Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
Ian Sample, science correspondent, in Chicago Regular brisk walks can slow down the shrinking of the brain and the faltering mental skills that old age often brings, scientists say. Studies on men and women aged 60 to 80 found that taking a short walk three times a week increased the size of brain regions linked to planning and memory over the course of a year. The prefrontal cortex and hippocampus increased in size by only 2% or 3%, but that was enough to offset the steady shrinkage doctors expected to see over the same period. "It may sound like a modest amount but that's actually like reversing the age clock by about one to two years," said Professor Kirk Erickson, a neuroscientist at the University of Pittsburgh. "While the brain is shrinking, we actually saw not a levelling out but an increase in the size of these regions. It was better than before we started the study." People who took part in the study scored higher on spatial memory tests, and some reported feeling more mentally alert, according to Erickson. "They feel better, they feel as if the fog has lifted. Anecdotally, it seems to benefit these cognitive functions," he said. Erickson recruited more than 100 adults who confessed to doing little if any exercise in their daily lives. Half were randomly assigned to walk for 30 to 45 minutes three days a week. The rest spent a similar amount of time doing stretching exercises. Medical scans showed minor increases in the two brain regions in both groups. But the effect was greater in the walkers, Erickson said at the annual meeting of the American Association for the Advancement of Science. © 2014 Guardian News and Media Limited
Keyword: Alzheimers
Link ID: 19271 - Posted: 02.20.2014
By ALAN SCHWARZ Jerry, 9 years old, dissolved into his Game Boy while his father described his attentional difficulties to the family pediatrician. The child began flitting around the room distractedly, ignoring the doctor’s questions and squirming in his chair — but then he leapt up and yelled: “Freeze! What do you think is the problem here?” Nine-year-old Jerry was in fact being played by Dr. Peter Jensen, one of the nation’s most prominent child psychiatrists. On this Sunday in January in New York, Dr. Jensen was on a cross-country tour, teaching pediatricians and other medical providers how to properly evaluate children’s mental health issues — especially attention deficit hyperactivity disorder, which some doctors diagnose despite having little professional training. One in seven children in the United States — and almost 20 percent of all boys — receives a diagnosis of A.D.H.D. by the time they turn 18, according to the Centers for Disease Control and Prevention. It narrowly trails asthma as the most common long-term medical condition in children. Increasing concern about the handling of the disorder has raised questions about the training doctors receive before diagnosing the condition and prescribing stimulants like Adderall or Concerta, sometimes with little understanding of the risks. The medications can cause sleep problems, loss of appetite and, in rare cases, delusions. Because the disorder became a widespread national health concern only in the past few decades, many current pediatricians received little formal instruction on it, sometimes only several hours, during their seven years of medical school and residency. But the national scarcity of child psychiatrists has placed much of the burden for evaluating children’s behavioral problems on general pediatricians and family doctors, a reality that Dr. Jensen and others are trying to address through classes that emphasize role-playing exercises and spirited debate. © 2014 The New York Times Company
Keyword: ADHD; Development of the Brain
Link ID: 19270 - Posted: 02.19.2014
By NICHOLAS RICCARDI, Associated Press COLORADO SPRINGS, Colo. (AP) — The doctors were out of ideas to help 5-year-old Charlotte Figi. Suffering from a rare genetic disorder, she had as many as 300 grand mal seizures a week, used a wheelchair, went into repeated cardiac arrest and could barely speak. As a last resort, her mother began calling medical marijuana shops. Two years later, Charlotte is largely seizure-free and able to walk, talk and feed herself after taking oil infused with a special pot strain. Her recovery has inspired both a name for the strain of marijuana she takes that is bred not to make users high — Charlotte's Web — and an influx of families with seizure-stricken children to Colorado from states that ban the drug. "She can walk, talk; she ate chili in the car," her mother, Paige Figi, said as her dark-haired daughter strolled through a cavernous greenhouse full of marijuana plants that will later be broken down into their anti-seizure components and mixed with olive oil so patients can consume them. "So I'll fight for whomever wants this." Doctors warn there is no proof that Charlotte's Web is effective, or even safe. In the frenzy to find the drug, there have been reports of non-authorized suppliers offering bogus strains of Charlotte's Web. In one case, a doctor said, parents were told they could replicate the strain by cooking marijuana in butter. Their child went into heavy seizures. "We don't have any peer-reviewed, published literature to support it," Dr. Larry Wolk, the state health department's chief medical officer, said of Charlotte's Web. Still, more than 100 families have relocated since Charlotte's story first began spreading last summer, according to Figi and her husband. The relocated families have formed a close-knit group in Colorado Springs, the law-and-order town where the dispensary selling the drug is located. They meet for lunch, support sessions and hikes. © 2014 Hearst Communications, Inc.
Keyword: Epilepsy; Drug Abuse
Link ID: 19269 - Posted: 02.19.2014
By GRETCHEN REYNOLDS Watching participants in slopestyle and half-pipe skiing and snowboarding flip, curl, cartwheel and otherwise contort themselves in the air during the Winter Olympics competition, many of us have probably wondered not only how the athletes managed to perform such feats but also why. Helpfully, a recent study of the genetics of risk-taking intimates that their behavior may be motivated, at least in part, by their DNA. For some time, scientists and many parents have suspected that certain children are born needing greater physical stimulation than others, suggesting that sensation seeking, as this urge is known in psychological terms, has a genetic component. A thought-provoking 2006 study of twins, for instance, concluded that risk-taking behavior was shared by the pairs to a much greater extent than could be accounted for solely by environmental factors. If one twin sought out risks, the other was likely to do so as well. But finding which genes or, more specifically, which tiny snippets of DNA within genes, might be influencing the desire to huck oneself off of a snow-covered slope has proven to be troublesome. In recent years, scientists zeroed in on various sections of genes that affect the brain’s levels of or response to the neurotransmitter dopamine, a substance that is known to influence our feelings of pleasure, reward and gratification. People who engage in and enjoy extreme, daredevil conduct, researchers presumed, would likely process dopamine differently than those of us content to watch. But the results of some early genetic studies comparing dopamine-related portions of genes with sensation seeking were inconsistent. Some found that people with certain variations within genes, including a gene called DRD4 that is believed to be closely involved in the development and function of dopamine receptors in our brain, gravitated toward risky behavior. Others, though, found no such links. But most of these studies focused on so-called deviant risk-taking, such as gambling and drug addiction. © 2014 The New York Times Company
Keyword: Emotions; Genes & Behavior
Link ID: 19268 - Posted: 02.19.2014
By Geoffrey Mohan Stress can damage the brain. The hormones it releases can change the way nerves fire, and send circuits into a dangerous feedback loop, leaving us vulnerable to anxiety, depression and post-traumatic stress disorder. But how stress accomplishes its sinister work on a cellular level has remained mysterious. Neuroscientists at a UC Berkeley lab have uncovered evidence that a well-known stress hormone trips a switch in stem cells in the brain, causing them to produce a white matter cell that ultimately can change the way circuits are connected in the brain. This key step toward hardening wires, the researchers found, may be at the heart of the hyper-connected circuits associated with prolonged, acute stress, according to the study published online Tuesday in the journal Molecular Psychiatry. The findings strengthen an emerging view that cells once written off as little more than glue, insulation and scaffolding may regulate and reorganize the brain's circuitry. Researchers examined a population of stem cells in the brain’s hippocampus, an area critical to fusing emotion and memory, and one that has been known to shrink under the effects of prolonged acute stress. Under normal circumstances, these cells form new neurons or glia, a type of white matter. Los Angeles Times Copyright 2014
by Clare Wilson A monkey controlling the hand of its unconscious cage-mate with its thoughts may sound like animal voodoo, but it is a step towards returning movement to people with spinal cord injuries. The hope is that people who are paralysed could have electrodes implanted in their brains that pick up their intended movements. These electrical signals could then be sent to a prosthetic limb, or directly to the person's paralysed muscles, bypassing the injury in their spinal cord. Ziv Williams at Harvard Medical School in Boston wanted to see if sending these signals to nerves in the spinal cord would also work, as this might ultimately give a greater range of movement from each electrode. His team placed electrodes in a monkey's brain, connecting them via a computer to wires going into the spinal cord of an anaesthetised, unconscious monkey. The unconscious monkey's limbs served as the equivalent of paralysed limbs. A hand of the unconscious monkey was strapped to a joystick, controlling a cursor that the other monkey could see on a screen. Williams's team had previously had the conscious monkey practise the joystick task for itself and had recorded its brain activity to work out which signals corresponded to moving the joystick back and forth. Through trial and error, they deduced which nerves to stimulate in the spinal cord of the anaesthetised monkey to produce similar movements in that monkey's hand. When both parts were fed to the computer, the conscious monkey was able to move the "paralysed" monkey's hand to make the cursor hit a target. © Copyright Reed Business Information Ltd.
Keyword: Robotics
Link ID: 19266 - Posted: 02.19.2014
By PAUL VITELLO Alison Jolly, an American-born primatologist whose research in the forests of Madagascar shed new light on the evolution of social intelligence and helped disprove a longstanding scientific tenet that males were dominant in every primate species, died on Feb. 6 in Lewes, East Sussex, England. She was 76. The cause was breast cancer, said Barbara Orlando, a longtime friend. Dr. Jolly’s two major insights emerged from her 1960s field studies of the lemur, a primate whose development in relative isolation on the island of Madagascar makes the species something akin to a living fossil. Dr. Jolly cited lemurs’ complex social relationships as evidence of an unexplored trail in one of anthropology’s great mysteries: the evolution of higher intelligence. Writing in the journal Science in 1966, she suggested that the many hours lemurs spent in play, mutual grooming and social networking — activities that establish the social ties and hierarchies that determine access to food, mate selection and migration patterns — may have been as important to the evolution of intelligence as the development of weapons and tools of hunting and protection, then considered the hallmarks of evolutionary advance. More unnerving to colleagues was her discovery that in some primate species, females run the show. The finding upended a bedrock assertion in evolutionary biology — based on studies of chimpanzees and orangutans in captivity — that males dominated females in every primate species, including humans. “Females have social, spatial and feeding priority over males,” Dr. Jolly wrote in describing the feeding, mating, child-rearing and recreational habits of the ring-tailed lemur, one of about 100 recognized species of lemur, of which more than a dozen are female-dominant. Among the ring-tailed lemurs, Dr. Jolly wrote in “Lemur Behavior: A Madagascar Field Study,” “all females, whether dominant or subordinate in the female hierarchy, are dominant over males.” © 2014 The New York Times Company
Keyword: Evolution; Sexual Behavior
Link ID: 19265 - Posted: 02.19.2014
By DENISE GRADY The experiment was not for the squirmish. Volunteers were made to itch like crazy on one arm, but not allowed to scratch. Then they were whisked into an M.R.I. scanner to see what parts of their brains lit up when they itched, when researchers scratched them and when they were finally allowed to scratch themselves. The scientific question was this: Why does it feel so good to scratch an itch? “It’s quite intriguing to see how many brain centers are activated,” said Dr. Gil Yosipovitch, chairman of dermatology at the Temple University School of Medicine and director of the Temple Center for Itch (he conducted the experiment while working at Wake Forest School of Medicine). “There is no one itch center. Everyone wants that target, but it doesn’t work in real life like that.” Instead, itching and scratching engage brain areas involved not only in sensation, but also in mental processes that help explain why we love to scratch: motivation and reward, pleasure, craving and even addiction. What an itch turns on, a scratch turns off — and scratching oneself does it better than being scratched by someone else. The study results were published in December in the journal PLOS One. Itching was long overshadowed by pain in both research and treatment, and was even considered just a mild form of pain. But millions of people suffer from itching, and times have changed. Research has found nerves, molecules and cellular receptors that are specific for itching and set it apart from pain, and the medical profession has begun to take it seriously as a debilitating problem that deserves to be studied and treated. Within the last decade, there has been a flurry of research into what causes itching and how to stop it. Along with brain imaging, studies have begun to look at gene activity and to map the signals that flow between cells in the skin, the immune system, the spinal cord and the brain. © 2014 The New York Times Company
Keyword: Pain & Touch
Link ID: 19264 - Posted: 02.18.2014
Elephants, both African and Asian, have long been considered empathetic animals. They help baby elephants stuck in mud holes, use their trunks to lift other elephants that are injured or dying, and even reportedly reassure distressed individual elephants with a gentle touch of their trunk. But it’s one thing to witness something that looks like consolation, and another to prove that this is what elephants are doing. Now, scientists have shown that African elephants do indeed get distressed when they see others in trouble, and they reach out to console them—just as we do when we see someone suffering. Elephants, thus, join a short list of other animals, including great apes, canines, and some birds, that scientists have shown to reassure others. The study “is the first to investigate responses to distress by Asian elephants,” which “is inherently difficult to assess because one has to wait for opportunities to arise spontaneously,” says Shermin de Silva, an behavioral ecologist at the Uda Walawe Elephant Research Project in Sri Lanka. It would not be ethical to intentionally create stressful situations for the animals as a test, she notes—which is why, until now, researchers have had to rely on well-documented, but anecdotal observations of wild and captive elephants to back up claims that they reassure each other. Joshua Plotnik, a behavioral ecologist at Mahidol University in Kanchanaburi, Thailand, and Frans de Waal, a primatologist at Emory University, got around this problem by comparing Asian elephants’ behaviors during times of stress to periods when little upset them. For one to two weeks every month for nearly a year, Plotnik spent 30 to 180 minutes daily watching and recording 26 captive Asian elephants. The animals ranged in age from 3 to 60 years old and lived at the 30-acre Elephant Nature Park in northern Thailand. Most of the elephants, aside from mother-juvenile pairs, were unrelated, and did not live in family groups as wild elephants do. Instead, the park’s Mahouts, or keepers, organized them into six groups which they then guided through a daily routine—bathing and feeding them in the morning, and tethering them at night. But during the day, the elephants were left alone to roam and graze at will. © 2014 American Association for the Advancement of Science
Keyword: Emotions; Evolution
Link ID: 19263 - Posted: 02.18.2014
By GREGORY COWLES David Stuart MacLean’s first book, “The Answer to the Riddle Is Me,” opens with a scene out of Robert Ludlum: The protagonist wakes from a blackout to find himself on a crowded train platform in India, with no idea who he is or what he’s doing in a foreign country. The catch is that the protagonist is Mr. MacLean himself, and his book isn’t an international thriller but a “memoir of amnesia,” as his agreeably paradoxical subtitle puts it — the true story of how his memory was wiped clean and how that condition has subsequently affected his life. It is all the more thrilling for that. In 2002, Mr. MacLean was a 28-year-old Fulbright scholar visiting India to research a novel. It wasn’t his first trip; he had gone a few years earlier and stayed for months. But this time around, his anti-malaria medication touched off a break with reality as sudden as it was severe. He hallucinated angels and demons, and felt his thoughts “puddling in the carpet near the doorway and sloshing down the hall.” Delirious, he agreed with the police officer who surmised he must be a drug addict, and apologized profusely for misdeeds he had never committed. At the hospital, a nurse called him “the most entertaining psychotic that they’d ever had.” As harrowing as this territory is, Mr. MacLean makes an affable, sure-footed guide. In his descriptions, you can recognize the good fiction writer he must have been even before amnesia forced him to view the world anew; if the writer’s task is to “make it new,” then losing your memory turns out to be an unexpected boon. An avid drinker before his breakdown, he recoils the first time he tries Scotch again, thinking it smells “like Band-Aids.” He can’t remember his girlfriend of a year, but her voice is “faintly familiar, like the smell of the car heater the first time you turn it on in the fall.” He grasps at hope when his parents arrive to take him home: “I still didn’t have my memory, but I now had an outline of myself, like a tin form waiting for batter.” © 2014 The New York Times Company
Keyword: Learning & Memory
Link ID: 19262 - Posted: 02.18.2014
By James Gallagher Health and science reporter, BBC News A tool for predicting the risk of clinical depression in teenage boys has been developed by researchers. Looking for high levels of the stress hormone cortisol and reports of feeling miserable, lonely or unloved could find those at greatest risk. Researchers at the University of Cambridge want to develop a way of screening for depression in the same way as heart problems can be predicted. However, their method was far less useful in girls. Teenage years and early adulthood are a critical time for mental health - 75% of disorders develop before the age of 24. But there is no way to accurately say who will or will not develop depression. Risky combination Now researchers say they have taken the "first step" towards a screening tool. Tests on 1,858 teenagers, reported in Proceedings of the National Academy of Sciences, combined hormone levels and mood questionnaires to assess risk. They showed that having both high cortisol levels and depressive mood symptoms posed a higher risk of depression than either factor alone and presented a risk of clinical depression 14 times that of those with low cortisol and no depressive symptoms. Around one in six boys was in the high-risk category and half of them were diagnosed with clinical depression during the three years of study. One of the researchers, Prof Ian Goodyer, said: "Depression is a terrible illness that will affect as many as 10 million people in the UK at some point in their lives. "Through our research, we now have a very real way of identifying those teenage boys most likely to develop clinical depression. BBC © 2014
Keyword: Depression; Hormones & Behavior
Link ID: 19261 - Posted: 02.18.2014
By MAGGIE KOERTH-BAKER If you are pulled over on suspicion of drunken driving, the police officer is likely to ask you to complete three tasks: Follow a pen with your eyes while the officer moves it back and forth; get out of the car and walk nine steps, heel to toe, turn on one foot and go back; and stand on one leg for 30 seconds. Score well on all three of these Olympic events, and there’s a very good chance that you are not drunk. This so-called standard field sobriety test has been shown to catch 88 percent of drivers under the influence of alcohol. But it is nowhere near as good at spotting a stoned driver. In a 2012 study published in the journal Psychopharmacology, only 30 percent of people under the influence of THC, the active ingredient in marijuana, failed the field test. And its ability to identify a stoned driver seems to depend heavily on whether the driver is accustomed to being stoned. A 21-year-old on his first bender and a hardened alcoholic will both wobble on one foot. But the same is not necessarily true of a driver who just smoked his first joint and the stoner who is high five days a week. In another study, 50 percent of the less frequent smokers failed the field test. As more states legalize medical and recreational marijuana, distinctions like these will grow more and more important. But science’s answers to crucial questions about driving while stoned — how dangerous it is, how to test for impairment, and how the risks compare to driving drunk — have been slow to reach the general public. “Our goal is to put out the science and have it used for evidence-based drug policy,” said Marilyn A. Huestis, a senior investigator at the National Institute on Drug Abuse. “But I think it’s a mishmash.” © 2014 The New York Times Company
Keyword: Drug Abuse
Link ID: 19260 - Posted: 02.18.2014
By Brian Palmer, The death of Philip Seymour Hoffman this month has raised many questions about drug addiction, among them: What do drugs such as heroin do to the brain to make them so addictive? Can these chemical changes be undone? Over the past 20 years, research into drug addiction has identified several chemical and physical changes to the brain brought on by addictive substances. There is a wad of nerve cells in the central part of your brain, measuring about half an inch across, called the nucleus accumbens. When you eat a doughnut, have sex or do something else that your brain associates with survival and breeding, this region is inundated with dopamine, a neurotransmitter. This chemical transaction is partly responsible for the experience of pleasure you get from these activities. Drugs such as heroin also trigger this response, but the dopamine surge from drugs is faster and long-lasting. When a person repeatedly subjects his nucleus accumbens to this narcotic-induced flood, the nerve cells that dopamine acts upon become exhausted from stimulation. The brain reacts by dampening its dopamine response — not just to heroin or cocaine, but probably to all forms of pleasurable behavior. In addition, some of the receptors themselves appear to die off. As a result, hyper-stimulating drugs become the only way to trigger a palpable dopamine response. Drug addicts seek larger and larger hits to achieve an ever-diminishing pleasure experience, and they have trouble feeling satisfaction from the things that healthy people enjoy. Behavioral conditioning also plays a role. Once your brain becomes accustomed to the idea that eating a doughnut or having sex will provide pleasure, just seeing a doughnut or an attractive potential mate triggers the dopamine cascade into the nucleus accumbens. That’s part of the reason it is so difficult for recovering drug addicts to stay clean over the long term. Sights, sounds and smells associated with the drug high — needles, for example, or the friends with whom they used to get high — prime this dopamine response, and the motivation to seek the big reward of a drug hit builds. © 1996-2014 The Washington Post
Keyword: Drug Abuse
Link ID: 19259 - Posted: 02.18.2014
By DOUGLAS QUENQUA The smell of a person’s earwax depends partly on his ethnic origin, a new study reports, suggesting that the substance could be an overlooked source of personal information. The earwax of Caucasian men contains more volatile organic compounds than that of East Asian men, researchers at the Monell Chemical Senses Center in Philadelphia found. Twelve such compounds are common to both groups, they said, but 11 of those are more plentiful in Caucasians. Monell researchers have previously found that underarm odor contains clues to a person’s age, health and sex. They suspected that earwax might contain similar markers, since a 2006 study found that a gene related to underarm odor, which also varies by ethnicity, helps determine a person’s type of earwax. (East Asians are more likely to have dry earwax, for example.) "We’re at the beginning of exploring a new and interesting biofluid secretion that has not been looked at in this manner before," said George Preti, an organic chemist at Monell and the senior author of the new study, which was published in The Journal of Chromatography B. Because of the fatty nature of earwax, or cerumen, Dr. Preti says it is a probable repository for odorants produced by diseases and the environment, and hence a potentially valuable diagnostic tool. A 2013 study showed that a whale’s earwax contains evidence of the animal’s exposure to pollutants and stress hormones, and earwax odor in humans is a known indicator of branched-chain ketoaciduria, also known as maple syrup urine disease. © 2014 The New York Times Company
Keyword: Chemical Senses (Smell & Taste)
Link ID: 19258 - Posted: 02.18.2014
Ian Sample, science correspondent, in Chicago A woman's diet in early life has more impact on her baby's birth weight than the food she eats as an adult, researchers say. The surprise finding suggests that you are what your mother ate, and that a woman's diet in her adult life has less influence on her baby's health than previously thought. Prof Christopher Kuzawa at Northwestern University in Illinois said that women's bodies seemed to "buffer" the supply of nutrients to their unborn babies, meaning that foetuses were partly protected from changes in women's diets. Kuzawa advised pregnant women to follow a healthy diet, but said they need not worry about every calorie because their health and diet as a toddler could be more important for their baby. "There is some good news here for expectant mothers. Although there certainly are some harmful things to avoid during pregnancy, and some supplements to take to make sure some important bases are covered, the mother's body seems to do a good job of buffering overall nutritional supply to her growing baby," he said. "Within the bounds of a healthy balanced diet, the overall quantity of food that a mother eats is unlikely to have large effects on her baby's birth weight," he added. The findings emerged from a 30-year study that followed more than 3,000 pregnant women in the Philippines whose children have now begun to have babies of their own. Kuzawa said that while there was good evidence that unborn children benefit from their mothers taking extra folate and that they are harmed by toxins such as lead, mercury, excessive alcohol and bisphenol A, which is used to make some plastics, the picture was less clear on the roles of calories, protein, fat and carbohydrates. © 2014 Guardian News and Media Limited
Keyword: Development of the Brain; Obesity
Link ID: 19257 - Posted: 02.17.2014
By CATHERINE SAINT LOUIS Does chocolate really hurt dogs? It can, depending on their weight and how much they eat, so be vigilant this Valentine’s Day. Stimulants in chocolate can lead to vomiting, diarrhea, agitation and life-threatening elevated heart rates or seizures. “Dogs have no off button,” said Dr. Tina Wismer, the medical director of the ASPCA Animal Poison Control Center. “If you or I ate 10 percent of our body weight in chocolate, we’d have the same problems. A 10-pound dog can easily eat a pound of chocolate.” The darker the chocolate, the more toxic it is. For a 20-pound dog, 9 ounces of milk chocolate can cause seizures, but it takes only 1.5 ounces of baker’s chocolate, she said. Signs of chocolate poisoning usually appear six to 12 hours after ingestion, according to The Merck Veterinary Manual. “Seizures due to toxicity don’t stop unless you treat them,” Dr. Wismer said. So head to the emergency clinic or veterinarian if you come home to find your dog vomiting repeatedly and extremely agitated, and certainly if the pet is unconscious and its limbs are shaking. By contrast, dogs who vomit once and fall sleep can be watched at home, she said. Unlike cats, dogs like sweets. So it’s best to keep chocolate stored away and off countertops, which are no match for a motivated climber. © 2014 The New York Times Company
Keyword: Epilepsy; Obesity
Link ID: 19256 - Posted: 02.17.2014
by Ashley Yeager Humans aren’t the only ones to suffer from obsessive-compulsive disorder. Dogs can suffer from the disorder as well, with particular breeds compulsively chewing their feet, chasing their tails or sucking blankets. Now scientists say they have identified several of the genes that trigger the behavior in Doberman pinschers, bullterriers, sheepdogs and German shepherds. Four genes, CDH2, CTNNA2, ATXN1 and PGCP, involved in the communication between brain cells appear to play a role in dog OCD, researchers report February 16 in Genome Biology. The results could be used to better understand the disorder in people. © Society for Science & the Public 2000 - 2013.
Keyword: OCD - Obsessive Compulsive Disorder; Genes & Behavior
Link ID: 19255 - Posted: 02.17.2014
by Bethany Brookshire CHIGAGO – From a cockatoo bopping to the Backstreet Boys to a sea lion doing the boogie, nothing goes viral like an animal swaying to the music. Now, research shows that not only can bonobos feel the beat, they can play along. Music “engages the brain in a way that no other stimulus can,” says cognitive psychologist Edward Large of the University of Connecticut in Storrs. He and Patricia Gray, a biomusic researcher at the University of North Carolina at Greensboro, wanted to see if bonobos, which share 98.7 percent of their DNA with humans, might respond similarly to musical rhythms. The researchers gave a group of bonobos access to a specially tailored drum, then showed them people drumming rhythmically. Eventually three animals picked up the beat and were able to match tempos with the scientists. Bonobos were also found to prefer a faster pace than most people. Large and Gray presented their findings February 15 at the American Association for the Advancement of Science annual meeting. Rhythm involves the coordination of many brain areas, such as auditory and motor regions. Further research could help scientists understand whether only a few species can keep the beat, or if moving to the groove is widespread in the animal kingdom. © Society for Science & the Public 2000 - 2013.
Keyword: Hearing; Evolution
Link ID: 19254 - Posted: 02.17.2014
Kids with ADHD may be able to learn better focus through a computer game that trains the brain to pay attention, a new study suggests. The game was part of a neurofeedback system that used bicycle helmets wired to measure brain waves and gave immediate feedback when kids were paying attention, researchers reported Monday in Pediatrics. Giving kids feedback on what their brains are doing is "like turning on a light switch," said Dr. Naomi Steiner, the study's lead author and a developmental and behavioral pediatrician at the Floating Hospital for Children at Tufts Medical Center. "Kids said 'Oh, this is what people mean when they tell me to pay attention.'" To test the system, Steiner and her colleagues randomly assigned 104 Boston area elementary school children to one of three groups: no treatment, 40 half-hour sessions of neurofeedback or 40 sessions of cognitive therapy. The kids getting neurofeedback wore standard bicycle helmets fitted with brain wave sensors while they performed a variety of exercises on the computer. In one exercise, kids were told to focus on a cartoon dolphin. When people pay attention, theta wave activity goes down while beta waves increase, Steiner explained. If the kids' brains showed they were paying attention, the dolphin would dive to the bottom of the sea. Parents' reports on ADHD symptoms six months later showed a lasting improvement in kids who had done neurofeedback.
Keyword: ADHD; Learning & Memory
Link ID: 19253 - Posted: 02.17.2014
Carl Zimmer In 2011, a 66-year-old retired math teacher walked into a London neurological clinic hoping to get some answers. A few years earlier, she explained to the doctors, she had heard someone playing a piano outside her house. But then she realized there was no piano. The phantom piano played longer and longer melodies, like passages from Rachmaninov’s Piano Concerto number 2 in C minor, her doctors recount in a recent study in the journal Cortex. By the time the woman — to whom the doctors refer only by her first name, Sylvia — came to the clinic, the music had become her nearly constant companion. Sylvia hoped the doctors could explain to her what was going on. Sylvia was experiencing a mysterious condition known as musical hallucinations. These are not pop songs that get stuck in your head. A musical hallucination can convince people there is a marching band in the next room, or a full church choir. Nor are musical hallucinations the symptoms of psychosis. People with musical hallucinations usually are psychologically normal — except for the songs they are sure someone is playing. The doctors invited Sylvia to volunteer for a study to better understand the condition. She agreed, and the research turned out to be an important step forward in understanding musical hallucinations. The scientists were able to compare her brain activity when she was experiencing hallucinations that were both quiet and loud — something that had never been done before. By comparing the two states, they found important clues to how the brain generates these illusions. If a broader study supports the initial findings, it could do more than help scientists understand how the brain falls prey to these phantom tunes. It may also shed light on how our minds make sense of the world. © 2014 The New York Times Company
Keyword: Hearing; Attention
Link ID: 19252 - Posted: 02.15.2014