Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
Animal rights activists have dramatically shifted their tactics over the last decade, targeting individual researchers and the businesses that support them, instead of going after their universities. That’s the biggest revelation to come out of a report released today by the Federation of American Societies for Experimental Biology (FASEB), the largest coalition of biomedical research associations in the United States. The purpose of the report—The Threat of Extremism to Medical Research: Best Practices to Mitigate Risk through Preparation and Communication—is to provide guidance to scientists and institutions around the world in dealing with animal rights extremists. That includes individuals and groups that damage laboratories, send threatening e-mails, and even desecrate the graves of researchers’ relatives. In 2004, for example, Animal Liberation Front activists broke into psychology laboratories at the University of Iowa, where they smashed equipment, spray-painted walls, and removed hundreds of animals, causing more than $400,000 in damage. In 2009, extremists set fire to the car of a University of California, Los Angeles, neuroscientist who worked on rats and monkeys. And other researchers say activists have shown up at their homes in the middle of the night, threatening their families and children. “We wanted to create an international document to get people thinking about the potential of animal extremism,” says Michael Conn, a co-chair of the committee that created the report and the senior vice president for research at the Texas Tech University Health Sciences Center in Lubbock. “These activities can happen to anybody—no one is immune.” © 2014 American Association for the Advancement of Science
Keyword: Animal Rights
Link ID: 19355 - Posted: 03.13.2014
by Bruce Bower Chimpanzees possess a flexible, humanlike sensitivity to the mental states of others, even strangers from another species, researchers suggest March 11 in the Proceedings of the Royal Society B. Empathy’s roots go back at least to the common ancestor of humans and chimps, they say. Psychologist Matthew Campbell and biologist Frans de Waal, both of Emory University in Atlanta, treated chimps’ tendency to yawn when viewing videotapes of others yawning as a sign of spontaneous empathy. Their research follows other scientists’ observations that young chimps mimic scientists’ yawns (SN Online: 10/16/13). Nineteen chimps living in an outdoor research facility yawned when they saw the same action from chimps that they lived with, researchers and staff they had seen before and people who were new to them. Unfamiliar chimps and baboons failed to elicit contagious yawning. As in the wild, unfamiliar chimps were probably viewed as threats. Chimps in the study hadn’t seen baboons before. Having socially connected with facility workers, chimps reacted empathically to human strangers who yawned, the researchers propose. Imitating others’ facial expressions represents a rapid way to forge empathic ties, Campbell says. His research didn’t test whether chimps spend a lot of time trying to read others’ thoughts and feelings, a more complex type of empathy. © Society for Science & the Public 2000 - 2013.
Keyword: Emotions
Link ID: 19354 - Posted: 03.12.2014
By Klint Finley Today’s neuroscientists need expertise in more than just the human brain. They must also be accomplished hardware engineers, capable of building new tools for analyzing the brain and collecting data from it. There are many off-the-shelf commercial instruments that help you do such things, but they’re usually expensive and hard to customize, says Josh Siegle, a doctoral student at the Wilson Lab at MIT. “Neuroscience tends to have a pretty hacker-oriented culture,” he says. “A lot of people have a very specific idea of how an experiment needs to be done, so they build their own tools.” The problem, Siegle says, is that few neuroscientists share the tools they build. And because they’re so focused on creating tools for their specific experiments, he says, researchers don’t often consider design principles like modularity, which would allow them to reuse tools in other experiments. That can mean too much redundant work as researchers spend time solving problems others already have solved, and building things from scratch instead of repurposing old tools. ‘We just want to build awareness of how open source eliminates redundancy, reduces costs, and increases productivity’ That’s why Siegle and Jakob Voigts of the Moore Lab at Brown University founded Open Ephys, a project for sharing open source neuroscience hardware designs. They started by posting designs for the tools they use to record electrical signals in the brain. They hope to kick start an open source movement within neuroscience by making their designs public, and encouraging others to do the same. “We don’t necessarily want people to use our tools specifically,” Siegle says. “We just want to build awareness of how open source eliminates redundancy, reduces costs, and increase productivity.” © 2014 Condé Nast.
Keyword: Miscellaneous
Link ID: 19353 - Posted: 03.12.2014
By Ella Davies Reporter, BBC Nature Peacocks make fake sex sounds to attract females' attention, scientists say. The birds are known for shaking their tail feathers but Canadian researchers have revealed a further sexual tactic. Peacocks have a wide vocabulary of calls, and during mating they make a distinctive hoot. Biologists also recorded males making this sound when out of sight of females and suggest such deception could prove rewarding for the birds. Peacocks are one of the most obvious examples of advertising sexual fitness in the animal kingdom with their eye-catching plumage and strutting courtship displays. The mating behaviour takes place in open areas of land referred to as a "lek". When a male has successfully attracted a female, or peahen, it rushes at her making a distinctive hooting call before attempting to mate. These calls are loud enough to be heard from a distance, prompting scientists to investigate what benefit this has. "It's much louder than it needs to be to communicate with just the female that the male is trying to mate with," explained Dr Roslyn Dakin from the University of British Columbia, Canada, who co-authored the study. BBC © 2014
Keyword: Sexual Behavior
Link ID: 19352 - Posted: 03.12.2014
by Colin Barras Treat them mean, keep them keen? Female preying mantis and black widow spiders are notorious for their tendency to kill and eat males before, during or after sex. The behaviour is clearly risky, though – not least because the scent of a dead rival hardly encourages other males to try their luck. Or so we thought. For male Pennsylvania grass spiders, the whiff of dead male seems to be exactly what they look for in a mate. They are far more likely to approach a female if she has recently killed and eaten a male. Grass spiders are found across North America. With a body length – not including legs – of 17 millimetres, the Pennsylvania grass spider is among the largest. It's harmless to humans, though, spending most of its time hiding away in a tunnel at the corner of its flat, sheet-like web. Unlike many arachnids, grass spiders don't produce sticky webs. But they can move surprisingly quickly, dashing out of their tunnel to grab any insect that ventures too near. It's not just insects that have reason to fear female Pennsylvania grass spiders. Males of the species can find themselves on the wrong end of a female's voracious appetite when the two meet to breed. As mating strategies go, it seems a pretty foolhardy one: studies suggest females in urban settings are typically approached by no more than three – and as few as zero – males during their 3-week-long breeding season. Cannibalism seems to leave the females at risk of self-inflicted celibacy. © Copyright Reed Business Information Ltd
Keyword: Sexual Behavior
Link ID: 19351 - Posted: 03.12.2014
Penis envy. Repression. Libido. Ego. Few have left a legacy as enduring and pervasive as Sigmund Freud. Despite being dismissed long ago as pseudoscientific, Freudian concepts such as these not only permeate many aspects of popular culture, but also had an overarching influence on, and played an important role in the development of, modern psychology, leading Time magazine to name him as one of the most important thinkers of the 20th century. Before his rise to fame as the founding father of psychoanalysis, however, Freud trained and worked as a neurologist. He carried out pioneering neurobiological research, which was cited by Santiago Ramóny Cajal, the father of modern neuroscience, and helped to establish neuroscience as a discipline. The eldest of eight children, Freud was born on 6 May, 1856, in the Moravian town of Příbor, in what is now the Czech Republic. Four years later, Freud's father Jakob, a wool merchant, moved the family to Austria in search of new business opportunities. Freud subsequently entered the university there, aged just 17, to study medicine and, in the second year of his degree, became preoccupied with scientific research. His early work was a harbinger of things to come – it focused on the sexual organs of the eel. The work was, by all accounts, satisfactory, but Freud was disappointed with his results and, perhaps dismayed by the prospect of dissecting more eels, moved to Ernst Brücke's laboratory in 1877. There, he switched to studying the biology of nervous tissue, an endeavour that would last for 10 years. © 2014 Guardian News and Media Limited
Keyword: Miscellaneous
Link ID: 19350 - Posted: 03.12.2014
Matt Kaplan Humans are among the very few animals that constitute a threat to elephants. Yet not all people are a danger — and elephants seem to know it. The giants have shown a remarkable ability to use sight and scent to distinguish between African ethnic groups that have a history of attacking them and groups that do not. Now a study reveals that they can even discern these differences from words spoken in the local tongues. Biologists Karen McComb and Graeme Shannon at the University of Sussex in Brighton, UK, guessed that African elephants (Loxodonta africana) might be able to listen to human speech and make use of what they heard. To tease out whether this was true, they recorded the voices of men from two Kenyan ethnic groups calmly saying, “Look, look over there, a group of elephants is coming,” in their native languages. One of these groups was the semi-nomadic Maasai, some of whom periodically kill elephants during fierce competition for water or cattle-grazing space. The other was the Kamba, a crop-farming group that rarely has violent encounters with elephants. The researchers played the recordings to 47 elephant family groups at Amboseli National Park in Kenya and monitored the animals' behaviour. The differences were remarkable. When the elephants heard the Maasai, they were much more likely to cautiously smell the air or huddle together than when they heard the Kamba. Indeed, the animals bunched together nearly twice as tightly when they heard the Maasai. “We knew elephants could distinguish the Maasai and Kamba by their clothes and smells, but that they can also do so by their voices alone is really interesting,” says Fritz Vollrath, a zoologist at the University of Oxford, UK (see video below). © 2014 Nature Publishing Group
Keyword: Intelligence; Language
Link ID: 19349 - Posted: 03.11.2014
Think women can’t do math? You’re wrong—but new research shows you might not change your mind, even if you get evidence to the contrary. A study of how both men and women perceive each other's mathematical ability finds that an unconscious bias against women could be skewing hiring decisions, widening the gender gap in mathematical professions like engineering. The inspiration for the experiment was a 2008 study published in Science that analyzed the results of a standardized test of math and verbal abilities taken by 15-year-olds around the world. The results challenged the pernicious stereotype that females are biologically inferior at mathematics. Although the female test-takers lagged behind males on the math portion of the test, the size of the gap closely tracked the degree of gender inequality in their countries, shrinking to nearly zero in emancipated countries like Sweden and Norway. That suggests that cultural biases rather than biology may be the better explanation for the math gender gap. To tease out the mechanism of discrimination, two of the authors of the 2008 study, Paola Sapienza and Luigi Zingales, economic researchers at Northwestern University’s Kellogg School of Management in Evanston, Illinois, and the University of Chicago Booth School of Business in Illinois, respectively, teamed up with Ernesto Reuben, an experimental psychologist at Columbia Business School in New York City, to design an experiment to test people's gender bias when it comes to judging mathematical ability. Study participants of both genders were divided into two groups: employers and job candidates. The job was simple: As accurately and quickly as possible, add up sets of two-digit numbers in a 4-minute math sprint. (The researchers did not tell the subjects, but it is already known that men and women perform equally well on this task.) © 2014 American Association for the Advancement of Science.
Keyword: Sexual Behavior; Attention
Link ID: 19348 - Posted: 03.11.2014
By Jessica Wright and SFARI.org It takes more mutations to trigger autism in women than in men, which may explain why men are four times more likely to have the disorder, according to a study published 26 February in the American Journal of Human Genetics. The study found that women with autism or developmental delay tend to have more large disruptions in their genomes than do men with the disorder. Inherited mutations are also more likely to be passed down from unaffected mothers than from fathers. Together, the results suggest that women are resistant to mutations that contribute to autism. “This strongly argues that females are protected from autism and developmental delay and require more mutational load, or more mutational hits that are severe, in order to push them over the threshold,” says lead researcher Evan Eichler, professor of genome sciences at the University of Washington in Seattle. “Males on the other hand are kind of the canary in the mineshaft, so to speak, and they are much less robust.” The findings bolster those from previous studies, but don't explain what confers protection against autism in women. The fact that autism is difficult to diagnose in girls may mean that studies enroll only those girls who are severely affected and who may therefore have the most mutations, researchers note. “The authors are geneticists, and the genetics is terrific,” says David Skuse, professor of behavioral and brain sciences at University College London, who was not involved in the study. “But the questions about ascertainment are not addressed adequately.” © 2014 Scientific American
Keyword: Autism; Sexual Behavior
Link ID: 19347 - Posted: 03.11.2014
By TARA PARKER-POPE For a $14.95 monthly membership, the website Lumosity promises to “train” your brain with games designed to stave off mental decline. Users view a quick succession of bird images and numbers to test attention span, for instance, or match increasingly complex tile patterns to challenge memory. While Lumosity is perhaps the best known of the brain-game websites, with 50 million subscribers in 180 countries, the cognitive training business is booming. Happy Neuron of Mountain View, Calif., promises “brain fitness for life.” Cogmed, owned by the British education company Pearson, says its training program will give students “improved attention and capacity for learning.” The Israeli firm Neuronix is developing a brain stimulation and cognitive training program that the company calls a “new hope for Alzheimer’s disease.” And last month, in a move that could significantly improve the financial prospects for brain-game developers, the Centers for Medicare and Medicaid Services began seeking comments on a proposal that would, in some cases, reimburse the cost of “memory fitness activities.” Much of the focus of the brain fitness business has been on helping children with attention-deficit problems, and on improving cognitive function and academic performance in healthy children and adults. An effective way to stave off memory loss or prevent Alzheimer’s — particularly if it were a simple website or video game — is the “holy grail” of neuroscience, said Dr. Murali Doraiswamy, director of the neurocognitive disorders program at Duke Institute for Brain Sciences. The problem, Dr. Doraiswamy added, is that the science of cognitive training has not kept up with the hype. © 2014 The New York Times Company
Keyword: Learning & Memory
Link ID: 19346 - Posted: 03.11.2014
by Kat Arney Feeling dopey? Refresh your "circadian eye" with a burst of orange light. Light is a powerful wake-up call, enhancing alertness and activity. Its effect is controlled by a group of photoreceptor cells in the eyeball that make the light-sensing pigment melanopsin. These cells, which work separately to the rods and cones needed for vision, are thought to help reset animals' body clocks - or circadian rhythms. Studies with people who are blind suggest this also happens in humans, although the evidence isn't conclusive. To find out how melanopsin wakes up the brain, Gilles Vandewalle at the University of Liege, Belgium, and his team gave 16 people a 10-minute blast of blue or orange light while they performed a memory test in an fMRI scanner. They were then blindfolded for 70 minutes, before being retested under a green light. People initially exposed to orange light had greater brain activity in several regions related to alertness and cognition when they were retested, compared with those pre-exposed to blue light. Light switch Vandewalle thinks that melanopsin is acting as a kind of switch, sending different signals to the brain depending on its state. Orange light, which has the longer wavelength, is known to make the pigment more light-sensitive, but blue light has the opposite effect. Green light lies somewhere in the middle. The findings suggest that pre-exposure to orange light pushes the balance towards the more light-sensitive form of melanopsin, enhancing the response in the brain. © Copyright Reed Business Information Ltd.
Keyword: Biological Rhythms; Vision
Link ID: 19345 - Posted: 03.11.2014
by Nathan Seppa MS patients who harbor low levels of vitamin D early in their disease fare worse over the next several years than patients with higher levels. Multiple sclerosis is marked by damage to the fatty sheaths coating nerve fibers in the brain. The result can be an off-and-on series of symptoms including loss of muscle control, numbness and problems thinking. Vitamin D, which the body makes from sun exposure, has shown promise in fighting a variety of diseases and may limit this MS onslaught (SN: 7/16/11, p. 22). In 2002, researchers studying the effect of the drug beta-interferon-1b against MS set aside blood samples from 465 patients. When researchers recently analyzed those samples, they found that patients who had blood levels of vitamin D exceeding 20 nanograms per milliliter at six and 12 months after the onset of MS had fewer symptom flare-ups during the rest of the five-year study than those with lower readings did. Some scientists think 20 nanograms per milliliter is a healthy level; others see 30 as a healthier minimum. MRI scans revealed that, after five years, those who had started out with low vitamin D levels had four times as much myelin damage as those who had higher levels. The results appear in the March JAMA Neurology. A. Ascherio et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurology. Vol. 71, March 2014, p. 306. doi:10.1001/jamaneurol.2013.5993. © Society for Science & the Public 2000 - 2013
Keyword: Multiple Sclerosis; Biological Rhythms
Link ID: 19344 - Posted: 03.11.2014
By ALBERT SUN On a frigid night recently in Randolph, N.J., the Jersey Wildcats junior hockey team flew across the home rink during practice at Aspen Ice Arena, sending ice into the air. Hockey is known for its collisions, and concussions aren’t unusual, but the players didn’t seem particularly worried. On the backs of their heads were flashing green lights, signifying that all was well. “We’ll be behind the bench, and as soon as a player comes back we can look right down and it’ll be a nice light,” said the coach, Justin Stanlick. If the light changes color, “we can know that player needs to go see a trainer to get cleared.” The light is part of a head impact sensor called the Checklight, made by Reebok. The device is a black skullcap with an electronic strip and three lights on the back. It blinks green when a player has sustained no head impact on the ice, yellow after a moderate impact and red after a severe one. The Checklight relies on an accelerometer and a gyroscope to measure the force of an impact. The Checklight flashes green for no impact, yellow for a moderate blow, red for a severe one.Bryan Thomas for The New York Times The Checklight flashes green for no impact, yellow for a moderate blow, red for a severe one. Coaches and parents have only to look to see if a player has taken a serious blow. And because the sensors are objective, Reebok executives say, they may lessen the pressure on young athletes to project toughness and play through a concussion. Gage Malinowski, a 19-year-old defenseman for the Wildcats, recently returned to practice after suffering the latest in a series of concussions during a game in February. “There’s not a game where I don’t have at least 10 hits,” he said. © 2014 The New York Times Company
Keyword: Brain Injury/Concussion
Link ID: 19343 - Posted: 03.11.2014
Why do some humans have lighter skin than others? Researchers have longed chalked up the difference to tens of thousands of years of evolution, with darker skin protecting those who live nearer to the equator from the sun’s intense radiation. But a new study of ancient DNA concludes that European skin color has continued to change over the past 5000 years, suggesting that additional factors, including diet and sexual attraction, may also be at play. Our species, Homo sapiens, first arose in Africa about 200,000 years ago, and researchers assume that its first members were as dark-skinned as Africans are today, because dark skin is advantageous in Africa. Dark skin stems from higher levels of the pigment melanin, which blocks UV light and protects against its dangers, such as DNA damage—which can lead to skin cancer—and the breakdown of vitamin B. On the other hand, skin cells need exposure to a certain amount of UV light in order to produce vitamin D. These competing pressures mean that as early humans moved away from the equator, it makes sense that their skin lightened. Recent research, however, has suggested that the picture is not so simple. For one thing, a number of genes control the synthesis of melanin (which itself comes in two different forms in humans), and each gene appears to have a different evolutionary history. Moreover, humans apparently did not begin to lighten up immediately after they migrated from Africa to Europe beginning about 40,000 years ago. In 2012, for example, a team led by Jorge Rocha, a geneticist at the University of Porto in Portugal, looked at variants of four pigmentation genes in modern Portuguese and African populations and calculated that at least three of them had only been strongly favored by evolution tens of thousands of years after humans left Africa. In January, another team, led by geneticist Carles Lalueza-Fox of the University of Barcelona in Spain, sequenced the genome of an 8000-year-old male hunter-gatherer skeleton from the site of La Braña-Arintero in Spain and found that he was dark rather than light-skinned—again suggesting that natural selection for light skin acted relatively late in prehistory. © 2014 American Association for the Advancement of Science
Keyword: Evolution; Sexual Behavior
Link ID: 19342 - Posted: 03.11.2014
By RON SUSKIND In our first year in Washington, our son disappeared. Just shy of his 3rd birthday, an engaged, chatty child, full of typical speech — “I love you,” “Where are my Ninja Turtles?” “Let’s get ice cream!” — fell silent. He cried, inconsolably. Didn’t sleep. Wouldn’t make eye contact. His only word was “juice.” I had just started a job as The Wall Street Journal’s national affairs reporter. My wife, Cornelia, a former journalist, was home with him — a new story every day, a new horror. He could barely use a sippy cup, though he’d long ago graduated to a big-boy cup. He wove about like someone walking with his eyes shut. “It doesn’t make sense,” I’d say at night. “You don’t grow backward.” Had he been injured somehow when he was out of our sight, banged his head, swallowed something poisonous? It was like searching for clues to a kidnapping. After visits to several doctors, we first heard the word “autism.” Later, it would be fine-tuned to “regressive autism,” now affecting roughly a third of children with the disorder. Unlike the kids born with it, this group seems typical until somewhere between 18 and 36 months — then they vanish. Some never get their speech back. Families stop watching those early videos, their child waving to the camera. Too painful. That child’s gone. In the year since his diagnosis, Owen’s only activity with his brother, Walt, is something they did before the autism struck: watching Disney movies. “The Little Mermaid,” “Beauty and the Beast,” “Aladdin” — it was a boom time for Disney — and also the old classics: “Dumbo,” “Fantasia,” “Pinocchio,” “Bambi.” They watch on a television bracketed to the wall in a high corner of our smallish bedroom in Georgetown. It is hard to know all the things going through the mind of our 6-year-old, Walt, about how his little brother, now nearly 4, is changing. They pile up pillows on our bed and sit close, Walt often with his arm around Owen’s shoulders, trying to hold him — and the shifting world — in place. © 2014 The New York Times Company
Keyword: Autism
Link ID: 19341 - Posted: 03.10.2014
Alison Abbott A simple blood test has the potential to predict whether a healthy person will develop symptoms of dementia within two or three years. If larger studies uphold the results, the test could fill a major gap in strategies to combat brain degeneration, which is thought to show symptoms only at a stage when it too late to treat effectively. The test was identified in a preliminary study involving 525 people aged over 70. The work identified a set of ten lipid metabolites in blood plasma that distinguished with 90% accuracy between people who would remain cognitively healthy from those who would go on to show signs of cognitive impairment. “These findings are potentially very exciting,” says Simon Lovestone, a neuroscientist at the University of Oxford, UK, and a cordinator of a major European public-private partnership seekimg biomarkers for Alzheimer's. But he points out that only 28 participants developed symptoms similar to those of Alzheimer's disease during the latest work. “So the findings need to be confirmed in independent and larger studies.” There is not yet a good treatment for Alzheimer’s disease, which affects 35 million people worldwide. Several promising therapies have been tested in clinical trials over the last few years, but all have failed. However, those trials involved people who had already developed symptoms. Many neuroscientists fear that any benefits of a treatment would be missed in such a study, because it could be impossible to halt the disease once it has manifested. “We desperately need biomarkers which would allow patients to be identified — and recruited into trials — before their symptoms begin,” says Lovestone. © 2014 Nature Publishing Group,
Keyword: Alzheimers
Link ID: 19340 - Posted: 03.10.2014
By INNA GAISLER-SALOMON WE intuitively understand, and scientific studies confirm, that if a woman experiences stress during her pregnancy, it can affect the health of her baby. But what about stress that a woman experiences before getting pregnant — perhaps long before? It may seem unlikely that the effects of such stress could be directly transmitted to the child. After all, stress experienced before pregnancy is not part of a mother’s DNA, nor does it overlap with the nine months of fetal development. Nonetheless, it is undeniable that stress experienced during a person’s lifetime is often correlated with stress-related problems in that person’s offspring — and even in the offspring’s offspring. Perhaps the best-studied example is that of the children and grandchildren of Holocaust survivors. Research shows that survivors’ children have greater-than-average chances of having stress-related psychiatric illnesses like post-traumatic stress disorder, even without being exposed to higher levels of stress in their own lives. Similar correlations are found in other populations. Studies suggest that genocides in Rwanda, Nigeria, Cambodia, Armenia and the former Yugoslavia have brought about distinct psychopathological symptoms in the offspring of survivors. What explains this pattern? Does trauma lead to suboptimal parenting, which leads to abnormal behavior in children, which later affects their own parenting style? Or can you biologically inherit the effects of your parents’ stress, after all? It may be the latter. In a study that I, together with my colleagues Hiba Zaidan and Micah Leshem, recently published in the journal Biological Psychiatry, we found that a relatively mild form of stress in female rats, before pregnancy, affected their offspring in a way that appeared to be unrelated to parental care. © 2014 The New York Times Company
Keyword: Stress; Epigenetics
Link ID: 19339 - Posted: 03.10.2014
Think you’ll always pick chocolate over a bag of chips? Don’t be so sure. Researchers have found that if they can get people to pay more attention to a particular type of junk food, they will begin to prefer it—even weeks or months after the experiment. The finding suggests a new way to manipulate our decisions and perhaps even encourage us to pick healthy foods. “This paper is provocative and very well done,” says Antonio Rangel, a neuroeconomist at the California Institute of Technology in Pasadena, who was not involved in the new study. “It is exciting because it’s a proof of concept that a relatively simple intervention can have this long-lasting effect.” Economists who study decision-making had previously found that, when deciding between multiple items, people tend to let their gaze linger on the things that they end up choosing. This observation has motivated companies to pursue flashy packaging to attract consumers’ eyes. Tom Schonberg, a neuroscientist at the University of Texas, Austin, wondered whether people’s preferences could be changed before being faced with such a decision by training their brains to pay more attention to certain items. His first task was figuring out what kind of junk food people preferred. He and his colleagues recruited more than 200 university students and set up an auction-style program that asked them how much they were willing to pay for 60 different kinds of snacks, from M&M’s to Fritos. Then, the participants went through a 30- to 50-minute computer training program that showed photos of foods that the participants had already rated. When some treats appeared on the screen, a short tone would play and signal the subject to press a button as fast as possible. When other treats popped up, the computer remained silent and the subject refrained from pressing the button. © 2014 American Association for the Advancement of Science
Keyword: Obesity; Attention
Link ID: 19338 - Posted: 03.10.2014
By BENEDICT CAREY Jack Belliveau, a Harvard scientist whose quest to capture the quicksilver flare of thought inside a living brain led to the first magnetic resonance image of human brain function, died on Feb. 14 in San Mateo, Calif. He was 55. The cause was complications of a gastrointestinal disorder, said his wife, Brigitte Poncelet-Belliveau, a researcher who worked with him at the Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital. He lived in Boston. His wife said he died suddenly while visiting an uncle at his childhood home, which he owned. Dr. Belliveau was a 30-year-old graduate student at the Martinos Center when he hatched a scheme to “see” the neural trace of brain activity. Doctors had for decades been taking X-rays and other images of the brain to look for tumors and other lesions and to assess damage from brain injuries. Researchers had also mapped blood flow using positron emission tomography scans, but that required making and handling radioactive trace chemicals, whose signature vanished within minutes. Very few research centers had the technical knowledge or the machinery to pull it off. Dr. Belliveau tried a different approach. He had developed a technique to track blood flow, called dynamic susceptibility contrast, using an M.R.I. scanner that took split-second images, faster than was usual at the time. This would become a standard technique for assessing blood perfusion in stroke patients and others, but Dr. Belliveau thought he would try it to spy on a normal brain in the act of thinking or perceiving. “He went out to RadioShack and bought a strobe light, like you’d see in a disco,” said Dr. Bruce Rosen, director of the Martinos Center and one of Dr. Belliveau’s advisers at the time. “He thought the strobe would help image the visual areas of the brain, where there was a lot of interest.” © 2014 The New York Times Company
Keyword: Brain imaging
Link ID: 19337 - Posted: 03.10.2014
Imagine that, after feeling unwell for a while, you visit your GP. "Ah," says the doctor decisively, "what you need is medication X. It's often pretty effective, though there can be side-effects. You may gain weight. Or feel drowsy. And you may develop tremors reminiscent of Parkinson's disease." Warily, you glance at the prescription on the doctor's desk, but she hasn't finished. "Some patients find that sex becomes a problem. Diabetes and heart problems are a risk. And in the long term the drug may actually shrink your brain … " This scenario may sound far-fetched, but it is precisely what faces people diagnosed with schizophrenia. Since the 1950s, the illness has generally been treated using antipsychotic drugs – which, as with so many medications, were discovered by chance. A French surgeon investigating treatments for surgical shock found that one of the drugs he tried – the antihistamine chlorpromazine – produced powerful psychological effects. This prompted the psychiatrist Pierre Deniker to give the drug to some of his most troubled patients. Their symptoms improved dramatically, and a major breakthrough in the treatment of psychosis seemed to have arrived. Many other antipsychotic drugs have followed in chlorpromazine's wake and today these medications comprise 10% of total NHS psychiatric prescriptions. They are costly items: the NHS spends more on these medications than it does for any other psychiatric drug, including antidepressants. Globally, around $14.5bn is estimated to be spent on antipsychotics each year. Since the 1950s the strategy of all too many NHS mental health teams has been a simple one. Assuming that psychosis is primarily a biological brain problem, clinicians prescribe an antipsychotic medication and everyone does their level best to get the patient to take it, often for long periods. There can be little doubt that these drugs make a positive difference, reducing delusions and hallucinations and making relapse less likely – provided, that is, the patient takes their medication. © 2014 Guardian News and Media Limited
Keyword: Schizophrenia
Link ID: 19336 - Posted: 03.08.2014