Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
Posted by Maria Konnikova On a typical workday morning, if you’re like most people, you don’t wake up naturally. Instead, the ring of an alarm clock probably jerks you out of sleep. Depending on when you went to bed, what day of the week it is, and how deeply you were sleeping, you may not understand where you are, or why there’s an infernal chiming sound. Then you throw out your arm and hit the snooze button, silencing the noise for at least a few moments. Just another couple of minutes, you think. Then maybe a few minutes more. It may seem like you’re giving yourself a few extra minutes to collect your thoughts. But what you’re actually doing is making the wake-up process more difficult and drawn out. If you manage to drift off again, you are likely plunging your brain back into the beginning of the sleep cycle, which is the worst point to be woken up—and the harder we feel it is for us to wake up, the worse we think we’ve slept. (Ian Parker wrote about the development of a new drug for insomnia in the magazine last week.) One of the consequences of waking up suddenly, and too early, is a phenomenon called sleep inertia. First given a name in 1976, sleep inertia refers to that period between waking and being fully awake when you feel groggy. The more abruptly you are awakened, the more severe the sleep inertia. While we may feel that we wake up quickly enough, transitioning easily between sleep mode and awake mode, the process is in reality far more gradual. Our brain-stem arousal systems (the parts of the brain responsible for basic physiological functioning) are activated almost instantly. But our cortical regions, especially the prefrontal cortex (the part of the brain involved in decision-making and self-control), take longer to come on board. © 2013 Condé Nast.
Keyword: Sleep
Link ID: 19211 - Posted: 02.06.2014
By NICHOLAS BAKALAR There are many well established risk factors for cardiovascular death, but researchers may have found one more: slower reaction time. In the late 1980s and early ’90s, researchers measured the reaction times of 5,134 adults ages 20 to 59, having them press a button as quickly as possible after a light flashed on a computer screen. Then they followed them to see how many would still be alive after 15 years. The study is in the January issue of PLOS One. Unsurprisingly, men, smokers, heavy drinkers and the physically inactive were more likely to die. But after controlling for these and other factors, they found that those with slower reaction times were 25 percent more likely to die of any cause, and 36 percent more likely to die of cardiovascular disease, than those with faster reactions. Reaction time made no difference in cancer mortality. The reasons for the connection are unclear, but the lead author, Gareth Hagger-Johnson, a senior research associate at University College London, said it may reflect problems with the brain or nervous system. He stressed, though, that “a single test of reaction time is not going to tell you when you’re going to die. There’s a link at a population level. We didn’t look at individual people.” © 2014 The New York Times Company
Keyword: Development of the Brain
Link ID: 19210 - Posted: 02.06.2014
|By Geoffrey Giller Working memory—our ability to store pieces of information temporarily—is crucial both for everyday activities like dialing a phone number as well as for more taxing tasks like arithmetic and accurate note-taking. The strength of working memory is often measured with cognitive tests, such as repeating lists of numbers in reverse order or recalling sequences of dots on a screen. For children, performance on working memory assessments is considered a strong predictor for future academic performance. Yet cognitive tests can fail to identify children whose brain development is lagging in subtle ways that may lead to future deficits in working memory and, thus, in learning. Doctors give the tests periodically and plot the results along a development curve, much like a child’s height and weight. By the time these tests reveal that a child’s working memory is below average, however, it may be too late to do much about it. But in a new study, published January 29 in The Journal of Neuroscience, scientists demonstrated that they could predict the future working memory of children and adolescents by examining brain scans from two different types of magnetic resonance imaging (MRI), instead of looking only at cognitive tests. Henrik Ullman, a PhD student at the Karolinska Institute in Stockholm and the lead author on the paper, says that this was the first study attempting to use MRI scans to predict future working memory capacity. “We were pretty surprised when we found what we actually found,” Ullman says. © 2014 Scientific American,
Keyword: Alzheimers; Brain imaging
Link ID: 19209 - Posted: 02.05.2014
by Andy Coghlan If you flinch where others merely frown, you might want to take a look at your lifestyle. That's because environmental factors may have retuned your genes to make you more sensitive to pain. "We know that stressful life events such as diet, smoking, drinking and exposure to pollution all have effects on your genes, but we didn't know if they specifically affected pain genes," says Tim Spector of King's College London. Now, a study of identical twins suggests they do. It seems that epigenetic changes – environmentally triggered chemical alterations that affect how active your genes are – can dial your pain threshold up or down. This implies that genetic tweaks of this kind, such as the addition of one or more methyl groups to a gene, may account for some differences in how our senses operate. Spector and his colleagues assessed the ability of hundreds of pairs of twins to withstand the heat of a laser on their skin, a standard pain test. They selected 25 pairs who showed the greatest difference in the highest temperature they could bear. Since identical twins have the same genes, any variation in pain sensitivity can be attributed to epigenetic differences. Pain thermostat The researchers screened the twins' DNA for differences in methylation levels across 10 million gene regions. They found a significant difference in nine genes, most of which then turned out to have been previously implicated in pain-sensitivity in animal experiments. © Copyright Reed Business Information Ltd.
Keyword: Pain & Touch; Epigenetics
Link ID: 19208 - Posted: 02.05.2014
One thing marijuana isn’t known to do is improve your memory. But there’s another reason why scientists believe it could fight Alzheimer’s disease. Gary Wenk, PhD, professor of neuroscience, immunology and medical genetics at Ohio State University, has studied how to combat brain inflammation for over 25 years. His research has led him to a class of compounds known as cannabinoids, which includes many of the common ingredients in marijuana. He says, throughout all of his research, cannabinoids have been the only class of drugs he’s found to work. What’s more, he believes early intervention may be the best way of fighting Alzheimer’s. Dr. Wenk doesn’t see cannabinoids – or anything else – as a cure. But he took the time to discuss with us how marijuana might prevent the disorder from developing. Q: What’s so important about brain inflammation? Over the past few years, there’s been a focus on inflammation in the brain as causing a lot more than Alzheimer’s. We now know it plays a role in ALS, Parkinson’s disease, AIDS, dementia, multiple sclerosis, autism, schizophrenia, etc. We’re beginning to see that inflammation in the brain, if it lasts too long, can be quite detrimental. And if you do anything, such as smoke a bunch of marijuana in your 20s and 30s, you may wipe out all of the inflammation in your brain and then things start over again. And you simply die of old age before inflammation becomes an issue for you. © 2013-2014 All rights reserved
Keyword: Alzheimers; Drug Abuse
Link ID: 19207 - Posted: 02.05.2014
By Ariana Eunjung Cha, The National Institutes of Health is undertaking an ambitious collaboration with private industry in an attempt to speed up the search for treatments for some of the world’s most devastating diseases — Alzheimer’s, type 2 diabetes, rheumatoid arthritis and lupus. The pilot projects announced Tuesday will involve the sharing of not only scientists but also of data, blood samples and tissue specimens among 10 rival companies, the federal government and several nonprofit groups and research foundations. The companies that have signed up to participate include most of the large drug makers, which in the past had resisted calls to share detailed data and samples from experiments, preferring to instead use the information to gain lucrative patents. The agreement with NIH represents a major break from how they used to do business. The competing pharmaceutical companies have said they will hold off launching commercial ventures based on discoveries from the partnership until after the data has been made publicly available. The idea behind the collaboration is similar to that of the “open source” movement among some computer scientists who believe that sharing their code with anyone who wants it is the best way to innovate. The first group of projects, which will last three to five years, will involve an investment of more than $230 million from industry participants including Bristol-Myers Squibb, GlaxoSmithKline, Johnson & Johnson, Eli Lilly, Merck, Pfizer, Sanofi and Takeda, as well as a few smaller biotech companies. © 1996-2014 The Washington Post
Keyword: Alzheimers
Link ID: 19206 - Posted: 02.05.2014
Karen Weintraub, Every time you pull up a memory – say of your first kiss – your mind reinterprets it for the present day, new research suggests. If you're in the middle of an ugly divorce, for example, you might recall it differently than if you're happily married and life is going well. This makes your memory quite unlike the video camera you may imagine it to be. But new research in the Journal of Neuroscience suggests it's very effective for helping us adapt to our environments, said co-author Joel Voss, a researcher at Northwestern University's Feinberg School of Medicine. Voss' findings build on others and may also explain why we can be thoroughly convinced that something happened when it didn't, and why eyewitness testimony is notoriously unreliable. The new research also suggests that memory problems like those seen in Alzheimer's could involve a "freezing" of these memories — an inability to adapt the memory to the present, Voss said. Our memories are thus less a snapshot of the past, than "a record of our current view on the past," said Donna Rose Addis, a researcher and associate professor at the University of Auckland in New Zealand, who was not involved in the research. Using brain scans of 17 healthy volunteers as they were taught new data and recalled previously learned information, Voss and his colleagues were able to show for the first time precisely when and where new information gets implanted into existing memories.
Keyword: Learning & Memory
Link ID: 19205 - Posted: 02.05.2014
By GRETCHEN REYNOLDS This winter’s frigid temperatures could be having one desirable side effect. They may be revving up your metabolism. Shivering in the cold sparks a series of biochemical reactions deep within the body that alters fat cells and bolsters metabolism, much as formal exercise does, according to a fascinating series of new experiments. The findings intimate that exercise and shivering are related in ways not previously suspected. For the new study, which was published Tuesday in Cell Metabolism, scientists affiliated with several branches of the National Institutes of Health recruited 10 healthy adult men and women and invited them to the lab on three separate occasions. There, the researchers drew blood and obtained small samples of muscle and fat cells. During one lab visit, the volunteers completed a short but very intense session of stationary bicycling, riding as hard as they could until they were exhausted. Then, on another day, they rode the bike at a gentle, easily sustained pace for an hour. Throughout these workouts, the laboratory temperature was maintained at a moderate 65 degrees or so. On their final visit, though, the researchers had each volunteer lie in bed, lightly clad, for 30 minutes as the lab’s temperature dropped from about 75 to a chilly 53 degrees. Monitors were placed on their skin to measure skin and muscle reactions, and by the end of the session, the volunteers were noticeably shivering. After each session, the scientists gathered more blood and other samples and started checking for changes. In particular, they wanted to see what was happening with the volunteers’ white and brown fat. © 2014 The New York Times Company
Keyword: Obesity
Link ID: 19204 - Posted: 02.05.2014
By JAMES GORMAN Males’ aggression toward each other is an old story throughout the animal kingdom. It’s not that females aren’t aggressive, but in many species, male-on-male battles are more common. Take fruit flies. “The males are more aggressive than females,” said David J. Anderson, a California Institute of Technology neuroscientist who knows their tussles well. Dr. Anderson runs a kind of fight club for fruit flies in his lab at Caltech, with the goal of understanding the deep evolutionary roots of very fundamental behaviors. Dr. Anderson, Kenta Asahina and a group of their colleagues recently identified one gene and a tiny group of neurons, sometimes as few as three, present only in the brains of male fruit flies, that can control aggression. The gene is also found in mammals, and has also been associated with aggression in some mammalian species, perhaps even in humans, although that is not clear. The discovery, reported in the journal Cell last month, does not tell the whole story of fly aggression. Some fighting is inextricably linked to food and mating, while the mechanism the scientists found is not. But it is a striking indication of how brain structure and chemistry work together, as well as a reminder that as different as humans and flies are, they are not always very far apart. The painstaking process of discovery, recounted step by step in the paper, gives a glimpse of modern brain research and the lengths to which scientists must go if they want to get down to the level of how neurons control behavior. “They did a huge amount of experiments,” said Ulrike Heberlein at the Janelia Farm research campus of the Howard Hughes Medical Institute. Dr. Heberlein also studies fly behavior and recently demonstrated another human-fly connection, showing that jilted male flies will turn to drink. © 2014 The New York Times Company
Keyword: Aggression
Link ID: 19203 - Posted: 02.04.2014
By BENEDICT CAREY BETHESDA, Md. — The police arrived at the house just after breakfast, dressed in full riot gear, and set up a perimeter at the front and back. Not long after, animal rights marchers began filling the street: scores of people, young and old, yelling accusations of murder and abuse, invoking Hitler, as neighbors stepped out onto their porches and stared. It was 1997, in Decatur, Ga. The demonstrators had clashed with the police that week, at the Yerkes National Primate Research Center at nearby Emory University, but this time, they were paying a personal call — on the house of the center’s director, inside with his wife and two teenage children. “I think it affected the three of them more than it did me, honestly,” said Dr. Thomas R. Insel, shaking his head at the memory. “But the university insisted on moving all of us to a safe place for a few days, to an ‘undisclosed location.’ “I’ll say this. I learned that if you’re going to take a stand, you’re going to make some people really angry — so you’d better believe in what you’re doing, and believe it completely.” For the past 11 years, Dr. Insel, a 62-year-old brain scientist, has run an equally contentious but far more influential outfit: the National Institute of Mental Health, the world’s leading backer of behavioral health research. The job comes with risk as well as power. Patient groups and scientists continually question the agency’s priorities, and politicians occasionally snipe at its decisions. Two previous directors resigned in the wake of inflammatory statements (one on marijuana laws, one comparing urban neighborhoods to jungles), and another stepped down after repeatedly objecting to White House decisions. © 2014 The New York Times Company
Keyword: Schizophrenia; Animal Rights
Link ID: 19202 - Posted: 02.04.2014
About two-thirds of people are left with ringing in their ears after a night out at a club, gig or pub, a poll suggests. Campaign group Action on Hearing Loss said the poll of 1,000 adults also showed a third would ignore the "safe level" on their music players. The group warns that people doing either increase the risk of tinnitus. DJ Paul Oakenfold urged people to wear ear defenders to gigs and to "turn down the volume". Half of those surveyed said they listened to music for between one and six hours a day - up to a third of their waking day - perhaps in the background at work or on their MP3 player on their way to and from work or studies. But one in five would not do anything differently to take any care of their hearing. Action on Hearing Loss warned that one in 10 people across the UK is affected by tinnitus every day, ranging from a "light buzzing" to a "constant roar" in the ears and head. It can affect everything from the ability to concentrate at work to getting to sleep at night. The poll also found that one in 10 people does not know what tinnitus is, with 3% thinking it was "big ears" and 4% a "repetitive strain injury". It has created an audio version of what tinnitus sounds like in order to raise awareness. Paul Breckell, chief executive of Action on Hearing Loss, said: "Listening to loud music for a long time can trigger tinnitus and is an indication of damaged hearing. BBC © 2014
Keyword: Hearing
Link ID: 19201 - Posted: 02.04.2014
By JEFF Z. KLEIN Hockey players who sustained concussions during a recent season experienced acute microstructural changes in their brains, according to a series of studies published in the Journal of Neurosurgery on Tuesday. “We’ve seen evidence of chronic injuries later in life from head trauma, and now we’ve seen this in current players,” said Dr. Paul Echlin, an Ontario sports concussion specialist who conducted the study in collaboration with Dr. Martha Shenton of Brigham and Women’s Hospital and researchers from Harvard Medical School, Massachusetts General Hospital and Western University of Canada. The researchers said these were the first studies in which an independent medical team used magnetic resonance imaging analysis before, during and after a season to measure the effects of concussions on athletes. Forty-five male and female Canadian university hockey players were observed by independent physicians during the 2011-12 season. All 45 players were given M.R.I. scans before and after the season. The 11 who received a concussion diagnosis during the season were given additional scans within 72 hours, two weeks and two months of the incident. The scans found microscopic white matter and inflammatory changes in the brains of individuals who had sustained a clinically diagnosed concussion during the period of the study. Additional analysis found that players who sustained a concussion during the study period or reported a history of concussions showed significant differences in their brains’ white matter microstructure compared with players who did not sustain a concussion, or who reported no history of concussions. © 2014 The New York Times Company
Keyword: Brain Injury/Concussion
Link ID: 19200 - Posted: 02.04.2014
By RONI CARYN RABIN Nearly a decade ago, researchers in Boston decided to see whether older men who were not in very good shape could benefit from daily doses of testosterone. The scientists recruited several hundred volunteers and gave them the hormone or a placebo. Those taking testosterone got stronger, compared with those taking the placebo, and they could carry a load up stairs faster. But they also had nearly five times the number of cardiovascular problems, including heart attacks and strokes, and safety monitors ended the trial early. Since those findings were published in 2010, studies of testosterone treatment have produced mixed results. A 2012 study of veterans aged 40 and over with low testosterone found that those treated with the hormone were less likely to die, but more recent reports, including one published last week, have documented an increase in cardiovascular risk in men over age 65 taking testosterone, as well as in younger men with a history of heart disease. Officials at the Food and Drug Administration said on Friday that they were reassessing the safety of testosterone products in light of the recent studies, and will investigate rates of stroke, heart attack and death in men using the drugs. In recent years, testosterone has been heavily promoted as a cure-all for low energy, low libido, depression and other ills among middle-aged men. “Low T” is a ubiquitous diagnosis, heard in television commercials and locker rooms. Between 2001 and 2011, hormone use by men 40 and over nearly quadrupled. By the end of that period, nearly one in 25 men in their 60s was taking testosterone. Though the drug is indicated for men with abnormally low testosterone levels, a condition called hypogonadism, doctors have been prescribing it to many men with normal levels. © 2014 The New York Times Company
Keyword: Hormones & Behavior; Sexual Behavior
Link ID: 19199 - Posted: 02.04.2014
Alice Roberts Just how special do you think you are? How different do you think you are from other animals? Do you think of yourself as an animal or do you see yourself, and your fellow humans, as somehow set apart from the rest of the animal kingdom? Most of us – and I would unashamedly label us as the sensible majority of the population – accept that evolution is the best explanation for the pattern of life that we observe on the planet, both living and fossilised. However much creationists bang on about evolution being "just a theory", it beautifully explains all the evidence we have to hand (and there's masses of that: anatomical, genetic, palaeontological, embryological), without a single piece of evidence having turned up that threatens to bring the whole edifice tumbling down around our ears. So, I'm hoping you're a sensible sort of person and that you consider evolution to be as true as the spherical nature of the Earth, or the fact that the Earth orbits the sun and not vice versa. But just how comfortable are you with the idea of being a product of evolution? I think it's still, even among the most enlightened of us, really hard to come to terms with the idea that we are just another animal. A naked ape. The third chimpanzee, even. You have to admit, science has done a very good job at bringing us down a peg or two, at knocking us off the pedestal of our own construction. We can no longer view ourselves as a special creation, something created in the image of a deity and close to angels (whatever they are or look like). We can no longer see ourselves as the ultimate destination, as the pinnacle of evolution, either. Our species is just a tiny twig on the massive, dense tree of life. But that's so difficult to stomach! © 2014 Guardian News and Media Limited
Keyword: Emotions; Evolution
Link ID: 19198 - Posted: 02.04.2014
By ABIGAIL ZUGER, M.D. In history’s long parade of pushy mothers and miserably obedient children, no episode beats Dr. Frank H. Netter’s for a happy ending. Both parties got the last laugh. Netter was born to immigrant parents in New York in 1906. He was an artist from the time he could grab a pencil, doodling through high school, winning a scholarship to art school, and enunciating intentions of making his living as an illustrator. Then his mother stepped in, and with an iron hand, deflected him to medicine. Frank’s siblings and cousins all had respectable careers, she informed him, and he would, too. To his credit, he lasted quite a while: through medical school, hospital training and almost an entire year as a qualified doctor. But he continued drawing the whole time, making sketches in his lecture notes to clarify abstruse medical concepts for himself, then doing the same for classmates and even professors. Then, fatefully, his work attracted the notice of advertising departments at pharmaceutical companies. In the midst of the Depression, he demanded and received $7,500 for a series of five drawings, many times what he might expect to earn from a full year of medical practice. He put down his scalpel for good. Thanks to a five-decade exclusive contract with Ciba (now Novartis), he ultimately became possibly the best-known medical illustrator in the world, creating thousands of watercolor plates depicting every aspect of 20th-century medicine. His illustrations were virtually never used to market specific products, but distributed free of charge to doctors as a public service, and collected into popular textbooks. © 2014 The New York Times Company
Keyword: Brain imaging
Link ID: 19197 - Posted: 02.04.2014
by Aviva Rutkin "He moistened his lips uneasily." It sounds like a cheap romance novel, but this line is actually lifted from quite a different type of prose: a neuroscience study. Along with other sentences, including "Have you got enough blankets?" and "And what eyes they were", it was used to build the first map of how the brain processes the building blocks of speech – distinct units of sound known as phonemes. The map reveals that the brain devotes distinct areas to processing different types of phonemes. It might one day help efforts to read off what someone is hearing from a brain scan. "If you could see the brain of someone who is listening to speech, there is a rapid activation of different areas, each responding specifically to a particular feature the speaker is producing," says Nima Mesgarani, an electrical engineer at Columbia University in New York City. Snakes on a brain To build the map, Mesgarani's team turned to a group of volunteers who already had electrodes implanted in their brains as part of an unrelated treatment for epilepsy. The invasive electrodes sit directly on the surface of the brain, providing a unique and detailed view of neural activity. The researchers got the volunteers to listen to hundreds of snippets of speech taken from a database designed to provide an efficient way to cycle through a wide variety of phonemes, while monitoring the signals from the electrodes. As well as those already mentioned, sentences ran the gamut from "It had gone like clockwork" to "Junior, what on Earth's the matter with you?" to "Nobody likes snakes". © Copyright Reed Business Information Ltd.
Keyword: Language; Brain imaging
Link ID: 19196 - Posted: 02.01.2014
by Laura Sanders Despite seeming like a bystander, your baby is attuned to your social life (assuming you have one, which, with a baby, would be amazing). Every time you interact with someone, your wee babe is watching, eagerly slurping up social conventions. Scientists already know that babies expect some social graces: They expect people in a conversation to look at each other and talk to other people, not objects, and are eager to see good guys rewarded and bad guys punished, scientists have found. Now, a new study shows that babies are also attuned to other people’s relationships, even when those relationships have nothing to do with them. Babies are pretty good at figuring out who they want to interact with. The answer in most cases: Nice people. And that makes sense. The helpless wailers need someone reliable around to feed, change and entertain them. So to find out how good babies are at reading other people’s social relationships, University of Chicago psychologists showed 64 9-month-old babies a video of two women eating. Sometimes the women ate from the same bowl and agreed that the food was delicious, or agreed that it was gross. Sometimes the women disagreed. Later, the women interacted again, either warmly greeting each other and smiling, or giving each other the cold shoulder, arms crossed with a “hmph.” Researchers then timed how long the babies spent looking at this last scene, with the idea that the longer the baby spent looking, the more surprising the scene was. © Society for Science & the Public 2000 - 2014.
Keyword: Development of the Brain; Emotions
Link ID: 19195 - Posted: 02.01.2014
By Molly Sharlach Reader, be proud. You’re a perceptual expert. As you read, your eyes alternately focus and move along each line of text in a seamless sequence honed over years of practice. Reading, recognizing faces and distinguishing colors or musical tones are all forms of perceptual expertise. To appreciate the visual skill involved in reading, turn a text upside down. You’ll stumble along in fits and starts, your eyes pausing longer and more often, each movement bringing less information to your brain. To assess how such neuro-ocular blundering might be improved, researchers at the University of British Columbia asked seven volunteers to practice reading novels upside down. After 30 half-hour sessions over a period of 10 weeks, they gained an average of 35 words per minute in reading speed on inverted text. This could be promising news for people with right hemianopia (hemi-uh-NOH-pee-uh), a condition that erases part of the right field of vision in both eyes. Any damage to the left occipital lobe of the brain, or the pathways connecting it to the eyes, can cause this disorder. Hemianopia, from the Greek for “half sight,” most often results from a stroke, but can also befall patients with multiple sclerosis, brain tumors or traumatic injuries. When we read, we see only three or four letters to the left of our eyes’ fixation point, but we pick up information 10 to 15 letters to the right. So in a society that reads from left to right, left hemianopia has little effect on reading ability, but right hemianopia can be devastating. Brain injury patients rank the inability to read among the most significant effects on their quality of life. © 2014 Scientific America
Keyword: Vision; Attention
Link ID: 19194 - Posted: 02.01.2014
By James Gallagher Health and science reporter, BBC News Cells taken from the donated eyes of dead people may be able to give sight to the blind, researchers suggest. Tests in rats, reported in Stem Cells Translational Medicine, showed the human cells could restore some vision to completely blind rats. The team at University College London said similar results in humans would improve quality of life, but would not give enough vision to read. Human trials should begin within three years. Donated corneas are already used to improve some people's sight, but the team at the Institute for Ophthalmology, at UCL, extracted a special kind of cell from the back of the eye. These Muller glia cells are a type of adult stem cell capable of transforming into the specialised cells in the back of the eye and may be useful for treating a wide range of sight disorders. In the laboratory, these cells were chemically charmed into becoming rod cells which detect light in the retina. Injecting the rods into the backs of the eyes of completely blind rats partially restored their vision. Brain scans showed that 50% of the electrical signals between the eye and the brain were recovered by the treatment. One of the researchers, Prof Astrid Limb, told the BBC what such a change would mean in people: "They probably wouldn't be able to read, but they could move around and detect a table in a room. BBC © 2014
By LAUREN BRADY When I was 18 I watched my father perform what would be his final surgery. It was the summer of 2007 and I had just returned to Colorado after surviving my freshman year of film school at New York University. One day my dad invited me to observe a vitrectomy. And while I hadn’t a clue what this would entail I immediately accepted, honored by the invitation and determined not to faint. My father’s 21 years as an ophthalmologist produced over 15,000 operations, a private practice spanning three offices, and very little vacation time. While I sensed from an early age that the long hours were taxing on him I never felt an absence. In fact, my childhood was picturesque: two loving parents, a rowdy little brother whom I pushed around until he was big enough to push back, family trips in the Jeep to the Rocky Mountains. He was the dad with the Handycam at every soccer game and school play. He worked as a surgeon, but he lived for his children. The morning of the vitrectomy we left extra early because of a limp in my dad’s right leg that had appeared a few months earlier and had gradually worsened. He suspected it was a pinched nerve and had been meaning to get it checked out. In the interim, he had started using a chair during surgery. Walking toward the hospital entrance we encountered a fellow doctor who greeted me with the familiarity of someone who’d been exposed to years of my father’s wallet photos. He asked how I liked Greenwich Village, whether I had directed any films yet and if I had tried a bialy. We walked and talked until I noticed at one point that my dad was no longer part of the conversation. Turning around I realized he was a half block back pushing himself up from the ground. © 2014 The New York Times Company
Keyword: ALS-Lou Gehrig's Disease
Link ID: 19192 - Posted: 02.01.2014