Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
Fork-tailed drongos, glossy black African songbirds with ruby-colored eyes, are the avian kingdom’s masters of deception. They mimic the alarm calls of other species to scare animals away and then swipe their dupes’ dinner. But like the boy who cried wolf, drongos can raise the alarm once too often. Now, scientists have discovered that when one false alarm no longer works, the birds switch to another species’ warning cry, a tactic that usually does the trick. “The findings are astounding,” says John Marzluff, a wildlife biologist at the University of Washington, Seattle, who was not involved in the work. “Drongos are exceedingly deceptive; their vocabularies are immense; and they match their deception to both the target animal and [its] past response. This level of sophistication is incredible.” Since 2008, Tom Flower, an evolutionary biologist at the University of Cape Town, has followed drongos in the Kuruman River Reserve in the Kalahari Desert. He’s habituated and banded about 200 of the robin-sized birds, and, using food rewards, has trained individuals to come to him when he calls. After getting its snack, the drongo quickly returns to its natural behavior—catching insects and following other bird species or meerkats—while Flower tags along. Drongos also keep an eye out for raptors and other predators. When they spot one, they utter metallic alarm cries. Meerkats and pied babblers, a highly social bird, pay attention to the drongos and dash for cover when the drongos raise an alarm—just as they do when one of their own calls out a warning. Studies have shown that having drongos around benefits animals of other species, which don’t have to be as vigilant and can spend more time foraging. But there’s a trade-off: The drongos’ cries aren’t always honest. When a meerkat has caught a fat grub or gecko, a drongo is apt to change from trustworthy sentinel to wily deceiver. © 2014 American Association for the Advancement of Science.
Keyword: Animal Communication; Language
Link ID: 19563 - Posted: 05.03.2014
Brian Owens If you think you know what you just said, think again. People can be tricked into believing they have just said something they did not, researchers report this week. The dominant model of how speech works is that it is planned in advance — speakers begin with a conscious idea of exactly what they are going to say. But some researchers think that speech is not entirely planned, and that people know what they are saying in part through hearing themselves speak. So cognitive scientist Andreas Lind and his colleagues at Lund University in Sweden wanted to see what would happen if someone said one word, but heard themselves saying another. “If we use auditory feedback to compare what we say with a well-specified intention, then any mismatch should be quickly detected,” he says. “But if the feedback is instead a powerful factor in a dynamic, interpretative process, then the manipulation could go undetected.” In Lind’s experiment, participants took a Stroop test — in which a person is shown, for example, the word ‘red’ printed in blue and is asked to name the colour of the type (in this case, blue). During the test, participants heard their responses through headphones. The responses were recorded so that Lind could occasionally play back the wrong word, giving participants auditory feedback of their own voice saying something different from what they had just said. Lind chose the words ‘grey’ and ‘green’ (grå and grön in Swedish) to switch, as they sound similar but have different meanings. © 2014 Nature Publishing Group
Keyword: Language; Consciousness
Link ID: 19562 - Posted: 05.03.2014
A UBC neuroscientist says motherhood permanently alters the brain, exposing moms to different health risks than women without children. Liisa Galea, a professor in the university's psychology department, says some changes are temporary while others are permanent. The most obvious example is size. According to Galea, a mother's brain shrinks by up to eight per cent during pregnancy. While it bounces back about six months after birth, she notes the reaction could have repercussions. “Our research shows that, as a result of these transformations, mothers experience different cognitive abilities and health risks than women without children,” said Galea. And she warns that women who’ve borne children may even react to medication differently. “If mothers’ brains are different than other women’s brains, as our research finds, it means we must embrace greater personalization of medical care – not only for men versus women, but even among women with different life experiences,” she said. But that’s a challenge that may be insurmountable given that medical research studies at the animal model level have relied predominantly on the use of male rats. “Why would we assume that what works in a male rat automatically works in a female patient before testing it on a female rat?” questioned Galea. She claims one of the big failures of translational studies is that most fail to acknowledge how subjects’ gender, or other unique characteristics, like motherhood, plays a role. © CBC 2014
Keyword: Sexual Behavior; Hormones & Behavior
Link ID: 19561 - Posted: 05.03.2014
by Lisa Grossman Hasta la vista, nerve damage. Experiments with bullfrog nerves show that a Terminator-style liquid metal alloy could one day be placed in the body to help severed nerves reconnect. The alloy would stay in place until the nerve has healed, before being slurped back out with a syringe. The peripheral nervous system consists of nerves that carry electrical signals from the brain to the rest of the body. Because they aren't protected by the spine or the skull, peripheral nerves are more vulnerable to injuries than those in the central nervous system. Severed nerves can reconnect if treated quickly enough, but at a rate of just 1 millimetre per day. Also, existing methodsMovie Camera for grafting nerve ends back together have serious shortcomings. For instance, most existing scaffolds for grafts must ultimately be removed, requiring risky follow-up surgery. Even more worrisome, if the nerves don't pass signals to muscles during the healing process, the muscles can atrophy to the point where they never fully recover. Liu and his colleagues wondered if liquid metal could act as a backup system for damaged nerves, helping signals pass through a graft while the nerve healed. They used an alloy of gallium, indium and selenium, which is a very good electrical conductor. The alloy is liquid at room temperature, allowing it to be removed with a syringe when it's no longer needed. © Copyright Reed Business Information Ltd.
Keyword: Regeneration; Robotics
Link ID: 19560 - Posted: 05.03.2014
By Brian Palmer The Journal of Neuroscience recently published a study linking recreational marijuana use to subtle changes in brain structure. The researchers, led by Jodi Gilman of Massachusetts General Hospital, identified increased gray matter density in the left nucleus accumbens and some bordering areas. The study was fine, but the media coverage was abysmal. Reporters overstated the findings, mischaracterized the study, and failed to mention previous research done on pot smoking and health. Goldfish may not have a three-second memory, but some journalists seem to. When a new paper comes out, it’s often treated as the first ever and final word on the topic. There is a significant body of literature on the neurological and wider health effects of marijuana, and to ignore it when covering new studies seems to me a form of journalistic malpractice. A press release from the Society for Neuroscience trumpeted the Gilman study’s importance because it looked at casual users rather than regular pot smokers, who form the basis of most marijuana studies. That claim is dubious in the extreme. The subjects averaged 3.83 days of smoking and 11.2 total joints per week. Characterizing these people as casual pot smokers was a great media hook, but it defied common sense. Occasional users wondered if they’d done permanent damage, and parents were concerned that their teenagers might face profound neurological changes from experimenting with pot. Any reporter who read the study, however, should have known not to take that bait. Even by the standards of past medical studies, it’s a stretch to call these subjects casual pot smokers. © 2014 The Slate Group LLC.
Keyword: Drug Abuse
Link ID: 19559 - Posted: 05.03.2014
By Greg Miller As a journalist who writes about neuroscience, I’ve gotten a lot of super enthusiastic press releases touting a new breakthrough in using brain scans to read people’s minds. They usually come from a major university or a prestigious journal. They make it sound like a brave new future has suddenly arrived, a future in which brain scans advance the cause of truth and justice and help doctors communicate with patients whose minds are still active despite their paralyzed bodies. Amazing, right? Drop everything and write a story! Well, not so fast. Whenever I read these papers and talk to the scientists, I end up feeling conflicted. What they’ve done–so far, anyway–really doesn’t live up to what most people have in mind when they think about mind reading. Then again, the stuff they actually can do is pretty amazing. And they’re getting better at it, little by little. In pop culture, mind reading usually looks something like this: Somebody wears a goofy-looking cap with lots of wires and blinking lights while guys in white lab coats huddle around a monitor in another room to watch the movie that’s playing out in the person’s head, complete with cringe-inducing internal monologue. We are not there yet. “We can decode mental states to a degree,” said John-Dylan Haynes, a cognitive neuroscientist at Charité-Universitätsmedizin Berlin. “But we are far from a universal mind reading machine. For that you would need to be able to (a) take an arbitrary person, (b) decode arbitrary mental states and (c) do so without long calibration.” © 2014 Condé Nast.
Keyword: Brain imaging; Vision
Link ID: 19558 - Posted: 04.30.2014
Brian Owens Surveys of people's eating habits have suggested a link between fibre intake and weight loss, but exactly how fibre helps to regulate weight has been unclear. A study of mouse metabolism suggests that a product of fibre fermentation may be directly affecting the hypothalamus, a region of the brain involved in regulating appetite. People have long been told that a diet high in fibre can help to fight obesity, but how it does so has been unclear. “There has been lots of epidemiological information showing a relationship between fibre and obesity, but no one has been able to connect the epidemiological results with actual mechanisms,” says Jimmy Bell, a biochemist at Imperial College London who worked on the research, published today in Nature Communications1. Until now, a high-fibre diet was thought to help keep weight down by stimulating the release of appetite-suppressing hormones in the gut2, says Bell, but humans do not seem to show the same increase in these hormones that mice do. So Bell and his colleagues decided to look elsewhere. An obvious candidate, they thought, might be one of the products of fibre fermentation in the gut. In particular they focused on the short-chain fatty acid acetate, because it is the most abundant and is known to circulate throughout the bloodstream. They fed mice fibre labelled with carbon-13, which has an additional neutron from the more common carbon-12 that gives its nuclei a magnetic spin and therefore makes it easy to track as it progresses through the body's chemical reactions. The fibre was fermented as usual into acetate, which turned up not only in the gut, but also in the hypothalamus, a part of the brain known to be involved in regulating appetite. There, the researchers found, it was metabolized through the glutamine-glutamate cycle, which is involved in controlling the release of neurotransmitters associated with appetite control. The same model has been proposed for acetate metabolism after drinking alcohol. © 2014 Nature Publishing Group,
Keyword: Obesity
Link ID: 19557 - Posted: 04.30.2014
By Helen Briggs BBC News A mother's diet around the time of conception can permanently influence her baby's DNA, research suggests. Animal experiments show diet in pregnancy can switch genes on or off, but this is the first human evidence. The research followed women in rural Gambia, where seasonal climate leads to big differences in diet between rainy and dry periods. It emphasises the need for a well-balanced diet before conception and in pregnancy, says a UK/US team. Scientists followed 84 pregnant women who conceived at the peak of the rainy season, and about the same number who conceived at the peak of the dry season. Nutrient levels were measured in blood samples taken from the women; while the DNA of their babies was analysed two to eight months after birth. Lead scientist Dr Branwen Hennig, from the London School of Hygiene & Tropical Medicine, said it was the first demonstration in humans that a mother's nutrition at the time of conception can change how her child's genes will be interpreted for life. She told BBC News: "Our results have shown that maternal nutrition pre-conception and in early pregnancy is important and may have implications for health outcomes of the next generation. "Women should have a well-balanced food diet prior to conception and during pregnancy." BBC © 2014
Keyword: Epigenetics; Sexual Behavior
Link ID: 19556 - Posted: 04.30.2014
Guys, do you prefer more feminine faces? If so, chances are you grew up in a relatively healthy place. New research suggests that men raised in countries with higher average lifespans and lower child mortality more strongly prefer women with softer features than do men raised in less healthy nations. The finding bolsters the idea that years of human evolution have made men attracted to faces that could help them survive. Previous studies have found that women living in harsher conditions—such as communities with high homicide rates and low income—are more inclined to find more masculine men attractive. Urszula Marcinkowska, a biologist at the University of Turku in Finland, and her colleagues wanted to know whether culture also influenced males’ preferences for females, or whether men judged females in a more universal way. Using an online survey conducted in 16 different languages, the researchers presented 1972 heterosexual males between the ages of 18 and 24 from 28 different countries with 20 pairs of Caucasian female faces. Each pair contained one face with more feminine traits—such as larger eyes, fuller lips, and a less angular jaw—as well as a more androgynous face, with thinner lips and a wider chin. Participants were asked to select which face in each pair they found more sexually attractive. While men across all cultures generally preferred a more feminine face, the strength of that preference varied between countries. The difference couldn’t be explained by the ratio of men to women in a country, its gross national income, or the race of the participants, but it did correlate with the national health index of the men’s countries—a measure of overall well-being. Those from countries like Japan, with high national health index scores, chose the more feminine face more than three-quarters of the time, the authors report online today in Biology Letters. Men from countries such as Nepal, which has a lower health rating, selected the more feminine face in only slightly more than half of the cases, on average. © 2014 American Association for the Advancement of Science
Keyword: Sexual Behavior; Hormones & Behavior
Link ID: 19555 - Posted: 04.30.2014
THAT health and beauty are linked is not in doubt. But it comes as something of a surprise that who is perceived as beautiful depends not only on the health of the person in question but also on the average level of health in the place where she lives. This, though, is the conclusion of a study just published in Biology Letters by Urszula Marcinkowska of the University of Turku, in Finland, and her colleagues—for Ms Marcinkowska has found that men in healthy countries think women with the most feminine faces are the prettiest whilst those in unhealthy places prefer more masculine-looking ones. Ms Marcinkowska came to this conclusion by showing nearly 2,000 men from 28 countries various versions of the same female faces, modified to look less or more feminine, and thus reflect the effects of different levels of oestrogen and testosterone. Oestrogen promotes features, such as large eyes and full lips, that are characteristically feminine. Testosterone promotes masculine features, such as wide faces and strong chins. As the chart shows, the correlation is remarkable—and statistical analysis shows it is unconnected with a country’s wealth or its ratio of men to women and thus the amount of choice available to men. The cause, though, is unclear. Previous studies have shown that women with feminine features are more fertile. A man’s preference for them is thus likely to enhance his reproductive success. Ms Marcinkowska speculates that testosterone-induced behavioural characteristics like dominance, which might be expected to correlate with masculine-looking faces even in women (they certainly do in men), help in the competition for resources needed to sustain children once they are born. But why that should be particularly important in an unhealthy country is unclear.
Keyword: Sexual Behavior; Hormones & Behavior
Link ID: 19554 - Posted: 04.30.2014
by Bethany Brookshire When you are waiting with a friend to cross a busy intersection, car engines running, horns honking and the city humming all around you, your brain is busy processing all those sounds. Somehow, though, the human auditory system can filter out the extraneous noise and allow you to hear what your friend is telling you. But if you tried to ask your iPhone a question, Siri might have a tougher time. A new study shows how the mammalian brain can distinguish the signal from the noise. Brain cells in the primary auditory cortex can both turn down the noise and increase the gain on the signal. The results show how the brain processes sound in noisy environments, and might eventually help in the development of better voice recognition devices, including improvements to cochlear implants for those with hearing loss. Not to mention getting Siri to understand you on a chaotic street corner. Nima Mesgarani and colleagues at the University of Maryland in College Park were interested in how mammalian brains separate speech from background noise. Ferrets have an auditory system that is extremely similar to humans. So the researchers looked at the A1 area of the ferret cortex, which corresponds to our auditory A1 region. Equipped with carefully implanted electrodes, the alert ferrets listened to both ferret sounds and parts of human speech. The ferret sounds and speech were presented alone, against a background of white noise, against pink noise (noise with equal energy at all octaves that sounds lower in pitch than white noise) and against reverberation. Then they took the neural signals recorded from the electrodes and used a computer simulation to reconstruct the sounds the animal was hearing. In results published April 21 in Proceedings of the National Academy of Sciences, the researchers show the ferret brain is quite good at detecting both ferrets sounds and speech in all three noisy conditions. “We found that the noise is drastically decreased, as if the brain of the ferret filtered it out and recovered the cleaned speech,” Mesgarani says. © Society for Science & the Public 2000 - 2013.
Keyword: Attention; Hearing
Link ID: 19553 - Posted: 04.30.2014
Combining the estrogen hormone estriol with Copaxone, a drug indicated for the treatment of patients with relapsing forms of multiple sclerosis (MS), may improve symptoms in patients with the disorder, according to preliminary results from a clinical study of 158 patients with relapsing remitting multiple sclerosis (RRMS). The findings were presented today by Rhonda Voskuhl, M.D., from the University of California, Los Angeles, at the American Academy of Neurology Annual Meeting in Philadelphia. The study was funded by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health; and the National Multiple Sclerosis Society. “While these results are encouraging, the results of this Phase II study should be considered preliminary as a larger study would be needed to know whether benefits outweigh the risks for persons affected by MS. At present, we cannot recommend estrogen as part of standard therapy for MS. We encourage patients to talk with their doctors before making any changes to their treatment plans,” said Walter Koroshetz, M.D., deputy director of NINDS. MS is an autoimmune disorder in which immune cells break down myelin, a protective covering that wraps around nerve cells. Loss of myelin results in pain, movement and balance problems as well as changes in cognitive ability. RRMS is the most common form of the disorder. Patients with RRMS experience relapses, or flare-ups, of neurological symptoms, followed by recovery periods during which the symptoms improve.
Keyword: Multiple Sclerosis; Hormones & Behavior
Link ID: 19552 - Posted: 04.30.2014
Intelligence is hard to test, but one aspect of being smart is self-control, and a version of the old shell game that works for many species suggests that brain size is very important. When it comes to animal intelligence, says Evan MacLean, co-director of Duke University’s Canine Cognition Center, don’t ask which species is smarter. “Smarter at what?” is the right question. Many different tasks, requiring many different abilities, are given to animals to measure cognition. And narrowing the question takes on particular importance when the comparisons are across species. So Dr. MacLean, Brian Hare and Charles Nunn, also Duke scientists who study animal cognition, organized a worldwide effort by 58 scientists to test 36 species on a single ability: self-control. This capacity is thought to be part of thinking because it enables animals to override a strong, nonthinking impulse, and to solve a problem that requires some analysis of the situation in front of them. The testing program, which took several international meetings to arrange, and about seven years to complete, looked at two common tasks that are accepted ways to judge self-control. It then tried to correlate how well the animals did on the tests with other measures, like brain size, diet and the size of their normal social groups. Unsurprisingly, the great apes did very well. Dogs and baboons did pretty well. And squirrel monkeys, marmosets and some birds were among the worst performers. Surprisingly, absolute brain size turned out to be a much better predictor of success than relative brain size, which has been thought to be a good indication of intelligence. Social group size was not significant, but variety of diet was. The paper, published last week in the journal Proceedings of the National Academy of Sciences, is accompanied online by videos showing the animals doing what looks for all the world like the shell game in which a player has to guess where the pea is. © 2014 The New York Times Company
Keyword: Attention; Intelligence
Link ID: 19551 - Posted: 04.29.2014
Jeffrey Mogil’s students suspected there was something fishy going on with their experiments. They were injecting an irritant into the feet of mice to test their pain response, but the rodents didn’t seem to feel anything. “We thought there was something wrong with the injection,” says Mogil, a neuroscientist at McGill University in Montreal, Canada. The real culprit was far more surprising: The mice that didn’t feel pain had been handled by male students. Mogil’s group discovered that this gender distinction alone was enough to throw off their whole experiment—and likely influences the work of other researchers as well. “This is very important work with wide-ranging implications,” says M. Catherine Bushnell, a neuroscientist and the scientific director of the Division of Intramural Research at the National Center for Complementary and Alternative Medicine (NCCAM) in Bethesda, Maryland, who was not involved in the study. “Many people doing research have never thought of this.” Mogil has studied pain for 25 years. He’s long suspected that lab animals respond differently to the sensation when researchers are present. In 2007, his lab observed that mice spend less time licking a painful injection—a sign that they’re hurting—when a person is nearby, even if that “person” is a cardboard cutout of Paris Hilton. Other scientists began to wonder if their own data were biased by the same effect. “There were whisperings at meetings that this was confounding research results,” Mogil says. So he decided to take a closer look. In the new study, Mogil told the researchers in his lab to inject an inflammatory agent into the foot of a rat or mouse and then take a seat nearby and read a book. A video camera trained on the rodent’s face assessed the animal’s pain level, based on a 0- to 2-point “grimace scale” developed by the team. The results were mixed. Sometimes the animals showed pain when an experimenter was present, and sometimes they seemed just fine. So, on a hunch, Mogil and colleagues recrunched the data, this time controlling for whether a male or a female experimenter was present. “We were stunned by the results,” he says. © 2014 American Association for the Advancement of Science.
Keyword: Stress; Sexual Behavior
Link ID: 19550 - Posted: 04.29.2014
|By Christof Koch Quantum physicist Wolfgang Pauli expressed disdain for sloppy, nonsensical theories by denigrating them as “not even wrong,” meaning they were just empty conjectures that could be quickly dismissed. Unfortunately, many remarkably popular theories of consciousness are of this ilk—the idea, for instance, that our experiences can somehow be explained by the quantum theory that Pauli himself helped to formulate in the early 20th century. An even more far-fetched idea holds that consciousness emerged only a few thousand years ago, when humans realized that the voices in their head came not from the gods but from their own internal spoken narratives. Not every theory of consciousness, however, can be dismissed as just so much intellectual flapdoodle. During the past several decades, two distinct frameworks for explaining what consciousness is and how the brain produces it have emerged, each compelling in its own way. Each framework seeks to explain a vast storehouse of observations from both neurological patients and sophisticated laboratory experiments. One of these—the Integrated Information Theory—devised by psychiatrist and neuroscientist Giulio Tononi, which I have described before in these pages [see “Ubiquitous Minds”; Scientific American Mind, January/February 2014], uses a mathematical expression to represent conscious experience and then derives predictions about which circuits in the brain are essential to produce these experiences. [Full disclosure: I have worked with Tononi on this theory.] In contrast, the Global Workspace Model of consciousness moves in the opposite direction. Its starting point is behavioral experiments that manipulate conscious experience of people in a very controlled setting. It then seeks to identify the areas of the brain that underlie these experiences. © 2014 Scientific American
Keyword: Consciousness
Link ID: 19549 - Posted: 04.29.2014
By Sandra G. Boodman, As the jet hurtled toward New York’s John F. Kennedy International Airport on New Year’s Day 2013, the clinical psychologist watched her 16-year-old daughter warily, praying there would be no recurrence of the girl’s inexplicable and bizarre behavior. The previous night, while walking down a street in Spain where the family had spent Christmas, the teenager suddenly began yelling that the traditional New Year’s Eve fireworks were actually bombs. On the flight home, the girl seemed entirely normal. Her mother thought the high school junior might have had a panic attack, stressed by her upcoming college search and impending wisdom teeth extraction. But the uneventful flight brought a short-lived relief. Five days later, the teenager was hospitalized for treatment of what appeared to be a severe psychotic break. And for the next six weeks, the news seemed to get worse as a more ominous diagnosis emerged — and with it the specter of death. “Every day seemed like a horror story,” said Carmen, a psychoanalyst who practices in New York and whose last name, along with that of her daughter, Mia, is being withheld at her request to protect her professional privacy. For Lara Marcuse, a neurologist at Mount Sinai Hospital in Manhattan who treated Mia during her hospitalization, those weeks were filled with tension and anxiety that deepened as she worried that the teenager might not survive her sudden illness. “If she was my age,” said Marcuse, who is 44, “Mia would either be dead, in a coma or in a state psychiatric center.” Instead Mia, now 18, has fully recovered. She recently had a part in her high school play, is anticipating graduation and looking forward to entering college in September. © 1996-2014 The Washington Post
Keyword: Schizophrenia
Link ID: 19548 - Posted: 04.29.2014
The hormone oxytocin appears to increase social behaviors in newborn rhesus monkeys, according to a study by researchers at the National Institutes of Health, the University of Parma in Italy, and the University of Massachusetts, Amherst. The findings indicate that oxytocin is a promising candidate for new treatments for developmental disorders affecting social skills and bonding. Oxytocin, a hormone produced by the pituitary gland, is involved in labor and birth and in the production of breast milk. Studies have shown that oxytocin also plays a role in parental bonding, mating, and in social dynamics. Because of its possible involvement in social encounters, many researchers have suggested that oxytocin might be useful as a treatment for conditions affecting social behaviors, such as autism spectrum disorders. Although oxytocin has been shown to increase certain social behaviors in adults, before the current study it had not been shown to do so in primate infants of any species. Working with infant rhesus monkeys, the NIH researchers found that oxytocin increased two facial gestures associated with social interactions— one used by the monkeys themselves in certain social situations, the other in imitation of their human caregivers. “It was important to test whether oxytocin would promote social behaviors in infants in the same respects as it appears to promote social interaction among adults,” said the study’s first author, Elizabeth A. Simpson, Ph.D., postdoctoral fellow of the University of Parma, conducting research in the Comparative Behavioral Genetics Section of the NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development. “Our results indicate that oxytocin is a candidate for further studies on treating developmental disorders of social functioning.” The study was published online in Proceedings of the National Academy of Sciences.
Keyword: Hormones & Behavior; Sexual Behavior
Link ID: 19547 - Posted: 04.29.2014
By JAN HOFFMAN How well can computers interact with humans? Certainly computers play a mean game of chess, which requires strategy and logic, and “Jeopardy!,” in which they must process language to understand the clues read by Alex Trebek (and buzz in with the correct question). But in recent years, scientists have striven for an even more complex goal: programming computers to read human facial expressions. We all know what it’s like to experience pain that makes our faces twist into a grimace. But can you tell if someone else’s face of pain is real or feigned? The practical applications could be profound. Computers could supplement or even replace lie detectors. They could be installed at border crossings and airport security checks. They could serve as diagnostic aids for doctors. Researchers at the University of California, San Diego, have written software that not only detected whether a person’s face revealed genuine or faked pain, but did so far more accurately than human observers. While other scientists have already refined a computer’s ability to identify nuances of smiles and grimaces, this may be the first time a computer has triumphed over humans at reading their own species. “A particular success like this has been elusive,” said Matthew A. Turk, a professor of computer science at the University of California, Santa Barbara. “It’s one of several recent examples of how the field is now producing useful technologies rather than research that only stays in the lab. We’re affecting the real world.” People generally excel at using nonverbal cues, including facial expressions, to deceive others (hence the poker face). They are good at mimicking pain, instinctively knowing how to contort their features to convey physical discomfort. © 2014 The New York Times Company
Keyword: Emotions; Robotics
Link ID: 19546 - Posted: 04.29.2014
By Lenny Bernstein FILE - In this Oct. 7, 2013 file photo, workers collect red grapes in the vineyards of the famed Chateau Haut Brion, a Premier Grand Cru des Graves, during the grape harvest in Pessac-Leognan, near Bordeaux, southwestern France. Global warming makes feeding the world harder and more expensive, a United Nations scientific panel said. A warmer world will push food prices higher, trigger Red wine gets all the good press for the cardiovascular benefits of the flavonoids it contains, but U.S. Department of Agriculture researchers are reporting that one white wine grape has the reds beat when it comes to slowing weight gain and lowering cholesterol, at least in laboratory animals. The researchers put hamsters on a high-fat diet supplemented by flour made from the seeds of grapes used for chardonnay, syrah and cabernet sauvignon wines. They found that the white grapes easily beat the reds in slowing the hamsters’ weight gain and limiting production of cholesterol. They believe the higher levels of flavonoids in the chardonnay grape seeds altered the work of genes related to fat metabolism. They also had an anti-inflammatory effect, according to a study the USDA scientists published in the Journal of Agricultural and Food Chemistry in February. In part, the researchers say in another paper yet to be published, the anti-oxidant compounds in the chardonnay grape seeds may work with bacteria in the gut to produce beneficial effects. The flour production also provides grape-growers a way to use seeds that currently are discarded and dumped during the chardonnay production. The Mayo Clinic has begun human trials to determine whether the same results can be achieved, said Wally Yokoyama, a research chemist for the USDA in Albany, Calif., and one of the authors of the two studies. The innovation is one of many in a new USDA report released this week. © 1996-2014 The Washington Post
Keyword: Obesity
Link ID: 19545 - Posted: 04.29.2014
By LAURENCE STEINBERG I’M not sure whether it’s a badge of honor or a mark of shame, but a paper I published a few years ago is now ranked No. 8 on a list of studies that other psychologists would most like to see replicated. Good news: People find the research interesting. Bad news: They don’t believe it. The paper in question, written with my former student Margo Gardner, appeared in the journal Developmental Psychology in July 2005. It described a study in which we randomly assigned subjects to play a video driving game, either alone or with two same-age friends watching them. The mere presence of peers made teenagers take more risks and crash more often, but no such effect was observed among adults. I find my colleagues’ skepticism surprising. Most people recall that as teenagers, they did far more reckless things when with their friends than when alone. Data from the Federal Bureau of Investigation indicate that many more juvenile crimes than adult crimes are committed in groups. And driving statistics conclusively show that having same-age passengers in the car substantially increases the risk of a teen driver’s crashing but has no similar impact when an adult is behind the wheel. Then again, I’m aware that our study challenged many psychologists’ beliefs about the nature of peer pressure, for it showed that the influence of peers on adolescent risk taking doesn’t rely solely on explicit encouragement to behave recklessly. Our findings also undercut the popular idea that the higher rate of real-world risk taking in adolescent peer groups is a result of reckless teenagers’ being more likely to surround themselves with like-minded others. My colleagues and I have replicated our original study of peer influences on adolescent risk taking several times since 2005. We have also shown that the reason teenagers take more chances when their peers are around is partly because of the impact of peers on the adolescent brain’s sensitivity to rewards. In a study of people playing our driving game, my colleague Jason Chein and I found that when teens were with people their own age, their brains’ reward centers became hyperactivated, which made them more easily aroused by the prospect of a potentially pleasurable experience. This, in turn, inclined teenagers to pay more attention to the possible benefits of a risky choice than to the likely costs, and to make risky decisions rather than play it safe. Peers had no such effect on adults’ reward centers, though. © 2014 The New York Times Company
Keyword: Attention; Emotions
Link ID: 19544 - Posted: 04.28.2014