Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 10741 - 10760 of 28882

If you look at the facts and figures on the mental health charity Mind's website, you'll find that around 1 in 4 people will experience some sort of mental health problem each year. About 10% of these people will see their doctor and be diagnosed as having a mental health problem, and of this group, a small proportion will in turn be referred to specialist psychiatric care. Of these people, precisely none resemble the breathtakingly ignorant costumes that have recently been withdrawn from Tesco and Asda. If you want to know what someone with a mental health issue looks like, just look around you. One of the most common types of mental health issue is anxiety – about 9% of people in Britain meet the criteria for mixed anxiety and depression, for example. We all feel anxious from time to time, and that's not necessarily a bad thing. Isaac Marks and Randy Nesse argued in 1994 that anxiety is an important emotion that has been shaped during the course of human evolution. If we are in a potentially dangerous environment, being anxious increases our awareness of our surroundings and puts us in a state of physiological readiness to deal with any threats. However, when an anxiety response kicks in too often, and in situations where it is not needed, it becomes a debilitating problem. In serious cases, anxiety can make it incredibly hard for the person to function. There's now a wealth of research that is trying to tap into the mechanisms involved in both sub-clinical and clinical forms of anxiety. By understanding what happens when we become anxious, we might be able to get a clearer idea of how and why things go wrong in anxiety disorders. For example, a new study published this week in the Journal of Neuroscience has suggested one potential contributing factor – how smells are processed. © 2013 Guardian News and Media Limited

Keyword: Emotions; Chemical Senses (Smell & Taste)
Link ID: 18715 - Posted: 09.28.2013

By Tina Hesman Saey The sun exerts hegemony over biological rhythms of nearly every organism on Earth. But two studies now show the moon is no slouch. It controls the cadence of at least two different biological clocks: one set by tides and the other by moonlight. The clocks, both discovered in sea creatures, work independently of the circadian clock, which synchronizes daily rhythms with the sun. The studies demonstrate that the moon’s light and its gravitational pull, which creates tides, can affect the behavior of animals. “The moon has an influence, definitely,” says Steven Reppert, a neurobiologist at the University of Massachusetts Medical School in Worcester, who was not involved with either study. “Clearly for these marine organisms, it’s very powerful and important.” Scientists established decades ago that circadian clocks govern people’s daily cycles of such things as hormone levels, blood pressure and body temperature. Nearly every organism, including single-celled creatures, has some version. Circadian clocks are composed of protein gears. In a loop that takes roughly 24 hours, levels of some proteins rise and then fall, while others fall and then rise. Sunlight sets the clocks, but once a clock is set it will keep running, even when scientists keep organisms in constant darkness. © Society for Science & the Public 2000 - 2013

Keyword: Biological Rhythms
Link ID: 18714 - Posted: 09.28.2013

By Roy F. Baumeister It has become fashionable to say that people have no free will. Many scientists cannot imagine how the idea of free will could be reconciled with the laws of physics and chemistry. Brain researchers say that the brain is just a bunch of nerve cells that fire as a direct result of chemical and electrical events, with no room for free will. Others note that people are unaware of some causes of their behavior, such as unconscious cues or genetic predispositions, and extrapolate to suggest that all behavior may be caused that way, so that conscious choosing is an illusion. Scientists take delight in (and advance their careers by) claiming to have disproved conventional wisdom, and so bashing free will is appealing. But their statements against free will can be misleading and are sometimes downright mistaken, as several thoughtful critics have pointed out. Arguments about free will are mostly semantic arguments about definitions. Most experts who deny free will are arguing against peculiar, unscientific versions of the idea, such as that “free will” means that causality is not involved. As my longtime friend and colleague John Bargh put it once in a debate, “Free will means freedom from causation.” Other scientists who argue against free will say that it means that a soul or other supernatural entity causes behavior, and not surprisingly they consider such explanations unscientific. These arguments leave untouched the meaning of free will that most people understand, which is consciously making choices about what to do in the absence of external coercion, and accepting responsibility for one’s actions. Hardly anyone denies that people engage in logical reasoning and self-control to make choices. There is a genuine psychological reality behind the idea of free will. The debate is merely about whether this reality deserves to be called free will. Setting aside the semantic debate, let’s try to understand what that underlying reality is. © 2013 The Slate Group, LLC.

Keyword: Consciousness
Link ID: 18713 - Posted: 09.28.2013

by Megan Gannon, Live Science Deep in the cloud forests of Central America, two species of singing mice put on a high-pitched opera to mark their territory and stave off clashes, researchers discovered. Alston's singing mouse (Scotinomys teguina) and the Chiriqui singing mouse (S. xerampelinus) have overlapping lifestyles in the cloud forests of Costa Rica and Panama. But the tawny cousins seem to establish geographic boundaries so they can avoid competing with each other. "A long-standing question in biology is why some animals are found in particular places and not others," study researcher Bret Pasch, a postdoctoral fellow at the the University of Texas at Austin, said in a statement. "What factors govern the distribution of species across space?" As it turns out, a little communication between individuals affects the spread of both species as a whole. Both species of singing mice produce vocalizations that are barely audible to humans. As video footage of the mouse-y opera from the foggy forest floor shows, the creatures throw their heads back and belt out songs in the form of rapidly repeated notes, known as trills. The Alston's mouse in the clip even looks likes it's taking a bow after its solo. © 2013 Discovery Communications, LLC

Keyword: Aggression; Animal Communication
Link ID: 18712 - Posted: 09.28.2013

Mark Peplow Hormone-disrupting chemicals may be far more prevalent in lakes and rivers than previously thought. Environmental scientists have discovered that although these compounds are often broken down by sunlight, they can regenerate at night, returning to life like zombies. “The assumption is that if it’s gone, we don’t have to worry about it,” says environmental engineer Edward Kolodziej of the University of Nevada in Reno, joint leader of the study. “But we’re under-predicting their environmental persistence.” “Risk assessments have been built on the basis that light exposure is enough to break down these products,” adds Laura Vandenberg, an endocrinologist at the University of Massachusetts in Amherst who was not involved in the study. “This work undermines that idea completely.” Endocrine disruptors — pollutants that unbalance hormone systems — are known to harm fish, and there is growing evidence linking them to health problems in humans, including infertility and various cancers1. But pinpointing specific culprits from the vast array of trace chemicals in the environment has proved difficult. Indeed, concentrations of known endocrine disruptors in rivers often seem to be too low to explain harmful effects in aquatic wildlife, says Kolodziej. He and his colleague David Cwiertny, an environmental engineer at the University of Iowa in Iowa City, decided to find out whether the breakdown products of endocrine disruptors could be boosting their environmental impact. Their team focused on trenbolone acetate, a synthetic anabolic steroid used as a growth promoter in more than 20 million cattle in the United States each year (this practice is banned in the European Union). © 2013 Nature Publishing Group

Keyword: Hormones & Behavior; Sexual Behavior
Link ID: 18711 - Posted: 09.28.2013

By REED ABELSON THE first time Melissa Morelli was taken to the hospital, she was suicidal and cutting herself, her mother says. She was just 13, and she had been transferred to a psychiatric hospital, where she stayed for more than a week. Her doctors told her mother, Cathy Morelli, that it was not safe for Melissa to go home. But the family’s health insurance carrier would not continue to pay for her to remain in the hospital. The second time, the same thing happened. And the third and the fourth. Over the course of five months, Ms. Morelli took Melissa to the hospital roughly a dozen times, and each time the insurance company, Anthem Blue Cross, refused to pay for hospital care. “It was just a revolving door,” Ms. Morelli said. “You had not been getting better in a significant way,” Anthem explained in one letter sent directly to Melissa, then 14, in July 2012. “It does not seem likely that doing the same thing will help you get better.” Desperate to get help for her daughter, Ms. Morelli sought the assistance of Connecticut state officials and an outside reviewer. She eventually won all her appeals, and Anthem was forced to pay for the care it initially denied. All told, Melissa spent nearly 10 months in a hospital; she is now at home. Anthem, which would not comment on Melissa’s case, says its coverage decisions are based on medical evidence. Melissa’s treatment did not come cheap: it ultimately cost hundreds of thousands of dollars, Ms. Morelli said. Patients often find themselves at odds with health insurers, but the battles are perhaps nowhere so heated as with the treatment of serious mental illness. © 2013 The New York Times Company

Keyword: Depression; Schizophrenia
Link ID: 18710 - Posted: 09.28.2013

Ballet dancers develop differences in their brain structures to allow them to perform pirouettes without feeling dizzy, a study has found. A team from Imperial College London said dancers appear to suppress signals from the inner ear to the brain. Dancers traditionally use a technique called "spotting", which minimises head movement. The researchers say their findings may help patients who experience chronic dizziness. Dizziness is the feeling of movement when, in reality, you are still. For most it is an occasional, temporary sensation. But around one person in four experiences chronic dizziness at some point in their life. When someone turns or spins around rapidly, fluid in the vestibular organs of the inner ear can be felt moving through tiny hairs. Once they stop, the fluid continues to move, which can make a person feel like they are still spinning. Ballet dancers train hard to be able to spin, or pirouette, rapidly and repeatedly. They use a technique called spotting, focusing on a spot on the floor - as they spin, their head should be the last bit to move and the first to come back. In the study, published in the journal Cerebral Cortex, the team recruited 29 female ballet dancers and 20 female rowers of similar age and fitness levels. BBC © 2013

Keyword: Miscellaneous
Link ID: 18709 - Posted: 09.28.2013

By Todd Sherer Parkinson’s disease is coming to prime time. Tomorrow night Michael J. Fox returns to television as the star of his own sitcom nearly 15 years after retiring from Spin City to focus on finding a cure for his disease. Michael has been careful to emphasize that the show isn’t really about Parkinson’s. Based loosely on his real life, The Michael J. Fox Show mines laughs from the everyday trials and tribulations of family man Mike Henry as he resumes his TV news job following a Parkinson’s diagnosis. Yet simply by featuring a main character living with the disease, the show puts Parkinson’s into the national conversation. This is a good moment to consider how much work remains to be done in the realm of neurodegeneration research. The question we’ve heard most often at The Michael J. Fox Foundation is: After more than 20 years with Parkinson’s, how is Michael doing well enough to go back to work? There’s no simple answer. He acknowledges the good fortune he has in a loving, supportive family and financial independence, which have provided advantages in dealing with his disease. He says, “Everybody gets their own version of Parkinson’s. Different meds work for different people, and you’re always trying to find the perfect combination. I think I found what works for me right now. And I’m so lucky.” But the reality is that for the estimated five million Parkinson’s patients worldwide, the status quo is still not good enough. They are living with Parkinson’s movement difficulties and nonmotor symptoms such as mood and sleep disorders as well as cognitive impairment. Medication and therapies alleviate some symptoms, but create their own problems and fail to address all the effects of Parkinson’s. We have some disease-modifying treatments in clinical trials, but nothing on the market yet. The grim truth is that those diagnosed with Parkinson’s will get worse. And for every patient, a community is affected, as the impact of the disease ripples to loved ones and caregivers. This is a global problem, but one that we can solve. © 2013 Scientific American

Keyword: Parkinsons
Link ID: 18708 - Posted: 09.26.2013

by Colin Barras A man missing his lower leg has gained precise control over a prosthetic limb, just by thinking about moving it – all because his unused nerves were preserved during the amputation and rerouted to his thigh where they can be used to communicate with a robotic leg. The man can now seamlessly switch from walking on level ground to climbing stairs and can even kick a football around. During a traditional limb amputation, the main sensory nerves are severed and lose their function. In 2006, Todd Kuiken and his colleagues at the Rehabilitation Institute of Chicago in Illinois realised they could preserve some of that functionality by carefully rerouting sensory nerves during an amputation and attaching them to another part of the body. They could then use the rerouted nerve signals to control a robotic limb, allowing a person to control their prosthesis with the same nerves they originally used to control their real limb. Kuiken's team first attempted the procedure – which is called targeted muscle reinnervation (TMR) – on people who were having their arm amputated. Now, Kuiken's team has performed TMR for the first time on a man with a leg amputation. First, the team rerouted the two main branches of the man's sciatic nerve to muscles in the thigh above the amputation. One branch controls the calf and some foot muscles, the other controls the muscle running down the outside leg and some more foot muscles. © Copyright Reed Business Information Ltd

Keyword: Robotics
Link ID: 18707 - Posted: 09.26.2013

By Bruce Bower Cartoon ghosts have scared up evidence that the ability to visualize objects in one’s mind materializes between ages 3 and 5. When asked to pick which of two mirror-image ghost cutouts or drawings fit in a ghost-shaped hole, few 3-year-olds, a substantial minority of 4-year-olds and most 5-year-olds regularly succeeded, say psychologist Andrea Frick of the University of Bern, Switzerland, and her colleagues. Girls performed as well as boys on the task, suggesting that men’s much-studied advantage over women in mental rotation doesn’t emerge until after age 5, the researchers report Sept. 17 in Cognitive Development. Mental rotation is a spatial skill regarded as essential for science and math achievement. Most tasks that researchers use to assess mental rotation skills involve pressing keys to indicate whether block patterns oriented at different angles are the same or different. That challenge overwhelms most preschoolers. Babies apparently distinguish block patterns from mirror images of those patterns (SN: 12/20/08, p. 8), but it’s unclear whether that ability enables mental rotation later in life. Frick’s team studied 20 children at each of three ages, with equal numbers of girls and boys. Youngsters saw two ghosts cut out of foam, each a mirror image of the other. Kids were asked to turn the ghosts in their heads and choose the one that would fit like a puzzle piece into a ghost’s outline on a board. Over seven trials, the ghosts were tilted at angles varying from the position of the outline. The researchers used three pairs of ghost cutouts, for a total of 21 trials. © Society for Science & the Public 2000 - 2013

Keyword: Attention; Sexual Behavior
Link ID: 18706 - Posted: 09.26.2013

By Neuroskeptic The comparative anatomy of male and female brains is an incredibly popular topic. From teachers to cartoonists, everyone’s interested in it. One supposed dude-dame dimorphism is the width of the corpus callosum, the white matter bridge that connects the brain’s left and right hemispheres. Some studies suggest that women have a larger corpus callosum, relative to overall brain size, than men. This has led to a lot of speculation about how females, with their more ‘interconnected’ brains, are therefore better at things like multitasking: The corpus callosum is 30 percent more highly developed in the female brain… allowing information to flow more easily from one side of the brain to the other, which allows a woman to focus on more than one thing at a time. However, according to Eileen Luders and colleagues, that’s all a wash, because: Differences in Brain Volume Account for Apparent Sex Differences in Callosal Anatomy It’s been argued that women’s relatively larger corpus callosa may reflect the fact that men have larger brains, on average, and that the corpus callosum is relatively smaller in larger brains. In other words, the corpus callosum difference might be a side-effect of the true gender difference (perhaps the only one) – bigger male brains overall. Luders et al confirmed this with a clever technique: they looked in a large online brain database to find some extremely small male brains, and extremely large female ones. This, the two genders were matched on total size.

Keyword: Sexual Behavior; Brain imaging
Link ID: 18705 - Posted: 09.26.2013

By Tara Haelle A change in the way anorexia is diagnosed may make it easier to help more teens, not just thin ones, with the illness. Previously, overweight or obese teens were more likely to fall through the cracks when they developed anorexic behaviors. Now, the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) has broadened the disorder criteria by taking away the weight requirement. The change shifts the focus of the diagnosis from “being thin” to the behaviors of those with the illness. The previous criteria perpetuated the idea that anorexia is a weight disorder—rather than a psychological one. “A lot of people need help even if they don’t narrowly fit the definition of an illness,” says David Hahn, medical director of The Renfrew Center of Philadelphia. “This criteria makes clear that the behaviors, even without a very low weight, are pathologic and need to be addressed. The criteria may very much help pediatricians catch an eating disorder sooner and may teach the public and families to intervene more quickly if it’s understood that anorexia doesn’t only mean underweight.” Anorexia nervosa most often begins in adolescence and affects approximately 0.3 percent of teens. An additional 0.8 percent were found in one large study to have “subthreshold anorexia nervosa”—they showed the symptoms but did not meet all the criteria. Overall, about 6 percent of teens suffer from some kind of eating disorder, such as bulimia, binge-eating and other eating issues previously classified in the DSM-IV as “Eating Disorder—Not Otherwise Specified” (ED-NOS). © 2013 Scientific American

Keyword: Anorexia & Bulimia
Link ID: 18704 - Posted: 09.26.2013

By DENISE GELLENE Dr. David Hubel, who was half of an enduring scientific team that won a Nobel Prize for explaining how the brain assembles information from the eye’s retina to produce detailed visual images of the world, died on Sunday in Lincoln, Mass. He was 87. The cause was kidney failure, his son Carl said. Dr. Hubel (pronounced HUGH-bull) and his collaborator, Dr. Torsten Wiesel, shared the 1981 Nobel in Physiology or Medicine with Roger Sperry for discovering ways that the brain processes information. Dr. Hubel and Dr. Wiesel concentrated on visual perception, initially experimenting on cats; Dr. Sperry described the functions of the brain’s left and right hemispheres. Dr. Hubel’s and Dr. Wiesel’s work further showed that sensory deprivation early in life can permanently alter the brain’s ability to process images. Their findings led to a better understanding of how to treat certain visual birth defects. Dr. Hubel and Dr. Wiesel collaborated for more than two decades, becoming, as they made their discoveries, one of the best-known partnerships in science. “Their names became such a brand name that H&W rolled off the tongue as easily in the lab as A&W root beer did at lunch,” Robert H. Wurtz, a neuroscientist, wrote in a review article about their work. Before Dr. Hubel and Dr. Wiesel started their research in the 1950s, scientists had long believed that the brain functioned like a movie screen — projecting images exactly as they were received from the eye. Dr. Hubel and Dr. Wiesel showed that the brain behaves more like a microprocessor, deconstructing and then reassembling details of an image to create a visual scene. © 2013 The New York Times Company

Keyword: Development of the Brain; Vision
Link ID: 18703 - Posted: 09.25.2013

By Keith Payne It’s tough to be the boss. A recent Wall Street Journal article described the plight of one CEO who had to drag himself out of bed each morning and muster his game face. It would be a long day of telling other people what to do. It got so bad, we are told, that he had no choice but to take a year off work to sail across the Atlantic Ocean with his family. Forbes agrees: “many CEOs have personal assistants who run their schedules for them, and they go from one meeting straight to another with barely a moment to go to the bathroom.” The indignity! And even worse than the bladder strain is having to fire people: “You may think a CEO can be detached when deciding who to lay off, but generally that couldn’t be farther from the truth. Having to make tough decisions about the people all around you can hit very hard.” Take heart, those of you who have lost your job in these turbulent economic times. At least you didn’t have to fire somebody. This type of silliness usually cites research from the 1950’s on “executive stress syndrome.” The research was not on executives, but rhesus monkeys. In a famous experiment, neuroscientist Joseph Brady subjected one group of monkeys to regular electric shocks every 20 seconds for six hour shifts. Another group of “executive monkeys” had the same schedule, except that they could prevent the shocks by pressing a lever in each 20 second period. The “executive monkeys” quickly learned to prevent the shocks by pressing the levers. This situation sounds awful for both monkeys, but decidedly worse for the monkeys with no escape. And yet, it was the “executive monkeys” with greater responsibility and control who started dropping dead from stomach ulcers. These results seemed to suggest that being responsible for making important decisions was so stressful that it posed a serious health risk. Executive stress syndrome was born. © 2013 Scientific American

Keyword: Stress; Attention
Link ID: 18702 - Posted: 09.25.2013

Declan Butler Ghost writing is taking on an altogether different meaning in a mysterious case of alleged scientific fraud. The authors of a paper published in July (A. Vezyraki et al. Biochem. Biophys. Res. Commun. http://doi.org/nxb; 2013), which reported significant findings in obesity research, seem to be phantoms. They are not only unknown at the institution listed on the paper, but no trace of them as researchers can be found. The paper, published in the Elsevier journal Biochemical and Biophysical Research Communications (BBRC), is not the kind of prank that journals have encountered before, in which hoaxsters have submitted dummy papers to highlight weaknesses in the peer-review process. The paper’s reported findings — that overexpression of two novel proteins in fat cells leads to improvements in metabolic processes related to diabetes and obesity in mice — are, in fact, true. Too true, in the opinion of Bruce Spiegelman, a cell biologist at Harvard Medical School’s Dana-Farber Cancer Institute in Boston, Massachusetts. He says that he has presented similar findings at about six research meetings, and is preparing to submit them to a journal. He suspects that the BBRC paper was intended as a spoiler of his own lab’s work. Now withdrawn, the article lists five authors who are all supposedly from the School of Health Sciences at the University of Thessaly in Trikala, Greece, and is entitled ‘Identification of meteorin and metrnl as two novel pro-differentiative adipokines: Possible roles in controlling adipogenesis and insulin sensitivity’. Adipokines are proteins secreted by fat tissue that play an active part in such processes as sugar and fat metabolism, inflammation and obesity-related metabolic disorders, including insulin resistance and diabetes. © 2013 Nature Publishing Group

Keyword: Obesity
Link ID: 18701 - Posted: 09.25.2013

by Michael Slezak How do you convince someone that a finger they can't see or feel – one they don't even know is there – is actually part of their body? Turns out it's all in the wrist. The technique is a spin on the rubber hand illusion, developed almost 15 years ago. To perform the original trick, sit someone at a table and somehow hide one of their hands from their view. Then put a corresponding rubber hand on the table in front of them and stroke it while also stroking the real hand unseen. Bizarrely, they will often feel that the rubber hand is their own. Besides being a cool party trick, this illusion revealed a novel insight into how the brain develops its sense of "owning" body parts. It quickly led to treatments for conditions in which that sense is disrupted, such as phantom limb syndrome. Since then, the illusion has been tested thoroughly to find exactly what is needed for it to occur. We now know that the trick works using a rubber hand with a different colour skin to the participant and even without a rubber hand at all. You can do it just by making a person think you're going to stroke their hand. It's even been done in virtual reality. The theory emerging from these experiments is that if two different senses – like sight and touch – both suggest a rubber hand is yours, then your brain is convinced. © Copyright Reed Business Information Ltd.

Keyword: Pain & Touch
Link ID: 18700 - Posted: 09.25.2013

By Ingrid Wickelgren An attractive blonde in a bright red blouse sits in a wheelchair before the assembled scientists, doctors, writers and members of the community. We are in a conference room at the Aspen Meadows Resort, the site of the 2013 Aspen Brain Forum. Amanda Boxtel recalls what life was like for her at 24. She had been a skier, a runner and a ballet dancer, she tells us. She liked to hike in the wilderness. Pictures of a beautiful young woman appear on a screen. In the photos, she’s standing. Then one day on a slope, the tips of Boxtel’s skis crossed. She did a somersault and shattered four vertebrae. “I also shattered illusions of my immortality. I was paralyzed from here”—she hold her hands at her hips—“down. No movement and no sensation.” That life changed radically for her right then is difficult to dispute. But Boxtel eventually embraced a road to recovery. “It took time to turn wounds into wisdom. It took guts. This is a cruel injury. It is so much more than not being able to walk,” she tells us. With the aid of adaptive technology, she got back on her skis. She took up waterskiing, rock climbing, kayaking and hang gliding. But still, she couldn’t bear weight on her legs or walk. Walking seems easy to most of us, because the action is built-in; it is automatic. In reality, however, walking is a highly complex motion involving many different muscles that must contract in a precisely timed sequence. Once the spinal cord can no longer orchestrate this motion, it is exceedingly hard to replicate. Walking, for Boxtel, was arguably a pipe dream. And so she sat for 21 years. © 2013 Scientific American

Keyword: Robotics
Link ID: 18699 - Posted: 09.25.2013

By KEN BELSON Football players as young as 7 sustain hits to the head comparable in magnitude to those absorbed by high school and adult players, and most of the hits are sustained in practices, not games, according to research to be released Wednesday. The findings, which may influence how youth football organizations handle training methods and rules, were included in four studies published by researchers at the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences. The research, though limited, is considered by experts to be a step in the effort to address the relatively shallow understanding of the potential long-term effects of head trauma on young players. More than 25,000 football players from 8 to 19 years old are taken to emergency rooms seeking treatment for concussions every year, but most of the research on head injuries in football has focused on professional and college players. The new research, which was presented at the annual Biomedical Engineering Society conference this week, tracked about 120 players in Virginia and North Carolina from 7 to 18 over two seasons. Each young athlete wore six devices, known as accelerometers, in their helmets to measure the force, position and direction of the hits, and every practice and game was videotaped to determine how they occurred. To help determine any changes in brain structure and function, many of the players received magnetic resonance imaging brain scans before and after the season, and after they sustained a concussion. Some players also received magnetoencephalography scans, or MEG scans, to map their brain activity. © 2013 The New York Times Company

Keyword: Brain Injury/Concussion; Development of the Brain
Link ID: 18698 - Posted: 09.25.2013

By Michelle Roberts Health editor, BBC News online People prescribed anti-depressants should be aware they could be at increased risk of type 2 diabetes, say UK researchers. The University of Southampton team looked at available medical studies and found evidence the two were linked. But there was no proof that one necessarily caused the other. It may be that people taking anti-depressants put on weight which, in turn, increases their diabetes risk, the team told Diabetes Care journal. Or the drugs themselves may interfere with blood sugar control. Their analysis of 22 studies involving thousands of patients on anti-depressants could not single out any class of drug or type of person as high risk. Prof Richard Holt and colleagues say more research is needed to investigate what factors lie behind the findings. And they say doctors should keep a closer check for early warning signs of diabetes in patients who have been prescribed these drugs. With 46 million anti-depressant prescriptions a year in the UK, this potential increased risk is worrying, they say. Prof Holt said: "Some of this may be coincidence but there's a signal that people who are being treated with anti-depressants then have an increased risk of going on to develop diabetes. BBC © 2013

Keyword: Depression; Obesity
Link ID: 18697 - Posted: 09.25.2013

Few features of child-rearing occupy as much parental brain space as sleep, and with it the timeless question: Is my child getting enough? Despite the craving among many parents for more sleep in their offspring (and, by extension, themselves), the purpose that sleep serves in young kids remains something of a mystery—especially when it comes to daytime naps. Do they help children retain information, as overnight sleep has been found to do in adults? A study published today in the Proceedings of the National Academy of Sciences provides the first evidence that daytime sleep is critical for effective learning in young children. Psychologist Rebecca Spencer of the University of Massachusetts (UMass), Amherst, had more than a passing interest in the subject: Her daughters were 3 and 5 when she began chasing answers to these questions. She also wondered about growing enthusiasm for universal public preschool, where teachers don’t necessarily place much emphasis on naps. “There is a lot of science” about the best curriculum for preschool classrooms, “but nothing to protect the nap,” Spencer says. Still, data to support a nap’s usefulness were scarce: Studies in adults have found that sleep helps consolidate memories and learning, but whether the same is true of brief naps in the preschool set was unknown. So Spencer approached the first preschool she could think of that might help her find out: her daughters’. She later added other local preschools to her sample, for a total of 40 children ranging from nearly 3 to less than 6 years old. The goal of Spencer, her graduate student Laura Kurdziel, and undergraduate Kasey Duclos of Commonwealth Honors College at UMass, was to compare each child against him or herself: How well did a child learn when she napped, and what happened when she didn’t? © 2012 American Association for the Advancement of Science

Keyword: Sleep; Learning & Memory
Link ID: 18696 - Posted: 09.24.2013