) One of the consequences of waking up suddenly, and too early, is a phenomenon called sleep inertia. First given a name in 1976, sleep inertia refers to that period between waking and being fully awake when you feel groggy. The more abruptly you are awakened, the more severe the sleep inertia. While we may feel that we wake up quickly enough, transitioning easily between sleep mode and awake mode, the process is in reality far more gradual. Our brain-stem arousal systems (the parts of the brain responsible for basic physiological functioning) are activated almost instantly. But our cortical regions, especially the prefrontal cortex (the part of the brain involved in decision-making and self-control), take longer to come on board. © 2013 Condé Nast.
Keyword: Sleep
Link ID: 19211 - Posted: 02.06.2014
By NICHOLAS BAKALAR There are many well established risk factors for cardiovascular death, but researchers may have found one more: slower reaction time. In the late 1980s and early ’90s, researchers measured the reaction times of 5,134 adults ages 20 to 59, having them press a button as quickly as possible after a light flashed on a computer screen. Then they followed them to see how many would still be alive after 15 years. The study is in the January issue of PLOS One. Unsurprisingly, men, smokers, heavy drinkers and the physically inactive were more likely to die. But after controlling for these and other factors, they found that those with slower reaction times were 25 percent more likely to die of any cause, and 36 percent more likely to die of cardiovascular disease, than those with faster reactions. Reaction time made no difference in cancer mortality. The reasons for the connection are unclear, but the lead author, Gareth Hagger-Johnson, a senior research associate at University College London, said it may reflect problems with the brain or nervous system. He stressed, though, that “a single test of reaction time is not going to tell you when you’re going to die. There’s a link at a population level. We didn’t look at individual people.” © 2014 The New York Times Company
Keyword: Development of the Brain
Link ID: 19210 - Posted: 02.06.2014
|By Geoffrey Giller Working memory—our ability to store pieces of information temporarily—is crucial both for everyday activities like dialing a phone number as well as for more taxing tasks like arithmetic and accurate note-taking. The strength of working memory is often measured with cognitive tests, such as repeating lists of numbers in reverse order or recalling sequences of dots on a screen. For children, performance on working memory assessments is considered a strong predictor for future academic performance. Yet cognitive tests can fail to identify children whose brain development is lagging in subtle ways that may lead to future deficits in working memory and, thus, in learning. Doctors give the tests periodically and plot the results along a development curve, much like a child’s height and weight. By the time these tests reveal that a child’s working memory is below average, however, it may be too late to do much about it. But in a new study, published January 29 in The Journal of Neuroscience, scientists demonstrated that they could predict the future working memory of children and adolescents by examining brain scans from two different types of magnetic resonance imaging (MRI), instead of looking only at cognitive tests. Henrik Ullman, a PhD student at the Karolinska Institute in Stockholm and the lead author on the paper, says that this was the first study attempting to use MRI scans to predict future working memory capacity. “We were pretty surprised when we found what we actually found,” Ullman says. © 2014 Scientific American,
Keyword: Alzheimers; Brain imaging
Link ID: 19209 - Posted: 02.05.2014
by Andy Coghlan If you flinch where others merely frown, you might want to take a look at your lifestyle. That's because environmental factors may have retuned your genes to make you more sensitive to pain. "We know that stressful life events such as diet, smoking, drinking and exposure to pollution all have effects on your genes, but we didn't know if they specifically affected pain genes," says Tim Spector of King's College London. Now, a study of identical twins suggests they do. It seems that epigenetic changes – environmentally triggered chemical alterations that affect how active your genes are – can dial your pain threshold up or down. This implies that genetic tweaks of this kind, such as the addition of one or more methyl groups to a gene, may account for some differences in how our senses operate. Spector and his colleagues assessed the ability of hundreds of pairs of twins to withstand the heat of a laser on their skin, a standard pain test. They selected 25 pairs who showed the greatest difference in the highest temperature they could bear. Since identical twins have the same genes, any variation in pain sensitivity can be attributed to epigenetic differences. Pain thermostat The researchers screened the twins' DNA for differences in methylation levels across 10 million gene regions. They found a significant difference in nine genes, most of which then turned out to have been previously implicated in pain-sensitivity in animal experiments. © Copyright Reed Business Information Ltd.
Keyword: Pain & Touch; Epigenetics
Link ID: 19208 - Posted: 02.05.2014


.gif)

