Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 10681 - 10700 of 28882

Charlie Cooper Scientists have hailed an historic “turning point” in the search for a medicine that could beat Alzheimer's disease, after a drug-like compound was used to halt brain cell death in mice for the first time. Although the prospect of a pill for Alzheimer's remains a long way off, the landmark British study provides a major new pathway for future drug treatments. The compound works by blocking a faulty signal in brains affected by neurodegenerative diseases, which shuts down the production of essential proteins, leading to brain cells being unprotected and dying off. It was tested in mice with prion disease - the best animal model of human neurodegenerative disorders - but scientists said they were confident the same principles would apply in a human brain with debilitating brain diseases such as Alzheimer's or Parkinson's. The study, published today in the journal Science Translational Medicine, was carried out at the Medical Research Council's (MRC) Toxicology Unit at the University of Leicester. “It's a real step forward,” team leader Professor Giovanna Mallucci told The Independent. “It's the first time a substance has been given to mice that prevents brain disease. The fact that this is a compound that can be given orally, that gets into the brain and prevents brain disease, is a first in itself… We can go forward and develop better molecules and I can't see why preventing this process should only be restricted to mice. I think this probably will translate into other mammalian brains.” © independent.co.uk

Keyword: Alzheimers
Link ID: 18775 - Posted: 10.10.2013

By MICHAEL TORTORELLO SONOMA, Calif. — Here is a truth about children with autism: they grow up to become adults with autism. Advocates estimate that over the next decade some 500,000 such individuals will come of age in the United States. No one can say for sure what adulthood will hold for them. To start, where will everyone live and work? A 2008 Easter Seals study found that 79 percent of young adults with autism spectrum disorders continue to reside with their parents. A solid majority of them have never looked for a job. And yet the life expectancy of people with autism is more or less average. Here is another truth, then, about children with autism: they can’t stay at home forever. This realization — as obvious as it is worrying — has recently stirred the beginnings of a response from researchers, architects and, not least, parents. In 2009, a pair of academics, Kim Steele and Sherry Ahrentzen, collaborated on “Advancing Full Spectrum Housing,” a comprehensive design guideline for housing adults with autism. (An expanded book on the topic is scheduled to come out next year.) Perhaps the first development to closely follow their template is Sweetwater Spectrum, a residence for 16 adults whose abilities and disabilities span the full range of autism. The innovative $10.4 million project opened in January in the heart of California wine country, and its founding families and board hope to make Sweetwater a model for like-minded experiments across the country. “You hear about different organizations planning to do these things,” said Dr. Ahrentzen, a professor in the Shimberg Center for Housing Studies at the University of Florida, in Gainesville. But “it takes time to get all these different funding sources in place.” © 2013 The New York Times Company

Keyword: Autism
Link ID: 18774 - Posted: 10.10.2013

By Scott Barry Kaufman Brain training: yay or nay? It’s not so simple. As we all know, people differ quite a bit from one another in how much information they can maintain, manipulate, and transform in their heads at one time. Crucially, these differences relate to important outcomes, such as abstract reasoning, academic performance, reading comprehension, and the acquisition of new skills. The most consistent and least controversial finding in the literature is that working memory training programs produce reliable short-term improvements in both verbal and visuospatial working memory skills. On average, the effect sizes range from moderate to large, although the long-term sustainability of these effects is much more ambiguous. These effects are called near transfer effects, because they don’t transfer very far beyond the trained domain of cognitive functioning. What are far more controversial (and far more interesting) are far transfer effects. One particular class of far transfer effects that cognitive psychologists are particularly interested in are those that show increases in fluid intelligence: the deliberate but flexible control of attention to solve novel “on the spot” problems that cannot be perfomed by relying exclusively on previously learned habits, schemas, and scripts. Here is where we enter the swamp. Some studies have reported absolutely no effect of working memory training on fluid intelligence, whereas others have found an effect. The results are mixed and inconclusive. Various critics have rightfully listed a number of methodological flaws and alternative explanations that could explain the far transfer effects. © 2013 Scientific American

Keyword: Learning & Memory
Link ID: 18773 - Posted: 10.10.2013

by Nora Schultz A SIMPLE bedside scan could reveal an active mind hidden inside an unresponsive body. The method provides another tool for recognising consciousness in people who have been wrongly diagnosed as being in a vegetative state. Tests are also under way to use it to monitor people under general anaesthetic, to make sure they do not regain consciousness during an operation. The technique builds on recent research into the nature of consciousness. "Information that is processed consciously typically recruits several brain regions at once," says Jean-Rémi King at the Brain and Spine Institute (ICM) in Paris, France. Other information that enters the brain triggers unconscious activity – for instance, the righting reflex that helps us retain balance when we are pushed – and it only tends to activate one brain area. King and his colleague Jacobo Sitt, also at the ICM, reasoned that they could spot consciousness in people simply by playing them a series of beeps and then searching electroencephalogram (EEG) brain scan data for evidence that signals from different brain regions fluctuated in the same way as each other, suggesting that they were sharing information. They performed their tests on 75 people in a vegetative state, 67 minimally conscious people, 24 people who had recently regained consciousness after a coma, and 14 healthy controls. By running the EEG data through statistics software, the researchers found differences between the patterns from people who were fully conscious, those in a vegetative state, and those who were minimally conscious (Current Biology, doi.org/n42). © Copyright Reed Business Information Ltd.

Keyword: Consciousness
Link ID: 18772 - Posted: 10.10.2013

By ANAHAD O'CONNOR They are a mystery to researchers: people who are significantly overweight and yet show none of the usual metabolic red flags. Despite their obesity, they have normal cholesterol levels, healthy blood pressure levels and no apparent signs of impending diabetes. Researchers call them the metabolically healthy obese, and by some estimates they represent as many as a third of all obese adults. Scientists have known very little about them, but new research may shed some light on the cause of their unusual metabolic profile. A study in the journal Diabetologia has found that compared with their healthier counterparts, people who are obese but metabolically unhealthy have impaired mitochondria, the cellular powerhouses that harvest energy from food, as well as a reduced ability to generate new fat cells. Unlike fat tissue in healthy obese people, which generates new cells to help store fat as it accumulates, the fat cells of the unhealthy obese swell to their breaking point, straining the cellular machinery and ultimately dying off. This is accompanied by inflammation, and it leads to ectopic fat accumulation — the shuttling of fat into organs where it does not belong, like the liver, heart and skeletal muscle. A fatty liver frequently coincides with metabolic abnormalities, and studies suggest that it may be one of the causes of insulin resistance, the fundamental defect in Type 2 diabetes. In the healthy obese, however, the fat tends to remain in the subcutaneous padding just beneath the skin, where it appears to be fairly innocuous. “The group that doesn’t gain fat in the liver as they get obese seems to avoid inflammation and maintain their metabolic health,” said Dr. Jussi Naukkarinen, a research scientist specializing in internal medicine at the University of Helsinki. “There is a complete difference in how they react to obesity.” Copyright 2013 The New York Times Company

Keyword: Obesity
Link ID: 18771 - Posted: 10.10.2013

By ABBY ELLIN When binge eating disorder gained legitimacy as a full-fledged mental condition in the latest edition of the Diagnostic and Statistical Manual of Mental Disorders in May, many people in the eating disorders and obesity communities wondered: Will this inspire us to finally get along? It was a good question, since historically, the two groups have been at odds. Unlike people with anorexia or bulimia, who tend to be excessively thin, many binge eaters are overweight or obese. And much of the focus of anti-obesity efforts — listing calories at restaurants, banning cupcakes in schools, sending students home with body mass index “report cards” — are decried by eating disorder activists, who say such measures can encourage anorexia or bulimia. Anti-obesity activists, in turn, worry that the eating disorder community minimizes the medical risks of obesity, which the American Medical Association classified as a disease in June, and plays down the discrimination many obese people face. “They come out of different traditions,” said Kelly Brownell, dean of the Sanford School of Public Policy at Duke University. “Obesity was mainly dealt with in medical professions, and eating disorders were dealt with more in psychology professions.” But binge eating disorder, symptoms of which include consuming enormous amounts of food in a two-hour window without purging at least once a week for three months, could bridge the gap between the two worlds, while also reducing the stereotype that only thin people suffer from eating disorders. Copyright 2013 The New York Times Company

Keyword: Anorexia & Bulimia
Link ID: 18770 - Posted: 10.10.2013

by Bruce Bower Babies may start to learn their mother tongues even before seeing their mothers’ faces. Newborns react differently to native and foreign vowel sounds, suggesting that language learning begins in the womb, researchers say. Infants tested seven to 75 hours after birth treated spoken variants of a vowel sound in their home language as similar, evidence that newborns regard these sounds as members of a common category, say psychologist Christine Moon of Pacific Lutheran University in Tacoma, Wash., and her colleagues. Newborns deemed different versions of a foreign vowel sound to be dissimilar and unfamiliar, the scientists report in an upcoming Acta Paediatrica. “It seems that there is some prenatal learning of speech sounds, but we do not yet know how much,” Moon says. Fetuses can hear outside sounds by about 10 weeks before birth. Until now, evidence suggested that prenatal learning was restricted to the melody, rhythm and loudness of voices (SN: 12/5/09, p. 14). Earlier investigations established that 6-month-olds group native but not foreign vowel sounds into categories. Moon and colleagues propose that, in the last couple months of gestation, babies monitor at least some vowels — the loudest and most expressive speech sounds — uttered by their mothers. © Society for Science & the Public 2000 - 2013

Keyword: Language; Development of the Brain
Link ID: 18769 - Posted: 10.09.2013

By Helen Briggs BBC News The brain has a critical window for language development between the ages of two and four, brain scans suggest. Environmental influences have their biggest impact before the age of four, as the brain's wiring develops to process new words, say UK and US scientists. The research in The Journal of Neuroscience suggests disorders causing language delay should be tackled early. It also explains why young children are good at learning two languages. The scientists, based at King's College London, and Brown University, Rhode Island, studied 108 children with normal brain development between the ages of one and six. They used brain scans to look at myelin - the insulation that develops from birth within the circuitry of the brain. To their surprise, they found the distribution of myelin is fixed from the age of four, suggesting the brain is most plastic in very early life. Any environmental influences on brain development will be strongest in infanthood, they predict. This explains why immersing children in a bilingual environment before the age of four gives them the best chance of becoming fluent in both languages, the research suggests. BBC © 2013

Keyword: Language; Development of the Brain
Link ID: 18768 - Posted: 10.09.2013

by Andy Coghlan Swifts are said to spend most of their lives airborne, but no one has ever proved this. Now, a study suggests there's some truth to it: alpine swifts spend more than six consecutive months aloft, not even resting after migrating to north Africa following their breeding season in Europe. "Up to now, such long-lasting locomotive activity had been reported only for animals living in the sea," says Felix Liechti of the Swiss Ornithological Institute in Sempach. Liechti and his colleagues attached 1.5-gram data loggers to three alpine swifts (Tachymarptis melba) at a Swiss breeding site, and recaptured the birds the following year. The loggers recorded the birds' acceleration and geographic location. The measurements suggest that for 200 days, all three swifts remained airborne while migrating to and wintering in Africa. Liechti says researchers have previously asserted but never proved that newborn common swifts spend three years aloft before landing for breeding. "Amazing, truly amazing," says Carsten Egevang of the Greenland Institute of Natural Resources in Nuuk of Liechti's findings. "We knew that swifts stay on the wing for long periods, but 200 days is very impressive." The birds survive on airborne plankton, and almost certainly sleep on the wing too, Liechti says. "It has been assumed that the birds 'sleep' only for seconds, or use only one half of the brain while the other half is resting," he says. © Copyright Reed Business Information Ltd

Keyword: Sleep
Link ID: 18767 - Posted: 10.09.2013

By Stephen L. Macknik and Susana Martinez-Conde Dennis Rogers is an unassuming guy. He's on the short side. And though muscular, he doesn't come across as the kind of towering Venice Beach, muscle-bound Arnold that you might expect from someone billed as the World's Strongest Man. Rather he has the kind of avuncular intensity you find in a great automobile mechanic—a mechanic who happens to be able to lift an engine with one hand while using the fingertips of the other hand to wrench the spark plugs out. Like it's nothing. Rogers, who has been known to keep two U.S. Air Force fighter planes from blasting away in opposite directions by holding them back with his bare hands, performed at the most recent Gathering for Gardner—a conference that celebrates the interests of one of Scientific American's greatest columnists, the late mathemagician Martin Gardner. We asked Rogers about the source of his incredible powers after the show, and we were surprised to learn that he did not know. Bill Amonette of the University of Houston–Clear Lake found that Rogers could recruit an abnormally high number of muscle fibers. But was this ability because of a freak genetic mutation? Another possibility, which Rogers thinks is more likely, is the way he processes pain when he strains those muscles. What if, instead of superpowered muscles, Rogers has a normal—though extremely well exercised—body, and his abilities arise because he can withstand more pain than most mere mortals? He claims that he does feel pain and is actually scared of dentists. In fact, during one stunt in which he held back four souped-up Harley motorbikes with straps, he bit down so hard he split a tooth from top to bottom. Rather than taking his chances at the dentist, he reached into his mouth, clamped his viselike fingertips onto the broken tooth, and extracted it, root and all. Rogers reasons that, unlike in the dentist's office—where he has no control over the pain that is inflicted on him—he has direct executive control over pain that he inflicts on himself. “I know it's coming, I have an idea of what to expect and I can decide to ignore it,” he says. © 2013 Scientific American

Keyword: Pain & Touch; Emotions
Link ID: 18766 - Posted: 10.09.2013

A narrowing of the veins from the brain is unlikely as a cause multiple sclerosis, say researchers from B.C. and Saskatchewan who found the narrowing is a common and normal finding in most people. Italian Paolo Zamboni made headlines in Canada four years ago for his belief that clearing blocked or narrowed neck veins could relieve MS symptoms. Since then probably more than 3,000 Canadians have gone out of country for dilation treatment, said Dr. Anthony Traboulsee of the University of British Columbia. In Tuesday's online issue of the The Lancet, Traboulsee and his co-authors published their findings on the prevalence of narrowing, known as chronic cerebrospinal venous insufficiency or CCSVI, in people with MS, their siblings and unrelated healthy controls. Using catheter venography to directly visualize veins, the researchers found three people tested positive for CCSVI: One of 65 (2 per cent) of those with MS. One of 46 (2 per cent) of siblings. One of 32 (3 per cent) on unrelated controls. "This was a big surprise to all of us," Traboulsee told reporters. "We were really expecting to find many more people with this feature." When the researchers used ultrasound to look for CCSVI, they found narrowing in more than 50 per cent of all three groups. The hypothesis that vein narrowing has a role in the cause of MS is unlikely since its prevalence was similar in all three groups, the study's authors concluded. © CBC 2013

Keyword: Multiple Sclerosis
Link ID: 18765 - Posted: 10.09.2013

By Justin Gregg Santino was a misanthrope with a habit of pelting tourists with rocks. As his reputation for mischief grew, he had to devise increasingly clever ways to ambush his wary victims. Santino learned to stash his rocks just out of sight and casually stand just a few feet from them in order to throw off suspicion. At the very moment that passersby were fooled into thinking that he meant them no harm, he grabbed his hidden projectiles and launched his attack. Santino was displaying an ability to learn from his past experiences and plan for future scenarios. This has long been a hallmark of human intelligence. But a recently published review paper by the psychologist Thomas Zentall from the University of Kentucky argues that this complex ability should no longer be considered unique to humans. Santino, you see, is not human. He’s a chimpanzee at Furuvik Zoo in Sweden. His crafty stone-throwing escapades have made him a global celebrity, and also caught the attention of researchers studying how animals, much like humans, might be able to plan their behavior. Santino is one of a handful of animals that scientists believe are showing a complex cognitive ability called episodic memory. Episodic memory is the ability to recall past events that one has the sense of having personally experienced. Unlike semantic memory, which involves recalling simple facts like “bee stings hurt,” episodic memory involves putting yourself at the heart of the memory; like remembering the time you swatted at a bee with a rolled up newspaper and it got angry and stung your hand. © 2013 Scientific American

Keyword: Intelligence; Evolution
Link ID: 18764 - Posted: 10.09.2013

Alison Abbott In a sign that psychiatric-disease research is entering a new era, the pharmaceutical giant Novartis has hired an expert in neural circuitry, rather than pharmacology, to head its relaunched neuroscience division. The appointment of 42-year-old Ricardo Dolmetsch, who has spent his entire career in academic research, signifies a radical policy shift for the company, as it moves away from conventional neurotransmitter research to concentrate on analysing the neural circuitry that causes brain diseases. The decision suggests Novartis is confident that after years of fruitless research in the field, revolutionary advancements in, for example, genetic and stem-cell technologies will pay dividends. The company intends to hire 100 new staff members for the department over the next 3 years. But the move is risky: even if it pans out, new drugs for common disorders such as schizophrenia could be decades away from reaching the market. Dolmetsch, a former senior director at the Allen Institute for brain Science in Seattle, Washington, who has also worked at Stanford University School of Medicine in California, says that his new role gives him access to previously unimaginable resources. “I had this idea that big pharma was a slow, plodding, conservative giant,” he says. “I was surprised by the depth of science at Novartis.” An expert in autism spectrum disorder, he was also attracted by the prospect of contributing to the development of therapies — something that academic institutions are poorly equipped to do — particularly because one of his own sons has autism. There was “not much enthusiasm” for studying disease at the Allen Institute, which focuses instead on basic research into brain science, he says. © 2013 Nature Publishing Group

Keyword: Schizophrenia; Autism
Link ID: 18763 - Posted: 10.09.2013

By JAMES GORMAN SEATTLE — To hear Michael Dickinson tell it, there is nothing in the world quite as wonderful as a fruit fly. And it’s not because the fly is one of the most important laboratory animals in the history of biology, often used as a simple model for human genetics or neuroscience. “I don’t think they’re a simple model of anything,” he says. “If flies are a great model, they’re a great model for flies. “These animals, you know, they’re not like us,” he says, warming to his subject. “We don’t fly. We don’t have a compound eye. I don’t think we process sensory information the same way. The muscles that they use are just incredibly much more sophisticated and interesting than the muscles we use. “They can taste with their wings,” he adds, as his enthusiasm builds. “No one knows any reason why they have taste cells on their wing. Their bodies are just covered with sensors. This is one of the most studied organisms in the history of science, and we’re still fundamentally ignorant about many features of its basic biology. It’s like having an alien in your lab. “And,” he says, pausing, seeming puzzled that the world has not joined him in open-mouthed wonder for his favorite creature, “they can fly!” If he had to define his specialty, Dr. Dickinson, 50, who counts a MacArthur “genius” award among his honors, would call himself a neuroethologist. As such, he studies the basis of behavior in the brain at the University of Washington, in Seattle. In practice he is a polymath of sorts who has targeted the fruit fly, Drosophila melanogaster, and its flying behavior for studies that involve physics, mathematics, neurobiology, computer vision, muscle physiology and other disciplines. © 2013 The New York Times Company

Keyword: Movement Disorders
Link ID: 18762 - Posted: 10.08.2013

Many people, I've heard talk, wonder what's going on inside Republican speaker John Boehner's brain. For cognitive neuroscientists, Boehner's brain is a case study. At the same time, others are frustrated with Democrat Harry Reid. The Senate Majority leader needs to take a tip from our founding fathers. Many of the intellectual giants who founded our democracy were both statesmen and scientists, and they applied the latest in scientific knowledge of their day to advantage in governing. The acoustics of the House of Representatives, now Statuary Hall, allowed John Quincy Adams and his comrades to eavesdrop on other members of congress conversing in whispers on the opposite side of the parabolic-shaped room. Senator Reid, in stark contrast, is still applying ancient techniques used when senators wore togas -- reason and argument -- and we all know how badly that turned out. The search for a path to compromise can be found in the latest research on the neurobiological basis of social behavior. Consider this new finding just published in the journal Brain Research. Oxytocin, a peptide produced in the hypothalamus of the brain and known to cement the strong bond between mother and child at birth, has been found to promote compromise in rivaling groups! This new research suggests that Congresswoman Nancy Pelosi could single-handedly end the Washington deadlock by spritzing a bit of oxytocin in her perfume and wafting it throughout the halls of congress. One can only imagine the loving effect this hormone would have on Senate Republican Ted Cruz, suddenly overwhelmed with an irresistible urge to bond with his colleagues, fawning for a cozy embrace like a babe cuddling in its mother's arms. And it is so simple! No stealthy spiking the opponent's coffee (or third martini at lunch) would be required, oxytocin works when it is inhaled through the nasal passages as an odorless vapor. © 2013 TheHuffingtonPost.com, Inc.

Keyword: Attention
Link ID: 18761 - Posted: 10.08.2013

by Linda Geddes There's little doubt that smoking during pregnancy is bad for the baby. But besides stunting growth and boosting the risk of premature birth, it seems that tobacco smoke leaves a lasting legacy on the brain. Children whose mothers smoked during pregnancy have altered brain growth, which may put them at greater risk of anxiety and depression. Hanan El Marroun at Erasmus Medical Center in Rotterdam, the Netherlands, and her colleagues had previously seen impaired brain growth in babies born to women who smoked throughout their pregnancy, although no differences were seen if women stopped smoking soon after learning that they were pregnant. The question was whether these changes were permanent, or would correct themselves as the child developed. So El Marroun's team used MRI to look at the brains of 113 children aged between 6 and 8 years old whose mothers smoked during pregnancy, and another 113 children whose mums did not. The children's behavioural and emotional functioning was also tested. Depression link Those whose mothers smoked throughout pregnancy had smaller total brain volumes and reduced amounts of grey and white matter in the superior frontal cortex, an area involved in regulating moods. What's more, these structural differences correlated with symptoms of depression and anxiety in the children. Not every child whose mother smoked showed these symptoms, and the study could not definitively prove cause and effect. However, because we already know that smoking is bad for babies, pregnant women should continue to be advised not to smoke, El Marroun says. © Copyright Reed Business Information Ltd.

Keyword: Depression; Drug Abuse
Link ID: 18760 - Posted: 10.08.2013

By Scicurious When most of us hear birds twittering away in the trees, we hear it as background noise. It’s often hard to separate out one bird from another. But when you can, you begin to hear just how complex birdsong can be, a complex way of male signaling to a female how THEY are the best, and THEY are the one they should clearly pick. You hear ups and downs and trills and repeating themes. We used to think that birdsong was a relatively simple gene by environment interaction. The big males with the big songs get the best females, and then it’s a matter of also getting the best food, and the then healthy bird teaches its offspring to sing, and the health offspring goes on to display the best song. The song is therefore an “honest signal” of the bird’s fitness, it’s got good genes and good food and it is ready to MATE, baby! But how much of it is really training and how much is genetic? To find out, we go to what may possibly be the cutest of research subjects…the zebra finch. To look at the relationship between genes and environment in song learning, the authors turned to the zebra finch. Many other studies have also looked at the zebra finch and how it learns song, and how environmental pressures (like say, not enough food) change the way the song is displayed. But those experiments usually bred the birds and looked at the environment…they didn’t look at the teachers. The father birds, who were “teaching” their offspring to sing. © 2013 Scientific American

Keyword: Learning & Memory; Sexual Behavior
Link ID: 18759 - Posted: 10.08.2013

by Colin Barras Male marsupial mice just don't know when to stop. For Antechinus stuartii, their debut breeding season is so frenetic and stressful that they drop dead at the end of it from exhaustion or disease. It may be the females of the species that are driving this self-destructive behaviour. Suicidal breeding, known as semelparity, is seen in several marsupials. This is likely linked to short breeding seasons and the fact that the marsupial mice only breed once a year. It is not clear why this is, but it may be that females can only breed when the population of their insect prey reaches its peak. A year is a long and dangerous time for a small animal, so under these circumstances males might do best to pump all their resources into a single breeding season. To test this idea, Diana Fisher of the University of Queensland in St Lucia, Australia, and her colleagues tracked how insect abundance changed with the seasons in the marsupials' home forests. Sure enough, they found that the marsupials' breeding seasons were shortest where insect abundance followed a predictable annual pattern. But the insects are not the whole explanation. It turns out that females do sometimes survive the year and breed again. So why do the males always die? The key factor is that the females are highly promiscuous, says Fisher. Coupled with the short breeding season, this leads to intense competition between males. "Males that exert extreme effort in this short time are at an advantage." © Copyright Reed Business Information Ltd.

Keyword: Stress; Sexual Behavior
Link ID: 18758 - Posted: 10.08.2013

By Cat Bohannon Halos, auras, flashes of light, pins and needles running down your arms, the sudden scent of sulfur—many symptoms of a migraine have vaguely mystical qualities, and experts remain puzzled by the debilitating headaches' cause. Researchers at Harvard University, however, have come at least one step closer to figuring out why women are twice as likely to suffer from chronic migraines as men. The brain of a female migraineur looks so unlike the brain of a male migraineur, asserts Harvard scientist Nasim Maleki, that we should think of migraines in men and women as “different diseases altogether.” Maleki is known for looking at pain and motor regions in the brain, which are known to be unusually excitable in migraine sufferers. In one notable study published in the journal Brain last year, she and her colleagues exposed male and female migraineurs to painful heat on the backs of their hands while imaging their brains with functional MRI. She found that the women had a greater response in areas of the brain associated with emotional processing, such as the amygdala, than did the men. Furthermore, she found that in these women, the posterior insula and the precuneus—areas of the brain responsible for motor processing, pain perception and visuospatial imagery—were significantly thicker and more connected to each other than in male migraineurs or in those without migraines. In Maleki's most recent work, presented in June at the International Headache Congress, her team imaged the brains of migraineurs and healthy people between the ages of 20 and 65, and it made a discovery that she characterizes as “very, very weird.” In women with chronic migraines, the posterior insula does not seem to thin with age, as it does for everyone else, including male migraineurs and people who do not have migraines. The region starts thick and stays thick. © 2013 Scientific American

Keyword: Pain & Touch; Sexual Behavior
Link ID: 18757 - Posted: 10.08.2013

By Rebecca Lanning, Everywhere I went, people asked me about my son Will. They knew he’d graduated from high school, and they wanted to know what he was doing. Smiling politely, I told them that Will had been accepted to his first-choice college. But, I always added — in case someone saw him around town — that he had deferred enrollment. He was taking a gap year, I’d say. “So what’s your son doing with his windfall of free time? Traveling abroad? Doing research?” My cheeks burned as I played along, offering sound bites. A start-up venture. A film project. Independent study. Anything to avoid the truth: that my handsome, broad-shouldered son was, probably, at that very moment, home in bed with the shutters drawn, covers pulled over his head. Officially, Will was taking a gap year. But after 13 years of school, what he needed, what he’d earned, was a nap year. Will has long suffered from learning difficulties. It took years to pinpoint a diagnosis — and even when we did, figuring out how to manage it wasn’t easy. He needed a break. So did I. Will’s problems began to surface when he was in kindergarten. “He’s not where the other children are,” his teacher whispered to me one morning. I knew what she meant. Clumsy and slow to read, Will rested his head on his desk a lot. His written work, smudgy from excessive erasing, looked like bits of crumpled trash. School was torture for Will. He couldn’t take notes, failed to turn in homework, forgot when tests were coming up. Yet on standardized tests, his verbal scores consistently exceeded the 99th percentile. I wondered why he struggled, when clearly he was bright. © 1996-2013 The Washington Post

Keyword: ADHD; Development of the Brain
Link ID: 18756 - Posted: 10.08.2013