Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
Sara Reardon Thomas Insel, the director of the US National Institute of Mental Health (NIMH), has had enough of shooting in the dark. He thinks that if a clinical trial of a psychiatric therapy fails, scientists should at least learn something about the brain along the way. Now Insel is translating that belief into action: the NIMH, based in Bethesda, Maryland, has decided to stop funding clinical trials that aim merely to ease patients’ symptoms. “Future trials will follow an experimental medicine approach in which interventions serve not only as potential treatments, but as probes to generate information about the mechanisms underlying a disorder”, he wrote in a 27 February blog post announcing the move. This funding switch, which will affect grants due to be made in a few months’ time, intensifies the NIMH’s apparent shift in emphasis from abstract psychiatry to the neurobiological roots of disease. “It’s a totally new departure for us,” says Bruce Cuthbert, a clinical psychologist and director of the institute’s adult translational-research division. Insel notes that the NIMH spent about US$100 million on clinical trials in 2013, and says that more than half of recipient projects received funding without any requirement to examine the biological processes involved in a disease. In many cases, “if you get a negative result you have no idea why, and you have to try something else at random”, Cuthbert says. “It’s an incredible waste of money.” The new rules, which will apply to the grant cycle that begins in June, also seek to increase transparency by requiring faster online registration of trials and stricter guidelines for reporting results. Insel acknowledges that researchers may have to rework their studies to satisfy the new guidelines. “I think this will be really unpopular,” he says. © 2014 Nature Publishing Group
Keyword: Schizophrenia; Depression
Link ID: 19367 - Posted: 03.15.2014
By JAN HOFFMAN COLUMBIA, Mo. – Jilly Dos Santos really did try to get to school on time. She set three successive alarms on her phone. Skipped breakfast. Hastily applied makeup while her fuming father drove. But last year she rarely made it into the frantic scrum at the doors of Rock Bridge High School here by the first bell, at 7:50 a.m. Then she heard that the school board was about to make the day start even earlier, at 7:20 a.m. “I thought, if that happens, I will die,” recalled Jilly, 17. “I will drop out of school!” That was when the sleep-deprived teenager turned into a sleep activist. She was determined to convince the board of a truth she knew in the core of her tired, lanky body: Teenagers are developmentally driven to be late to bed, late to rise. Could the board realign the first bell with that biological reality? The sputtering, nearly 20-year movement to start high schools later has recently gained momentum in communities like this one, as hundreds of schools in dozens of districts across the country have bowed to the accumulating research on the adolescent body clock. In just the last two years, high schools in Long Beach, Calif.; Stillwater, Okla.; Decatur, Ga.;, and Glens Falls, N.Y., have pushed back their first bells, joining early adopters in Connecticut, North Carolina, Kentucky and Minnesota. The Seattle school board will vote this month on whether to pursue the issue. The superintendent of Montgomery County, Md., supports the shift, and the school board for Fairfax County, Va., is working with consultants to develop options for starts after 8 a.m. © 2014 The New York Times Company
Keyword: Biological Rhythms; Development of the Brain
Link ID: 19366 - Posted: 03.15.2014
|By Meredith Knight Add another credential to oxytocin's impressive resume: the hormone crucial for bonding also reduces the calories people consume when they are snacking for pleasure, making it a possible therapeutic target for obesity. German researchers gave a group of men a dose of oxytocin thought to be roughly the amount released by the brain after breast-feeding or sex, according to lead author Manfred Hallschmid of the University of Tübingen. These men and another group who took a placebo then had a chance to eat as much as they wanted at a breakfast buffet, and later the same day they were offered snacks. Those who took oxytocin ate fewer snack calories, but the hormone did not change how much the men ate during the main meal, suggesting that oxytocin affected pleasure eating without suppressing normal appetite mechanisms. The researchers hypothesize that the hormone diminished reward-seeking behavior initiated in the ventral tegmental area of the brain, a region found to be highly sensitive to oxytocin in rodent studies. The effect may also be stress-related: subjects who took oxytocin saw a drop in their levels of the stress hormone cortisol, according to the paper published in 2013 in the journal Diabetes. More work is needed to understand whether oxytocin could be used to treat obesity, but until then the finding at least hints that it may be possible to curb your cravings by having more sex. © 2014 Scientific American
Keyword: Obesity; Hormones & Behavior
Link ID: 19365 - Posted: 03.15.2014
By Pippa Stephens Health reporter, BBC News People are less likely to yawn when others do as they get older, a study has found. Contagious yawning is linked more closely to a person's age than their ability to empathise, as previously thought, US-based scientists said. It also showed a stronger link to age than tiredness or energy levels. Researchers are now looking at whether the ability to catch yawns from other people is inherited, with the hope of helping treat mental health disorders. Autism and schizophrenia sufferers are reportedly less able to catch yawns, researchers said, so understanding the genes that might code for contagious yawning could illuminate new pathways for treatment. In the study, published in the journal Plos One, 328 participants were shown a three-minute video showing other people yawning. Each subject had to click a button every time they yawned. Levels of tiredness Overall, 68% of the participants yawned. Of those, 82% of people aged under 25 yawned, compared with 60% of people aged between 25 and 49, and 41% of people aged over 50. Dr Elizabeth Cirulli, assistant professor of medicine at Duke University in Durham, North Carolina, led the study. She said: "This is the first study to look at a whole bunch of factors. It is the largest study, in terms of the number of people involved, to date." Dr Cirulli said she did not know why contagious yawning decreased with age. BBC © 2014
By NICHOLAS BAKALAR Angry enough to have a heart attack? It might actually happen. A new analysis has found that outbursts of anger can significantly increase the risk for irregular heart rhythms, angina, strokes and heart attacks. Researchers combined data from nine studies of anger outbursts among patients who had had heart attacks, strokes and related problems. Most of the studies used a widely accepted anger assessment scale; one depended on a questionnaire administered to patients. They found that in the two hours after an outburst of anger, the relative risk of angina and heart attack increased by nearly five times, while the risk of ischemic stroke and cardiac arrhythmia increased by more than three times. The findings appeared in The European Heart Journal. The researchers stressed that the actual likelihood of having an anger-induced heart attack remains small. Still, for people with other risks for heart disease, any increase in risk is potentially dangerous. The senior author, Dr. Murray A. Mittleman, an associate professor of medicine at Harvard, said that little is known about ways to prevent anger from causing heart problems. “Are there specific behavioral interventions that would be effective? Medicines?” he asked. “There have been proposals for both,” he added, “but we need more and better research.” © 2014 The New York Times Company
Keyword: Emotions
Link ID: 19363 - Posted: 03.15.2014
Brian Owens Scientists studying what they thought was a ‘fat gene’ seem to have been looking in the wrong place, according to research published today in Nature1. It suggests instead that the real culprit is another gene that the suspected obesity gene interacts with. In 2007, several genome studies identified mutations in a gene called FTO that were strongly associated with an increased risk of obesity and type 2 diabetes in humans. Subsequent studies in mice showed a link between the gene and body mass. So researchers, including Marcelo Nóbrega, a geneticist at the University of Chicago, thought that they had found a promising candidate for a gene that helped cause obesity. The mutations were located in non-coding portions of FTO involved in regulating gene expression. But when Nóbrega looked closer, he found that something was amiss. These regulatory regions contained some elements that are specific for the lungs, one of the few tissues in which FTO is not expressed. “This made us pause,” he says. “Why are there regulatory elements that presumably regulate FTO in the tissue where it isn’t expressed?” This was not the first red flag. Previous attempts to find a link between the presence of the obesity-associated mutations and the expression levels of FTO had been a “miserable failure”, he says. When Nóbrega presented his new results at meetings, he adds that many people came to him to say ‘I just knew there was something wrong here’. So Nóbrega’s team cast the net wider, looking for genes in the broader neighbourhood of FTO whose expression matched that of the mutations, and found IRX3, a gene about half a million base pairs away. IRX3 encodes a transcription factor — a type of protein involved in regulating the expression of other genes — and is highly expressed in the brain, consistent with a role in regulating energy metabolism and eating behaviour. © 2014 Nature Publishing Group
Keyword: Obesity; Genes & Behavior
Link ID: 19362 - Posted: 03.13.2014
by Bethany Brookshire Spring will be here soon. And with daffodils, crocuses and other signs of spring comes a burst of birdsong as males duke it out to get female attention. While the males trill loud songs, the females sit quietly, choosing who will be the lucky male. Vocal male and quiet female songbirds are common in temperate zones, and have given rise to a common assumption. The best male songs get picked for reproduction, and this sexual selection results in complex song; females just listen and choose, so female song should be rare. After all, females don’t need to sing to attract mates. But it turns out this commonly held assumption is not true. A new study shows that the majority of females of songbird species do sing, and it’s likely that the ancestor of modern songbirds was also a vocal diva. The results challenge the old wisdom about female songbirds, and suggest that when it comes to female song, it’s not all about sex. Karan Odom, a behavioral ecologist at the University of Maryland, Baltimore County, has always been interested in birdsong. “As I began to study it in depth,” she says, “I realized there was a lot that’s unknown, and one area was the extent to which females were singing and the role that song plays in males and females.” Odom and her colleagues did a survey of 44 songbird families, going through bird handbooks and other sources to find records of whether males, females or both were singers. In results published March 4 in Nature Communications, they showed that female melodies are not rare at all. In fact, 71 percent of the species surveyed have singing ladies. So much for that quiet, retiring female bird. © Society for Science & the Public 2000 - 2013.
Keyword: Sexual Behavior; Evolution
Link ID: 19361 - Posted: 03.13.2014
by Simon Makin It brings new meaning to having an ear for music. Musical aptitude may be partly down to genes that determine the architecture of the inner ear. We perceive sound after vibrations in the inner ear are detected by "hair cells" and transmitted to the brain as electrical signals. There, the inferior colliculus integrates the signals with other sensory information before passing it on to other parts of the brain for processing. To identify gene variants associated with musical aptitude, Irma Järvelä at the University of Helsinki, Finland, and her colleagues analysed the genomes of 767 people assessed for their ability to detect small differences between the pitch and duration of a sound, and musical pattern. The team compared the combined test scores with the prevalence of common variations in the participants' DNA. Genetic variations most strongly associated with high scores were found near the GATA2 gene – involved in the development of the inner ear and the inferior colliculus. Another gene, PCDH15, plays a role in the hair cells' ability to convert sound into brain signals. Jan Schnupp, an auditory neuroscientist at the University of Oxford, cautions that these findings should not be taken as evidence that genes determine musical ability. He points to the case of the profoundly deaf girl featured in the film "Lost and Sound". She became a superb pianist despite only hearing the world through cochlea implants, after meningitis damaged her inner ear. "Her case clearly demonstrates that even severe biological disadvantages can often be overcome," he says. "She would do extremely poorly at the pitch discrimination task used in this study." © Copyright Reed Business Information Ltd.
Keyword: Hearing; Genes & Behavior
Link ID: 19360 - Posted: 03.13.2014
|By Allie Wilkinson Vivaldi versus the Beatles. Both great. But your brain may be processing the musical information differently for each. That’s according to research in the journal NeuroImage. [Vinoo Alluri et al, From Vivaldi to Beatles and back: Predicting lateralized brain responses to music] For the study, volunteers had their brains scanned by functional MRI as they listened to two musical medleys containing songs from different genres. The scans identified brain regions that became active during listening. One medley included four instrumental pieces and the other consisted of songs from the B side of Abbey Road. Computer algorithms were used to identify specific aspects of the music, which the researchers were able to match with specific, activated brain areas. The researchers found that vocal and instrumental music get treated differently. While both hemispheres of the brain deal with musical features, the presence of lyrics shifts the processing of musical features to the left auditory cortex. These results suggest that the brain’s hemispheres are specialized for different kinds of sound processing. A finding revealed but what you might call instrumental analysis. © 2014 Scientific American,
Keyword: Hearing; Emotions
Link ID: 19359 - Posted: 03.13.2014
Imagine you’re calling a stranger—a possible employer, or someone you’ve admired from a distance—on the telephone for the first time. You want to make a good impression, and you’ve rehearsed your opening lines. What you probably don’t realize is that the person you’re calling is going to size you up the moment you utter “hello.” Psychologists have discovered that the simple, two-syllable sound carries enough information for listeners to draw conclusions about the speaker’s personality, such as how trustworthy he or she is. The discovery may help improve computer-generated and voice-activated technologies, experts say. “They’ve confirmed that people do make snap judgments when they hear someone’s voice,” says Drew Rendall, a psychologist at the University of Lethbridge in Canada. “And the judgments are made on very slim evidence.” Psychologists have shown that we can determine a great deal about someone’s personality by listening to them. But these researchers looked at what others hear in someone’s voice when listening to a lengthy speech, says Phil McAleer, a psychologist at the University of Glasgow in the United Kingdom and the lead author of the new study. No one had looked at how short a sentence we need to hear before making an assessment, although other studies had shown that we make quick judgments about people’s personalities from a first glance at their faces. “You can pick up clues about how dominant and trustworthy someone is within the first few minutes of meeting a stranger, based on visual cues,” McAleer says. To find out if there is similar information in a person’s voice, he and his colleagues decided to test “one of the quickest and shortest of sociable words, ‘Hello.’ ” © 2014 American Association for the Advancement of Science.
Keyword: Language; Emotions
Link ID: 19358 - Posted: 03.13.2014
A hormone released during childbirth and sex could be used as a treatment for the eating disorder anorexia nervosa, scientists suggest. Small studies by UK and Korean scientists indicated patients were less likely to fixate on food and body image after a dose of oxytocin. About one in every 150 teenage girls in the UK are affected by the condition. The eating disorders charity Beat said the finding was a long way from becoming a useable treatment. Oxytocin is a hormone released naturally during bonding, including sex, childbirth and breastfeeding. It has already been suggested as a treatment for a range of psychiatric disorders, and has been shown to help lower social anxiety in people with autism. And one four-week study in Australia found people given doses of oxytocin had reduced weight and shape concerns. In the first of the most recent studies, published in Psychoneuroendocrinology, 31 patients with anorexia and 33 people who did not have the condition were given either a dose of oxytocin, delivered via nasal spray, or a placebo, or dummy, treatment. They then looked at a series of images to do with a range high and low calorie foods and people of different body shapes and weight. People with anorexia have previously been found to focus for longer on images of overweight people and what they perceive as undesirable body shapes. However after taking oxytocin, patients with anorexia were less likely to focus on such "negative" images of food and fat body parts. The second study, published in PLOS ONE, involved the same people and looked at their reactions to facial expressions, such as anger, disgust or happiness. It has been suggested that anorexia can be linked to a heightened perception of threat, and animal research has shown oxytocin treatment lessened the amount of attention paid to threatening facial expressions. BBC © 2014
Keyword: Anorexia & Bulimia; Hormones & Behavior
Link ID: 19357 - Posted: 03.13.2014
by Clare Wilson ARE people with obsessive compulsive disorder addicted to their repetitive behaviours? In a test designed to measure decision-making, individuals with OCD performed much like gambling addicts, suggesting their underlying brain problems may be similar. OCD makes people worry obsessively, compelling them to carry out rituals like repeated hand washing. It affects about one in 50 people and can take over their lives. Because sufferers get anxious if they can't complete their rituals, OCD is usually treated as an anxiety disorder with talking therapies to relieve distress or anti-anxiety drugs. These approaches reduce symptoms but only a minority of people are cured. In the new study, 80 people – half of whom had OCD – had to choose cards from four decks, winning or losing money in the process. Two decks were rigged to produce big wins but even bigger losses. The people without OCD learned to choose from the two safer decks but those with the disorder were consistently less likely to make good judgements and finished with a significantly lower final score. Drug and gambling addicts also perform poorly on the test. That doesn't prove OCD is an addiction but a growing body of work, including brain scans and other cognitive tests, suggest it should be recast in this way, says Naomi Fineberg of the University of Hertfordshire in Welwyn Garden City. Both addiction and OCD "share a lack of control of behaviour", she says. © Copyright Reed Business Information Ltd.
Keyword: OCD - Obsessive Compulsive Disorder; Drug Abuse
Link ID: 19356 - Posted: 03.13.2014
Animal rights activists have dramatically shifted their tactics over the last decade, targeting individual researchers and the businesses that support them, instead of going after their universities. That’s the biggest revelation to come out of a report released today by the Federation of American Societies for Experimental Biology (FASEB), the largest coalition of biomedical research associations in the United States. The purpose of the report—The Threat of Extremism to Medical Research: Best Practices to Mitigate Risk through Preparation and Communication—is to provide guidance to scientists and institutions around the world in dealing with animal rights extremists. That includes individuals and groups that damage laboratories, send threatening e-mails, and even desecrate the graves of researchers’ relatives. In 2004, for example, Animal Liberation Front activists broke into psychology laboratories at the University of Iowa, where they smashed equipment, spray-painted walls, and removed hundreds of animals, causing more than $400,000 in damage. In 2009, extremists set fire to the car of a University of California, Los Angeles, neuroscientist who worked on rats and monkeys. And other researchers say activists have shown up at their homes in the middle of the night, threatening their families and children. “We wanted to create an international document to get people thinking about the potential of animal extremism,” says Michael Conn, a co-chair of the committee that created the report and the senior vice president for research at the Texas Tech University Health Sciences Center in Lubbock. “These activities can happen to anybody—no one is immune.” © 2014 American Association for the Advancement of Science
Keyword: Animal Rights
Link ID: 19355 - Posted: 03.13.2014
by Bruce Bower Chimpanzees possess a flexible, humanlike sensitivity to the mental states of others, even strangers from another species, researchers suggest March 11 in the Proceedings of the Royal Society B. Empathy’s roots go back at least to the common ancestor of humans and chimps, they say. Psychologist Matthew Campbell and biologist Frans de Waal, both of Emory University in Atlanta, treated chimps’ tendency to yawn when viewing videotapes of others yawning as a sign of spontaneous empathy. Their research follows other scientists’ observations that young chimps mimic scientists’ yawns (SN Online: 10/16/13). Nineteen chimps living in an outdoor research facility yawned when they saw the same action from chimps that they lived with, researchers and staff they had seen before and people who were new to them. Unfamiliar chimps and baboons failed to elicit contagious yawning. As in the wild, unfamiliar chimps were probably viewed as threats. Chimps in the study hadn’t seen baboons before. Having socially connected with facility workers, chimps reacted empathically to human strangers who yawned, the researchers propose. Imitating others’ facial expressions represents a rapid way to forge empathic ties, Campbell says. His research didn’t test whether chimps spend a lot of time trying to read others’ thoughts and feelings, a more complex type of empathy. © Society for Science & the Public 2000 - 2013.
Keyword: Emotions
Link ID: 19354 - Posted: 03.12.2014
By Klint Finley Today’s neuroscientists need expertise in more than just the human brain. They must also be accomplished hardware engineers, capable of building new tools for analyzing the brain and collecting data from it. There are many off-the-shelf commercial instruments that help you do such things, but they’re usually expensive and hard to customize, says Josh Siegle, a doctoral student at the Wilson Lab at MIT. “Neuroscience tends to have a pretty hacker-oriented culture,” he says. “A lot of people have a very specific idea of how an experiment needs to be done, so they build their own tools.” The problem, Siegle says, is that few neuroscientists share the tools they build. And because they’re so focused on creating tools for their specific experiments, he says, researchers don’t often consider design principles like modularity, which would allow them to reuse tools in other experiments. That can mean too much redundant work as researchers spend time solving problems others already have solved, and building things from scratch instead of repurposing old tools. ‘We just want to build awareness of how open source eliminates redundancy, reduces costs, and increases productivity’ That’s why Siegle and Jakob Voigts of the Moore Lab at Brown University founded Open Ephys, a project for sharing open source neuroscience hardware designs. They started by posting designs for the tools they use to record electrical signals in the brain. They hope to kick start an open source movement within neuroscience by making their designs public, and encouraging others to do the same. “We don’t necessarily want people to use our tools specifically,” Siegle says. “We just want to build awareness of how open source eliminates redundancy, reduces costs, and increase productivity.” © 2014 Condé Nast.
Keyword: Miscellaneous
Link ID: 19353 - Posted: 03.12.2014
By Ella Davies Reporter, BBC Nature Peacocks make fake sex sounds to attract females' attention, scientists say. The birds are known for shaking their tail feathers but Canadian researchers have revealed a further sexual tactic. Peacocks have a wide vocabulary of calls, and during mating they make a distinctive hoot. Biologists also recorded males making this sound when out of sight of females and suggest such deception could prove rewarding for the birds. Peacocks are one of the most obvious examples of advertising sexual fitness in the animal kingdom with their eye-catching plumage and strutting courtship displays. The mating behaviour takes place in open areas of land referred to as a "lek". When a male has successfully attracted a female, or peahen, it rushes at her making a distinctive hooting call before attempting to mate. These calls are loud enough to be heard from a distance, prompting scientists to investigate what benefit this has. "It's much louder than it needs to be to communicate with just the female that the male is trying to mate with," explained Dr Roslyn Dakin from the University of British Columbia, Canada, who co-authored the study. BBC © 2014
Keyword: Sexual Behavior
Link ID: 19352 - Posted: 03.12.2014
by Colin Barras Treat them mean, keep them keen? Female preying mantis and black widow spiders are notorious for their tendency to kill and eat males before, during or after sex. The behaviour is clearly risky, though – not least because the scent of a dead rival hardly encourages other males to try their luck. Or so we thought. For male Pennsylvania grass spiders, the whiff of dead male seems to be exactly what they look for in a mate. They are far more likely to approach a female if she has recently killed and eaten a male. Grass spiders are found across North America. With a body length – not including legs – of 17 millimetres, the Pennsylvania grass spider is among the largest. It's harmless to humans, though, spending most of its time hiding away in a tunnel at the corner of its flat, sheet-like web. Unlike many arachnids, grass spiders don't produce sticky webs. But they can move surprisingly quickly, dashing out of their tunnel to grab any insect that ventures too near. It's not just insects that have reason to fear female Pennsylvania grass spiders. Males of the species can find themselves on the wrong end of a female's voracious appetite when the two meet to breed. As mating strategies go, it seems a pretty foolhardy one: studies suggest females in urban settings are typically approached by no more than three – and as few as zero – males during their 3-week-long breeding season. Cannibalism seems to leave the females at risk of self-inflicted celibacy. © Copyright Reed Business Information Ltd
Keyword: Sexual Behavior
Link ID: 19351 - Posted: 03.12.2014
Penis envy. Repression. Libido. Ego. Few have left a legacy as enduring and pervasive as Sigmund Freud. Despite being dismissed long ago as pseudoscientific, Freudian concepts such as these not only permeate many aspects of popular culture, but also had an overarching influence on, and played an important role in the development of, modern psychology, leading Time magazine to name him as one of the most important thinkers of the 20th century. Before his rise to fame as the founding father of psychoanalysis, however, Freud trained and worked as a neurologist. He carried out pioneering neurobiological research, which was cited by Santiago Ramóny Cajal, the father of modern neuroscience, and helped to establish neuroscience as a discipline. The eldest of eight children, Freud was born on 6 May, 1856, in the Moravian town of Příbor, in what is now the Czech Republic. Four years later, Freud's father Jakob, a wool merchant, moved the family to Austria in search of new business opportunities. Freud subsequently entered the university there, aged just 17, to study medicine and, in the second year of his degree, became preoccupied with scientific research. His early work was a harbinger of things to come – it focused on the sexual organs of the eel. The work was, by all accounts, satisfactory, but Freud was disappointed with his results and, perhaps dismayed by the prospect of dissecting more eels, moved to Ernst Brücke's laboratory in 1877. There, he switched to studying the biology of nervous tissue, an endeavour that would last for 10 years. © 2014 Guardian News and Media Limited
Keyword: Miscellaneous
Link ID: 19350 - Posted: 03.12.2014
Matt Kaplan Humans are among the very few animals that constitute a threat to elephants. Yet not all people are a danger — and elephants seem to know it. The giants have shown a remarkable ability to use sight and scent to distinguish between African ethnic groups that have a history of attacking them and groups that do not. Now a study reveals that they can even discern these differences from words spoken in the local tongues. Biologists Karen McComb and Graeme Shannon at the University of Sussex in Brighton, UK, guessed that African elephants (Loxodonta africana) might be able to listen to human speech and make use of what they heard. To tease out whether this was true, they recorded the voices of men from two Kenyan ethnic groups calmly saying, “Look, look over there, a group of elephants is coming,” in their native languages. One of these groups was the semi-nomadic Maasai, some of whom periodically kill elephants during fierce competition for water or cattle-grazing space. The other was the Kamba, a crop-farming group that rarely has violent encounters with elephants. The researchers played the recordings to 47 elephant family groups at Amboseli National Park in Kenya and monitored the animals' behaviour. The differences were remarkable. When the elephants heard the Maasai, they were much more likely to cautiously smell the air or huddle together than when they heard the Kamba. Indeed, the animals bunched together nearly twice as tightly when they heard the Maasai. “We knew elephants could distinguish the Maasai and Kamba by their clothes and smells, but that they can also do so by their voices alone is really interesting,” says Fritz Vollrath, a zoologist at the University of Oxford, UK (see video below). © 2014 Nature Publishing Group
Keyword: Intelligence; Language
Link ID: 19349 - Posted: 03.11.2014
Think women can’t do math? You’re wrong—but new research shows you might not change your mind, even if you get evidence to the contrary. A study of how both men and women perceive each other's mathematical ability finds that an unconscious bias against women could be skewing hiring decisions, widening the gender gap in mathematical professions like engineering. The inspiration for the experiment was a 2008 study published in Science that analyzed the results of a standardized test of math and verbal abilities taken by 15-year-olds around the world. The results challenged the pernicious stereotype that females are biologically inferior at mathematics. Although the female test-takers lagged behind males on the math portion of the test, the size of the gap closely tracked the degree of gender inequality in their countries, shrinking to nearly zero in emancipated countries like Sweden and Norway. That suggests that cultural biases rather than biology may be the better explanation for the math gender gap. To tease out the mechanism of discrimination, two of the authors of the 2008 study, Paola Sapienza and Luigi Zingales, economic researchers at Northwestern University’s Kellogg School of Management in Evanston, Illinois, and the University of Chicago Booth School of Business in Illinois, respectively, teamed up with Ernesto Reuben, an experimental psychologist at Columbia Business School in New York City, to design an experiment to test people's gender bias when it comes to judging mathematical ability. Study participants of both genders were divided into two groups: employers and job candidates. The job was simple: As accurately and quickly as possible, add up sets of two-digit numbers in a 4-minute math sprint. (The researchers did not tell the subjects, but it is already known that men and women perform equally well on this task.) © 2014 American Association for the Advancement of Science.
Keyword: Sexual Behavior; Attention
Link ID: 19348 - Posted: 03.11.2014


.gif)

