Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By Jennifer Ouellette It was a brisk October day in a Greenwich Village café when New York University neuroscientist David Poeppel crushed my dream of writing the definitive book on the science of the self. I had naively thought I could take a light-hearted romp through genotyping, brain scans, and a few personality tests and explain how a fully conscious unique individual emerges from the genetic primordial ooze. Instead, I found myself scrambling to navigate bumpy empirical ground that was constantly shifting beneath my feet. How could a humble science writer possibly make sense of something so elusively complex when the world’s most brilliant thinkers are still grappling with this marvelous integration that makes us us? “You can’t. Why should you?” Poeppel asked bluntly when I poured out my woes. “We work for years and years on seemingly simple problems, so why should a very complicated problem yield an intuition? It’s not going to happen that way. You’re not going to find the answer.” Well, he was right. Darn it. But while I might not have found the Ultimate Answer to the source of the self, it proved to be an exciting journey and I learned some fascinating things along the way. 1. Genes are deterministic but they are not destiny. Except for earwax consistency. My earwax is my destiny. We tend to think of our genome as following a “one gene for one trait” model, but the real story is far more complicated. True, there is one gene that codes for a protein that determines whether you will have wet or dry earwax, but most genes serve many more than one function and do not act alone. Height is a simple trait that is almost entirely hereditary, but there is no single gene helpfully labeled height. Rather, there are several genes interacting with one another that determine how tall we will be. Ditto for eye color. It’s even more complicated for personality traits, health risk factors, and behaviors, where traits are influenced, to varying degrees, by parenting, peer pressure, cultural influences, unique life experiences, and even the hormones churning around us as we develop in the womb.
Keyword: Brain imaging; Genes & Behavior
Link ID: 19191 - Posted: 02.01.2014
Madhusree Mukerjee By displaying images on an iPad, researchers tested patients' ability to detect contrast after their vision was restored by cataract surgery. In a study of congenitally blind children who underwent surgery to restore vision, researchers have found that the brain can still learn to use the newly acquired sense much later in life than previously thought. Healthy infants start learning to discern objects, typically by their form and colour, from the moment they open their eyes. By the time a baby is a year old vision development is more or less complete, although refinements continue through childhood. But as the brain grows older, it becomes less adaptable, neuroscientists generally believe. "The dogma is that after a certain age the brain is unable to process visual inputs it has never received before," explains cognitive scientist Amy Kalia of the Massachusetts Institute of Technology (MIT) in Cambridge. Consequently, eye surgeons in India often refuse to treat children blinded by cataracts since infancy if they are over the age of seven. Such children are not usually found in wealthier countries such as the United States — where cataracts are treated as early as possible — but are tragically plentiful in India. In the study, which was published last week in Proceedings of the National Academy of Sciences1, Kalia and her collaborators followed 11 children enrolled in Project Prakash2, a humanitarian and scientific effort in India that provides corrective surgery to children with treatable cataracts and subsequently studies their visual abilities. ('Prakash' is Sanskrit for light.) © 2014 Nature Publishing Group
Keyword: Development of the Brain; Vision
Link ID: 19190 - Posted: 01.30.2014
Controversy delights Dick Swaab; brains delight him; complexity delights him, though I don't know if you'd get that from reading his book, We Are Our Brains, in which causal links are made quite casually, like a man doing a crossword with a pencil. The Dutch neurologist is, after a 50-year career, a giant in the field. He is a professor of neurobiology at the University of Amsterdam. His directorship of the Dutch Institute for Brain Research yielded material that has been sent to 500 other research groups in 25 countries. He has propounded groundbreaking theories in his specialist area: the impact on brain development in the womb. Nonetheless, his book, despite directing itself squarely to the layperson, has been miles more successful than he thought, selling 100,000 copies ("the publishers say they knew it would be a hit. But at the start, they only printed 3,000 copies. So I know that is not true."). There are a number of lines you might file under, "Well, there's a curiosity" (for instance: "In professional violinists, the part of the cerebral cortex that directs the fingers of the left hand is five times as large as it is in people who don't play a stringed instrument"). And yet the real fireworks of the book are both more predictable and more profound: Swaab says hormones and chemical substances in utero affect the development of our sexual orientation or, put more simply, you have a gay brain by the time you are born. Male and female brains have "hundreds of differences", which explain all the ways in which men and women are different; "phobia, impulsiveness, ADHD and depression later in life" can be traced back to a mother's fearfulness during pregnancy, which activates her baby's "fear axis". © 2014 Guardian News
Keyword: Sexual Behavior
Link ID: 19189 - Posted: 01.30.2014
By Meeri Kim, Neanderthal genes lurk among us. Small traces of Neanderthal DNA have been confirmed in the areas of the genome that affect skin and hair of modern humans, according to two new studies that also give clues as to which Neanderthal traits may have been helpful — or harmful — to the survival of our species. The studies, published online Wednesday in the journals Nature and Science, came to similar conclusions despite using vastly different methods of genomic analysis. For East Asian and European populations, genes that provide the physical characteristics of skin and hair have a high incidence of Neanderthal DNA — possibly lending toughness and insulation to weather the cold as early man emerged from Africa, the studies conclude. Neanderthals were thought to have already been adapted to a chillier, more northern environment. Perhaps most notably, Neanderthal DNA was not found in genes that influence testicles or the X chromosome, according to the Nature study, hinting that when the Neanderthal ventured outside his species for sex, the introduction of his DNA may have reduced male fertility in early humans. As a result, evolution wiped away the Neanderthal DNA that negatively affected procreation. “There’s strong evidence that when the two met and mixed, they were at the edge of biological compatibility,” said Nature study author and Harvard University geneticist David Reich. “The people who eventually survived and thrived had quite a bit of hurdles to overcome.” This is consistent with what is seen in nature: When two species mate that are sufficiently far away biologically, the resulting hybrids tend to have lowered fertility. Early humans and Neanderthals interbred about 40,000 to 80,000 years ago around the Middle East, during man’s migration out of Africa. © 1996-2014 The Washington Post
Keyword: Evolution; Genes & Behavior
Link ID: 19188 - Posted: 01.30.2014
By GINA KOLATA For many obese adults, the die was cast by the time they were 5 years old. A major new study of more than 7,000 children has found that a third of children who were overweight in kindergarten were obese by eighth grade. And almost every child who was very obese remained that way. Some obese or overweight kindergartners lost their excess weight, and some children of normal weight got fat over the years. But every year, the chances that a child would slide into or out of being overweight or obese diminished. By age 11, there were few additional changes: Those who were obese or overweight stayed that way, and those whose weight was normal did not become fat. “The main message is that obesity is established very early in life, and that it basically tracks through adolescence to adulthood,” said Ruth Loos, a professor of preventive medicine at the Icahn School of Medicine at Mount Sinai in New York, who was not involved in the study. These results, surprising to many experts, arose from a rare study that tracked children’s body weight for years, from kindergarten through eighth grade. Experts say they may reshape approaches to combating the nation’s obesity epidemic, suggesting that efforts must start much earlier and focus more on the children at greatest risk. The findings, to be published Thursday in The New England Journal of Medicine, do not explain why the effect occurs. Researchers say it may be a combination of genetic predispositions to being heavy and environments that encourage overeating in those prone to it. But the results do provide a possible explanation for why efforts to help children lose weight have often had disappointing results. The steps may have aimed too broadly at all schoolchildren, rather than starting before children enrolled in kindergarten and concentrating on those who were already fat at very young ages. © 2014 The New York Times Company
Keyword: Obesity; Development of the Brain
Link ID: 19187 - Posted: 01.30.2014
by Susan Milius Male bee flies fooled into trying to copulate with a daisy may learn from the awkward incident. Certain orchids and several forms of South Africa’s Gorteria diffusa daisy lure pollinators by mimicking female insects. The most effective daisy seducers row a dark, somewhat fly-shaped bump on one of their otherwise yellow-to-orange petals. Males of small, dark Megapalpus capensis bee flies go wild. But tests show the daisy’s victims waste less time trying to mate with a second deceptive daisy than with the first. “Far from being slow and stupid, these males are actually quite keen observers and fairly perceptive for a fly,” says Marinus L. de Jager of Stellenbosch University in South Africa. Males’ success locating a female bee fly drops in the presence of deceitful daisies, de Jager and Stellenbosch University colleague Allan Ellis say January 29 in the Proceedings of the Royal Society B. That’s the first clear demonstration of sexual deceit’s cost to a pollinator, Ellis says. Such evolutionary costs might push the bee fly to learn from mating mistakes. How long bee flies stay daisy-wary remains unknown. In other studies, wasps tricked by an Australian orchid forgot their lesson after about 24 hours. © Society for Science & the Public 2000 - 2014
Keyword: Learning & Memory; Evolution
Link ID: 19186 - Posted: 01.30.2014
|By Roni Jacobson There is nothing like a good night's sleep to help you feel your best the next day. Now scientists are finding that good sleep habits may do more than restore cognitive function on a nightly basis—they may also fortify the brain over the long term, according to a new study in the Journal of Neuroscience. Researchers at the University of Wisconsin–Madison found that during sleep, activity ramps up in genes that are involved in producing oligodendrocytes—brain cells responsible for coating neurons with myelin. Myelin is the brain's insulating material. The fatty substance surrounds the signal-transmitting tail that extends from every neuron, enabling electrical communications to travel quickly and efficiently to other neurons. Myelin deficiency is at the root of the neurodegenerative disease multiple sclerosis and can contribute to symptoms such as fatigue, vision and hearing impairment, and a loss of coordination. In this study, sleeping mice had heightened activity in the genes responsible for creating oligodendrocytes, but awake or sleep-deprived rodents showed greater activity in genes involved in cellular stress and death. Chiara Cirelli, a neuroscientist and author on the paper, suggests that sleep helps cells regenerate and repair themselves, by enabling the body to produce new myelin after it has deteriorated. Cellular repair probably takes weeks or even months, however, so pulling an occasional all-nighter is unlikely to disrupt the process. © 2014 Scientific American
Keyword: Sleep
Link ID: 19185 - Posted: 01.30.2014
by Ashley Yeager Monkeys may have rudimentary brain wiring that later evolved into the connections that gave humans the ability to understand language, think flexibly and make decisions. Brain scans of 25 humans and 25 macaques show that 11 components of the ventrolateral frontal cortex, located behind the temples, were similarly wired in both species. The results suggest that humans did not develop completely new and specialized brain systems for certain types of complex thought, researchers report January 28 in Neuron. The scans also show that macaques do not have the lateral frontal pole, which helps humans with strategic planning, decision-making and multitasking. © Society for Science & the Public 2000 - 2014.
Keyword: Evolution
Link ID: 19184 - Posted: 01.30.2014
Alison Abbott By slicing up and reconstructing the brain of Henry Gustav Molaison, researchers have confirmed predictions about a patient that has already contributed more than most to neuroscience. No big scientific surprises emerge from the anatomical analysis, which was carried out by Jacopo Annese of the Brain Observatory at the University of California, San Diego, and his colleagues, and published today in Nature Communications1. But it has confirmed scientists’ deductions about the parts of the brain involved in learning and memory. “The confirmation is surely important,” says Richard Morris, who studies learning and memory at the University of Edinburgh, UK. “The patient is a classic case, and so the paper will be extensively cited.” Molaison, known in the scientific literature as patient H.M., lost his ability to store new memories in 1953 after surgeon William Scoville removed part of his brain — including a large swathe of the hippocampus — to treat his epilepsy. That provided the first conclusive evidence that the hippocampus is fundamental for memory. H.M. was studied extensively by cognitive neuroscientists during his life. After H.M. died in 2008, Annese set out to discover exactly what Scoville had excised. The surgeon had made sketches during the operation, and brain-imaging studies in the 1990s confirmed that the lesion corresponded to the sketches, although was slightly smaller. But whereas brain imaging is relatively low-resolution, Annese and his colleagues were able to carry out an analysis at the micrometre scale. © 2014 Nature Publishing Group
Keyword: Learning & Memory; Brain imaging
Link ID: 19183 - Posted: 01.29.2014
Henry Molaison, the famous amnesic patient better known as “H.M.,” was unable to form new long-term memories following brain surgery to treat his epilepsy. Scientists who studied his condition made groundbreaking discoveries that revealed how memory works, and before his 2008 death, H.M. and his guardian agreed that his brain would be donated to science. One year after his death, H.M.’s brain was sliced into 2,401 70-micron-thick sections for further study. MIT neuroscience professor emerita Suzanne Corkin studied H.M. during his life and is now part of a team that is analyzing his brain. She is an author of a paper appearing in Nature Communications today reporting preliminary results of the postmortem study. The research team was led by Jacopo Annese at the University of California at San Diego (UCSD). Q: What can we learn from studying H.M.’s brain after his death? And when did you begin laying the groundwork for these postmortem studies? A: It was important to get H.M.’s brain after he died, for three reasons: first of all, to document the exact locus and extent of his lesions, in order to identify the neural substrate for declarative memory. Second, to evaluate the status of the intact brain tissue, revealing the possible brain substrates for the many cognitive functions that H.M. performed normally, including nondeclarative learning without awareness. The third reason was to identify any new abnormalities that occurred as a result of his getting old and were unrelated to the operation. In 1992, I explained to H.M. and his conservator that it would be extremely valuable to have his brain after he died. I told them how important he was to the science of memory, and that he had already made amazing contributions. It would make those even more significant to actually have his brain and see exactly where the damage was. That year, they signed a brain donation form leaving his brain to Massachusetts General Hospital [MGH] and MIT.
Keyword: Learning & Memory
Link ID: 19182 - Posted: 01.29.2014
A food poisoning bacterium may be implicated in MS, say US researchers. Lab tests in mice by the team from Weill Cornell Medical College revealed a toxin made by a rare strain of Clostridium perfringens caused MS-like damage in the brain. And earlier work by the same team, published in PLoS ONE, identified the toxin-producing strain of C. perfringens in a young woman with MS. But experts urge caution, saying more work is needed to explore the link. No-one knows the exact cause of Multiple sclerosis (MS), but it is likely that a mixture of genetic and environmental factors play a role. It's a neurological condition which affects around 100,000 people in the UK. Most cases of human infection occur as food poisoning - diarrhoea and stomach cramps that usually resolve within a day or so. More rarely, the bacterium can cause gas gangrene. And a particular strain of C. perfringens, Type B, which the Weill team says it identified in a human for the first time, makes a toxin that can travel through blood to the brain. In their lab studies on rodents the researchers found that the toxin, called epsilon, crossed the blood-brain barrier and killed myelin-producing cells - the typical damage seen in MS. BBC © 2014
Keyword: Multiple Sclerosis; Neuroimmunology
Link ID: 19181 - Posted: 01.29.2014
Parasites don’t just cause nasty infections; they can also take over the minds of their hosts. The Ophiocordyceps fungus, for example, forces ants to climb up the stems of plants, where they die and release the fungus’s spores into the air to infect more ants. Likewise, it would make sense for sexually transmitted parasites to force their hosts to have sex more. But biologists have found very few examples of this in nature. A new study may explain why. To figure out why there isn’t more “sexual mind control” in nature, theoretical ecologist Ludek Berec, of the Biology Centre of the Academy of Sciences of the Czech Republic, and biological mathematician Daniel Maxin, of Valparaiso University in Indiana, turned to mathematical modeling. They created two strains of a hypothetical parasite species: an “ancestor” that did not make its hosts have sex more, and a mutant that did. Then they turned the two strains loose in a hypothetical host population and watched the parasites compete until the mutant strain either died out or replaced its ancestor. If the mutant strain replaced its ancestor, the researchers introduced a new mutant that had even more power over its host’s sex life. They then watched the two strains compete again, introduced yet another, stronger mutant when the old one outcompeted its predecessor, and so on. In this way, the species as a whole could “evolve” to exert more or less sexual mind control over its host. © 2014 American Association for the Advancement of Science.
Keyword: Sexual Behavior
Link ID: 19180 - Posted: 01.29.2014
By JAMES GORMAN The question of how moles move all that dirt when they tunnel just under the surface of lawns has never attracted the extensive study that other forms of locomotion — like the flight of birds and insects, or even the jet-propulsion of jellyfish — have. But scientists at the University of Massachusetts and Brown University have recently been asking exactly how, and how hard, moles dig. Yi-Fen Lin, a graduate student at the University of Massachusetts, reported at a recent meeting of the Society for Integrative and Comparative Biology that moles seem to swim through the earth, and that the stroke they use allows them to pack a lot of power behind their shovel-like paws. Ms. Lin measured the power of hairy-tailed moles that she captured in Massachusetts and found they could exert a force up to 40 times their body weight. She also analyzed and presented X-ray videos taken of moles in a laboratory enclosure tunneling their way through a material chosen for its consistency and uniform particle size: cous cous. Angela M. Horner recorded the videos while studying the movement of Eastern moles in the lab of Thomas Roberts, a professor at Brown. One reason moles have not been studied as much as some other animals may be that they are not easy to capture or keep in a laboratory. “People said, ‘You won’t be able to catch them and you won’t be able to keep them alive,’ ” said Elizabeth R. Dumont, an evolutionary biologist who is Ms. Lin’s dissertation adviser. Ms. Lin solved the first problem by camping out in mole territory, on golf courses and farms, and marking their tunnels with sticks that she would watch for hours until movement indicated a mole on the move. © 2014 The New York Times Company
Keyword: Miscellaneous
Link ID: 19179 - Posted: 01.29.2014
by Kat Arney Next time you struggle to resist an itchy rash or insect bite, you could find relief in the mirror. Perception of our own bodies can be easily manipulated using tricks such as the rubber hand illusion, which fools people into thinking a rubber hand is their own. Reflecting someone's limb in a mirror has also been used to treat phantom limb pain. Now Christoph Helmchen and his colleagues at the University of Lübeck in Germany have shown that a similar mirror illusion can fool people into feeling relief from an itch, even when they scratch the wrong place. The team injected the right forearms of 26 male volunteers with itch-inducing chemical histamine. Because the injection creates a red spot, they painted a corresponding dot on the opposite arm so both looked identical. One of the researchers then scratched each arm in turn. Unsurprisingly, scratching the itchy arm produced relief, while scratching the other one did not. Next, they placed a large vertical mirror in front of the itchy arm, blocking off the subject's view of their right arm and reflecting back the non-itchy one in its place . They asked the volunteers to look only at the reflected limb in the mirror, whilst a member of the team again scratched each arm. This time the participants felt relief when the unaffected, reflected arm was scratched. © Copyright Reed Business Information Ltd.
Keyword: Pain & Touch; Attention
Link ID: 19178 - Posted: 01.28.2014
By James Gallagher Health and science reporter, BBC News Exposure to a once widely used pesticide, DDT, may increase the chances of developing Alzheimer's disease, suggest US researchers. A study, published in JAMA Neurology, showed patients with Alzheimer's had four times the levels of DDT lingering in the body than healthy people. Some countries still use the pesticide to control malaria. Alzheimer's Research UK said more evidence was needed to prove DDT had a role in dementia. DDT was a massively successful pesticide, initially used to control malaria at the end of World War Two and then to protect crops in commercial agriculture. However, there were questions about its impact on human health and wider environmental concerns, particularly for predators. It was banned in the US in 1972 and in many other countries. But the World Health Organization still recommends using DDT to keep malaria in check. Not clear DDT also lingers in the human body where it is broken down into DDE. The team at Rutgers University and Emory University tested levels of DDE in the blood of 86 people with Alzheimer's disease and compared the results with 79 healthy people of a similar age and background. The results showed those with Alzheimer's had 3.8 times the level of DDE. However, the picture is not clear-cut. Some healthy people had high levels of DDE while some with Alzheimer's had low levels. Alzheimer's also predates the use of DDT. The researchers believe the chemical is increasing the chance of Alzheimer's and may be involved in the development of amyloid plaques in the brain, a hallmark of the disease, which contribute to the death of brain cells. BBC © 2014
Keyword: Alzheimers; Neurotoxins
Link ID: 19177 - Posted: 01.28.2014
By BENEDICT CAREY People of a certain age (and we know who we are) don’t spend much leisure time reviewing the research into cognitive performance and aging. The story is grim, for one thing: Memory’s speed and accuracy begin to slip around age 25 and keep on slipping. The story is familiar, too, for anyone who is over 50 and, having finally learned to live fully in the moment, discovers it’s a senior moment. The finding that the brain slows with age is one of the strongest in all of psychology. Lisa Haney Over the years, some scientists have questioned this dotage curve. But these challenges have had an ornery-old-person slant: that the tests were biased toward the young, for example. Or that older people have learned not to care about clearly trivial things, like memory tests. Or that an older mind must organize information differently from one attached to some 22-year-old who records his every Ultimate Frisbee move on Instagram. Now comes a new kind of challenge to the evidence of a cognitive decline, from a decidedly digital quarter: data mining, based on theories of information processing. In a paper published in Topics in Cognitive Science, a team of linguistic researchers from the University of Tübingen in Germany used advanced learning models to search enormous databases of words and phrases. Since educated older people generally know more words than younger people, simply by virtue of having been around longer, the experiment simulates what an older brain has to do to retrieve a word. And when the researchers incorporated that difference into the models, the aging “deficits” largely disappeared. “What shocked me, to be honest, is that for the first half of the time we were doing this project, I totally bought into the idea of age-related cognitive decline in healthy adults,” the lead author, Michael Ramscar, said by email. But the simulations, he added, “fit so well to human data that it slowly forced me to entertain this idea that I didn’t need to invoke decline at all.” © 2014 The New York Times Company
Keyword: Learning & Memory; Intelligence
Link ID: 19176 - Posted: 01.28.2014
Christie Nicholson reports. Advocates claim numerous health benefits for meditation, many of which are supported by studies on the practice. Still, meditation has not become part of mainstream medicine. So researchers at Johns Hopkins University analyzed 47 previously published clinical trials to narrow down the most effective use for meditation as medical therapy. The studies involved more than 3,500 patients suffering from various issues including stress, addiction, depression, anxiety, diabetes, heart disease, cancer and chronic pain. The meta-analysis is in the journal JAMA Internal Medicine. [Madhav Goyal et al, Meditation Programs for Psychological Stress and Well-being: A Systematic Review and Meta-analysis] Apparently practicing just 30 minutes of meditation per day significantly decreases the symptoms of anxiety and depression. An 8-week training program in mindfulness meditation – where participants have to focus on the current moment – led to optimal improvement in lowering anxiety, depression and pain. And the improvements continued over the six months following the training. For depression and anxiety, the effects of meditation were as strong as for those achieved by taking antidepressant medication. However, meditation failed to significantly affect any of the other conditions, such as heart disease or cancer. Nevertheless, while some might view meditation as sitting and doing nothing, doing nothing does something. © 2014 Scientific American
Keyword: Stress; Depression
Link ID: 19175 - Posted: 01.28.2014
by Helen Thomson When the criteria for diagnosing autism were changed last year, concerns were raised that people already diagnosed might be re-evaluated and end up losing access to treatments and services. The American Psychiatric Association (APA), which publishes the diagnostic guidelines, recommends that children who are receiving appropriate treatment as the result of the old criteria should not be required to undergo a re-examination with the new criteria by insurance companies. But a small survey revealed to New Scientist suggests that not everyone is following the party line. In May, the APA published the DSM-5, the latest edition of what has come to be known as psychiatry's diagnostic bible. One controversial change was to the criteria used to diagnose different kinds of autism, which are now combined under the umbrella term of "Autism Spectrum Disorder" (ASD). Under the previous criteria of DSM-4, a person would be diagnosed with ASD by exhibiting at least six of 12 behaviours, which include problems with communication, interaction and repetition. Now, that same person would need to exhibit three deficits in social communication and interaction and at least two repetitive behaviours – the latter, say critics, makes the new criteria more restrictive. To see how the change in criteria was affecting people, Autism Speaks, a US science and advocacy organisation, asked users of its website to complete an online survey about their experiences. "We wanted to ensure that people are still maintaining access to the services they need," says Michael Rosanoff, Autism Speaks' associate director for public health research and scientific review. © Copyright Reed Business Information Ltd.
Keyword: Autism
Link ID: 19174 - Posted: 01.27.2014
By SARAH MASLIN NIR The day after the funeral of Avonte Oquendo, the boy with autism whose remains were found this month after he disappeared at age 14 from his school in October, his mother and grandmother stood with Senator Charles E. Schumer as he announced a proposal for a new law. Called “Avonte’s law,” it would finance a program to provide optional electronic tracking devices to be worn by children with autism. “Avonte’s running away was not an isolated incident,” Mr. Schumer, Democrat of New York, said at a news conference on Sunday morning in his office on the East Side of Manhattan. “This is a high-tech solution to an age-old problem.” Citing research that suggests nearly 50 percent of children with autism wander off, often to escape the overstimulation of sounds and noise, Mr. Schumer said the new legislation would expand an existing Department of Justice program that grants money to law enforcement agencies and other groups to provide trackers for people who have Alzheimer’s disease. Mr. Schumer said he had contacted the department months ago about including children with autism in the program. There was receptiveness, he said, but money was needed to provide children with the devices, which cost $80 to $90 and a few dollars a month to operate. The legislation would allocate $10 million for the program, giving interested parents free access to the equipment, which can be worn like a watch or even sewn into clothing. Whether to use such a monitor would be up to the parents, and the exact system of employing the devices would be up to individual municipalities, Mr. Schumer said. There are different variants that could be selected, including one that alerts authorities automatically when a child has stepped across a given perimeter — for example, outside school grounds — and another that becomes activated only after authorities are called. © 2014 The New York Times Company
Keyword: Autism
Link ID: 19173 - Posted: 01.27.2014
by Helen Thomson The brain that made the greatest contribution to neuroscience and to our understanding of memory has become a gift that keeps on giving. A 3D reconstruction of the brain of Henry Molaison, whose surgery to cure him of epilepsy left him with no short-term memory, will allow scientists to continue to garner insights into the brain for years to come. "Patient HM" became arguably the most famous person in neuroscience after he had several areas of his brain removed in 1953. His resulting amnesia and willingness to be tested have given us unprecedented insights into where memories are formed and stored in the brain. On his death in 2008, HM was revealed to the world as Henry Molaison. Now, a post-mortem examination of his brain, and a new kind of virtual 3D reconstruction, have been published. As a child, Molaison had major epileptic seizures. Anti-epileptic drugs failed, so he sought help from neurosurgeon William Scoville at Hartford Hospital in Connecticut. When Molaison was 27 years old, Scoville removed portions of his medial temporal lobes, which included an area called the hippocampus on both sides of his brain. As a result, Molaison's epilepsy became manageable, but he could not form any new memories, a condition known as anterograde amnesia. He also had difficulty recollecting his long-term past – partial retrograde amnesia.
Keyword: Learning & Memory
Link ID: 19172 - Posted: 01.27.2014