Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 10361 - 10380 of 28886

By NICHOLAS BAKALAR Are there good scientific studies that show that drinking sugar-sweetened soda increases the risk for obesity? The answer may vary depending on who is paying for the study. Researchers examined 17 large reviews of the subject (one review assessed results for adults and children separately, so there were 18 sets of study conclusions). Six of the studies reported receiving funds from industry groups, including Coca-Cola, PepsiCo, the American Beverage Association and others. The other 12 reviews claimed no conflicts of interest. The analysis appears in the December issue of PLOS Medicine. Among the reviews with no conflicts of interest, 10 of 12, or 83.3 percent, reported that sugary drinks were directly associated with weight gain or obesity. The conclusions of studies supported by industry were a mirror image: five of six — the same 83.3 percent — reported that there was insufficient evidence to draw a conclusion. “I wouldn’t say that industry participation alone is enough to dismiss the study’s results in the whole of nutrition research,” said the lead author, Maira Bes-Rastrollo, a professor of preventive medicine at the University of Navarra in Spain. “But I think that the general public and the scientific community should be aware that the food industry has vested interests that may influence their conclusions.” Copyright 2014 The New York Times Company

Keyword: Obesity
Link ID: 19099 - Posted: 01.06.2014

By Tia Ghose and LiveScience Neurons derived from schizophrenic patients. Image: Dr. Kristen Brennand, Salk Institute for Biological Studies. Some so-called jumping genes that copy and paste themselves throughout the genome may be linked to schizophrenia, new research suggests. The new study, published Jan. 2 in Neuron, suggests these jumping genes may alter how neurons (or nerve cells in the brain) form during development, thereby increasing the risk of schizophrenia, study co-author Dr. Tadafumi Kato, a neurobiologist at the RIKEN Brain Science Institute in Japan, wrote in an email. Jumping genes, or retrotransposons, are mobile genetic elements that copy and paste themselves at different places throughout the genome. About half of the human genome is made of these mysterious elements, compared with the 1 percent of genes that actually code for making proteins, Kato said. Earlier studies had found that a certain type of jumping gene, known as long interspersed nuclear element-1 (LINE-1), was active in human brain cells. Kato and his colleagues wondered whether they might play a role in mental illness. To find out, the team conducted a post-mortem analysis of 120 human brains, 13 from patients who had been diagnosed with schizophrenia. The team found a higher number of LINE-1 copies in the brains of schizophrenics compared with other groups. © 2014 Scientific American

Keyword: Schizophrenia; Genes & Behavior
Link ID: 19098 - Posted: 01.04.2014

by Bethany Brookshire When most people think of the quintessential lab mouse, they think of a little white mouse with red eyes. Soft fur. A timid nature. But scientists think of something very different. This mouse is black, small and fast, with pink ears and a pinkish tail. It’s got black eyes to match. The fur may be soft, but the temper sure isn’t. This is the C57 Black 6 mouse. Each Black 6 mouse should be almost identical to every other Black 6 mouse. They have been bred to their own siblings for hundreds of generations, so there should be very few genetic differences left. But even supposedly identical mouse strains have their differences. These take the form of mutations in single DNA base pairs that accumulate in different populations. Recently, researchers showed that one of these tiny changes in a single gene was enough to produce a huge difference in how two groups of Black 6 mice respond to drugs. And the authors identified a surprising number of other small DNA differences still waiting to be explored. On one level, the new work offers scientists a novel tool for identifying genes that could relate to behaviors. But it also serves as a warning. “Identical” mouse populations aren’t as alike as many scientists had assumed. The Black 6, the most common lab mouse in the United States, is used for everything from drug abuse studies to cancer research. The Black 6 is also the reference strain for the Mouse Genome Sequencing Consortium. Whenever scientists discover a new genetic change in a mouse strain, they compare it first against the Black 6. And it’s the mouse used by the International Knockout Mouse Consortium (now the International Mouse Phenotyping Consortium), which keep a library of mouse embryos with different deleted genes. The Allen Brain Atlas, a database of neuroanatomy and gene activity throughout the mouse brain, relies on the Black 6 as well. © Society for Science & the Public 2000 - 2014

Keyword: Genes & Behavior; Drug Abuse
Link ID: 19097 - Posted: 01.04.2014

By NORIMITSU ONISHI SAN FRANCISCO — It started out as an operation to treat an increasingly common medical problem in America, childhood sleep apnea. It has become an anguished fight over the fate of a 13-year-old girl who, though pronounced legally dead by doctors, remains alive in the opinion of her religious parents. Sam Singer, a spokesman for Children’s Hospital, called the deal a victory for the hospital, which will release the girl to the Alameda County coroner. The girl, Jahi McMath, was declared brain-dead after complications from surgery on Dec. 9 at Children’s Hospital Oakland, which wanted to remove her from a ventilator. But her heart continues to beat, and her family protested the removal in court, so she has remained connected to the machine. On Friday, amid acrimonious battles in three courts, an Alameda County Superior Court judge mediated an agreement that could allow the child to be moved to another facility willing to take her, even though the hospital has declared her dead. As arguments in the courts continue, the girl will remain connected to the ventilator at least until Tuesday, under the judge’s order. In the meantime, family members are scrambling to identify a facility that will accept the girl and doctors willing to carry out procedures that will keep her heart beating during the transfer. Nailah Winkfield, the girl’s mother, said she was hopeful that Friday’s agreement would facilitate her daughter’s move. © 2014 The New York Times Company

Keyword: Consciousness
Link ID: 19096 - Posted: 01.04.2014

by Helen Thomson DRAW a line across a page, then write on it what you had for dinner yesterday and what you plan to eat tomorrow. If you are a native English speaker, or hail from pretty much any European country, you no doubt wrote last night's meal to the left of tomorrow night's. That's because we construct mental timelines to represent and reason about time, and most people in the West think of the past as on the left, and the future as on the right. Arnaud Saj at the University of Geneva, Switzerland, and his colleagues wondered whether the ability to conjure up a mental timeline is a necessary part of reasoning about events in time. To investigate, they recruited seven Europeans with what's called left hemispatial neglect. That means they have damage to parts of the right side of their brain, limiting their ability to detect, identify and interact with objects in the left-hand side of space. They may eat from only the right side of a plate, shave just the right side of their face, and ignore numbers on the left side of a clock. The team also recruited seven volunteers who had damage to the right side of their brain but didn't have hemispatial neglect, and seven people with undamaged brains. All the volunteers took part in a variety of memory tests. First, they learned about a fictional man called David. They were shown pictures of what David liked to eat 10 years ago, and what he might like to eat in 10 years' time. Participants were then shown drawings of 10 of David's favourite foods, plus four food items they hadn't seen before. Participants had to say whether it was a food that David liked in the past or might like in future. The tests were repeated with items in David's apartment, and his favourite clothes. © Copyright Reed Business Information Ltd.

Keyword: Attention
Link ID: 19095 - Posted: 01.04.2014

The maker of a type of sleeping pill is lowering the dose to minimize the risk of next-day drowsiness. The drug, Sublinox, has been associated in the past with abnormal sleep behaviours. In late 2011, Meda Valeant Pharma Canada warned that some people taking the drug had reported getting out of bed while not fully awake and performing activities they were unaware of doing. Those activities including driving a car, eating and making phone calls The drug company has lowered the recommended initial dose to five milligrams for women and either five or 10 milligrams for men. The drug company says Sublinox should be taken immediately before bedtime, when the user will have the opportunity to get at least seven or eight hours of sleep. People aged 65 and older should use the five-milligram dose, regardless of gender, the company says. Meda Valeant Pharma Canada issued the new advice in conjunction with Health Canada. Long-term use not recommended The advisory says women metabolize the drug more slowly than men, and therefore have a higher chance of experiencing next-day drowsiness. Sublinox — the brand name for the drug zolpidem — is a hypnotic. As with all drugs of this class, long-term use is not recommended. It should not be taken in the middle of the night or at any time other than bedtime, the statement says. © CBC 2014

Keyword: Sleep; Consciousness
Link ID: 19094 - Posted: 01.04.2014

By Rafael Pelayo, M.D. Perhaps nowhere else does modern neuroscience and psychiatry merge as naturally as in a discussion of sleep disorders. Sleep and dreams are at the core of the mystery (and wonderment) of the relationship between the brain and the mind. Seeking an understanding of sleep has been influential in the development of our culture. As we trace its history, we can also look forward to the advances in the field of sleep medicine that are yet to come. In prehistoric societies, attempts to understand the imagery of nighttime dreams and nightmares might have given rise to concepts of the spiritual world and religion. In medieval times, the phenomena of sleep paralysis, night terrors, and sleepwalking may have been interpreted as supernatural events. Three hundred years ago the recurring nighttime afflictions of restless leg syndrome were thought to be a curse until Dr. Thomas Willis (famed for recognizing the blood supply to the brain, now called the Circle of Willis) accurately described it as a neurological disease. In the late 19th century sleep was viewed as a passive state which occurred in the absence of brain stimulation. Thomas Edison even thought that the invention of the light bulb would allow us to avoid sleeping. The interest of a young neurologist named Sigmund Freud in sleep and dreams opened a new chapter in psychiatry. Years later, a medical student named William Dement was interested in finding a neurological basis to understand Freud's dream theories. In 1952, Dement helped discover the relationship between rapid eye movements in sleep as measured by an electroencephalogram (EEG) and dream recall. © 2014 TheHuffingtonPost.com, Inc.

Keyword: Sleep
Link ID: 19093 - Posted: 01.04.2014

Oliver Burkeman What happens when you attach several electrodes to your forehead, connect them via wires to a nine-volt battery and resistor, ramp up the current and send an electrical charge directly into your brain? Most people would be content just to guess, but last summer a 33-year-old from Alabama named Anthony Lee decided to find out. "Here we go… oooahh, that stings a little!" he says, in one of the YouTube videos recording his exploits. "Whoa. That hurts… Ow!" The video cuts out. When Lee reappears, the electrodes are gone: "Something very strange happened," he says thoughtfully. "It felt like something popped." (In another video, he reports a sudden white flash in his visual field, which he describes, in a remarkably calm voice, as "cool".) You might conclude from this that Lee is a very foolish person, but the quest he's on is one that has occupied scientists, philosophers and fortune-hunters for centuries: to find some artificial way to improve upon the basic cognitive equipment we're born with, and thus become smarter and maintain mental sharpness into old age. "It started with Limitless," Lee told me – the 2011 film in which an author suffering from writer's block discovers a drug that can supercharge his faculties. "I figured, I'm a pretty average-intelligence guy, so I could use a little stimulation." The scientific establishment, it's fair to say, remains far from convinced that it's possible to enhance your brain's capacities in a lasting way – whether via electrical jolts, brain-training games, dietary supplements, drugs or anything else. But that hasn't impeded the growth of a huge industry – and thriving amateur subculture – of "neuro-enhancement", which, according to the American Psychological Association, is worth $1bn a year. "Brain fitness technology" has been projected to be worth up to $8bn in 2015 as baby boomers age. Anthony Lee belongs to the sub-subculture of DIY transcranial direct-current stimulation, or tDCS, whose members swap wiring diagrams and cautionary tales online, though if that makes you queasy, you can always pay £179 for Foc.us, a readymade tDCS headset that promises to "make your synapses fire faster" and "excite your prefrontal cortex", so that you can "get the edge in online gaming". © 2014 Guardian News and Media Limited

Keyword: Learning & Memory; Intelligence
Link ID: 19092 - Posted: 01.04.2014

Associated Press A sophisticated, real-world study confirms that dialing, texting or reaching for a cell phone while driving raises the risk of a crash or near-miss, especially for younger drivers. But the research also produced a surprise: Simply talking on the phone did not prove dangerous, as it has in other studies. This one did not distinguish between handheld and hands-free devices - a major weakness. And even though talking doesn't require drivers to take their eyes off the road, it's hard to talk on a phone without first reaching for it or dialing a number - things that raise the risk of a crash, researchers note. Earlier work with simulators, test tracks and cell phone records suggests that risky driving increases when people are on cell phones, especially teens. The 15- to 20-year-old age group accounts for 6 percent of all drivers but 10 percent of traffic deaths and 14 percent of police-reported crashes with injuries. For the new study, researchers at the Virginia Tech Transportation Institute installed video cameras, global positioning systems, lane trackers, gadgets to measure speed and acceleration, and other sensors in the cars of 42 newly licensed drivers 16 or 17 years old, and 109 adults with an average of 20 years behind the wheel. © 2014 Hearst Communications, Inc.

Keyword: Attention
Link ID: 19091 - Posted: 01.04.2014

People with severe mental illness such as schizophrenia or bipolar disorder have a higher risk for substance use, especially cigarette smoking, and protective factors usually associated with lower rates of substance use do not exist in severe mental illness, according to a new study funded by the National Institute on Drug Abuse (NIDA), part of the National Institutes of Health. Estimates based on past studies suggest that people diagnosed with mood or anxiety disorders are about twice as likely as the general population to also suffer from a substance use disorder. Statistics from the 2012 National Survey on Drug Use and Health indicate close to 8.4 million External Web Site Policy adults in the United States have both a mental and substance use disorder. However, only 7.9 percent of people receive treatment for both conditions, and 53.7 percent receive no treatment at all, the statistics External Web Site Policy indicate. “Drug use impacts many of the same brain circuits that are disrupted in severe mental disorders such as schizophrenia,” said NIDA Director Dr. Nora D. Volkow. “While we cannot always prove a connection or causality, we do know that certain mental disorders are risk factors for subsequent substance use disorders, and vice versa.” In the current study, 9,142 people diagnosed with schizophrenia, schizoaffective disorder, or bipolar disorder with psychotic features, and 10,195 controls matched to participants according to geographic region, were selected using the Genomic Psychiatry Cohort program. Mental disorder diagnoses were confirmed using the Diagnostic Interview for Psychosis and Affective Disorder (DI-PAD), and controls were screened to verify the absence of schizophrenia or bipolar disorder in themselves or close family members. The DI-PAD was also used for all participants to determine substance use rates.

Keyword: Schizophrenia; Drug Abuse
Link ID: 19090 - Posted: 01.04.2014

By GRETCHEN REYNOLDS African tribesmen walk through their landscape in a pattern that eerily echoes the movements of scavenging birds, flocking insects, gliding sharks and visitors to Disneyland, a new study finds, suggesting that aspects of how we choose to move around in our world are deeply hard-wired. For the new study, which appeared online recently in Proceedings of the National Academy of Sciences, researchers at the University of Arizona at Tucson, Yale University, the New York Consortium in Evolutionary Primatology and other institutions traveled to northern Tanzania to study the Hadza, who are among the last human hunter-gatherers on earth. The Hadza generally spend their days following game and foraging for side dishes and condiments such as desert tubers and honey, frequently walking and jogging for miles in the process. The ways in which creatures, including people, navigate their world is a topic of considerable scientific interest, but one that, until the advent of global positioning systems and similar tracking technology, was difficult to quantify. In the past decade, however, scientists have begun strapping GPS units to many varieties of animals and insects, from bumblebees to birds, and measuring how they move. What they have found is that when moving with a purpose such as foraging for food, many creatures follow a particular and shared pattern. They walk (or wing or lope) for a short time in one direction, scouring the ground for edibles, then turn and start moving in another direction for a short while, before turning and strolling or flying in another direction yet again. This is a useful strategy for finding tubers and such, but if maintained indefinitely brings creatures back to the same starting point over and over; they essentially move in circles. Copyright 2014 The New York Times Company

Keyword: Learning & Memory; Evolution
Link ID: 19089 - Posted: 01.02.2014

by Paul Heltzel Have you ever looked at your dorsal fin — I mean, really looked at it? Dolphins, nature’s playful jokers, apparently have a little habit they’ve been keeping a secret: They get high. A BBC film crew recently captured some unusual footage of dolphins passing a puffer fish between them. The fish then secretes a toxin — a defense mechanism — which the dolphins appear to enjoy — a lot. As the dolphins nudged the puffer fish back and forth, they fell into a trancelike state, reports the Guardian. “At one point the dolphins are seen floating just underneath the water’s surface, apparently mesmerized by their own reflections,” according to the Guardian. Filmmaker John Downer cleverly disguised underwater cameras as squid, tuna and other dolphins to record the footage. Downer told the BBC the dolphins handled the puffer carefully, so they wouldn’t hurt or kill it. “The dolphins were specifically going for the puffers,” Downer said, “and deliberately handling them with care.” © 2014 Discovery Communications, LLC.

Keyword: Drug Abuse
Link ID: 19088 - Posted: 01.02.2014

By Christof Koch I grew up in a devout and practicing Roman Catholic family with Purzel, a fearless and high-energy dachshund. He, as with all the other, much larger dogs that subsequently accompanied me through life, showed plenty of affection, curiosity, playfulness, aggression, anger, shame and fear. Yet my church teaches that whereas animals, as God's creatures, ought to be treated well, they do not possess an immortal soul. Only humans do. Even as a child, to me this belief felt intuitively wrong. These gorgeous creatures had feelings, just like I did. Why deny them? Why would God resurrect people but not dogs? This core Christian belief in human exceptionalism did not make any sense to me. Whatever consciousness and mind are and no matter how they relate to the brain and the rest of the body, I felt that the same principle must hold for people and dogs and, by extension, for other animals as well. It was only later, at university, that I became acquainted with Buddhism and its emphasis on the universal nature of mind. Indeed, when I spent a week with His Holiness the Dalai Lama earlier in 2013 [see “The Brain of Buddha,” Consciousness Redux; Scientific American Mind, July/August 2013], I noted how often he talked about the need to reduce the suffering of “all living beings” and not just “all people.” My readings in philosophy brought me to panpsychism, the view that mind (psyche) is found everywhere (pan). Panpsychism is one of the oldest of all philosophical doctrines extant and was put forth by the ancient Greeks, in particular Thales of Miletus and Plato. Philosopher Baruch Spinoza and mathematician and universal genius Gottfried Wilhelm Leibniz, who laid down the intellectual foundations for the Age of Enlightenment, argued for panpsychism, as did philosopher Arthur Schopenhauer, father of American psychology William James, and Jesuit paleontologist Teilhard de Chardin. It declined in popularity with the rise of positivism in the 20th century. © 2014 Scientific American,

Keyword: Consciousness
Link ID: 19087 - Posted: 01.02.2014

By PAM BELLUCK Does vitamin E help people with Alzheimer’s disease? For years, scientists have been trying to find out, guessing that the vitamin’s antioxidant properties might be beneficial. But the results from clinical trials have been mixed and — following a report that high doses of vitamin E may increase the risk of death — cautionary. Now a study suggests that vitamin E supplements may be good for some Alzheimer’s patients after all. The benefit was not huge, but for a devastating disease that has proved almost impervious to treatment, it was notable. The study, published in Wednesday’s issue of JAMA, The Journal of the American Medical Association, found that over a little more than two years, high-dose vitamin E slowed the decline of people with mild to moderate Alzheimer’s by about six months on average. Vitamin E did not delay cognitive or memory deterioration, however. Instead, it seemed to temporarily protect something many patients consider especially valuable: their ability to perform daily activities like putting on clothes and feeding themselves. Compared with other study participants, people who took vitamin E also required about two fewer hours of help from caregivers per day, the researchers said. “Is it really going to dramatically alter the lives of Alzheimer’s patients? That’s unclear,” said Dr. Scott Small, director of Columbia University’s Alzheimer’s Disease Research Center, who was not involved in the study. “But it might improve patients’ ability to bathe themselves and dress themselves.” © 2014 The New York Times Company

Keyword: Alzheimers
Link ID: 19086 - Posted: 01.02.2014

One night of sleep deprivation can increase the levels of molecules that are biomarkers for brain damage, according to a new study out of Sweden. The study, conducted by researchers from Uppsala University's Department of Neuroscience and published in the journal Sleep, looked at levels of two types of brain molecules. These molecules typically rise in the blood under conditions resulting in brain damage or distress. An increase in levels of the molecules can be measured after everything from sports injuries to the head and carbon monoxide poisoning, to sleep apnea and fetal distress after childbirth. Researchers measured the levels of NSE and S-100B in the blood of 15 healthy young men who were sleep-deprived for one night, and found morning serum levels of the molecules increased by about 20 per cent compared with values obtained after a night of sleep. "The blood concentration of both biomarkers was elevated after sleep loss. This makes it unlikely that our results were caused by chance," lead researcher Christian Benedict said. He said the results indicate a lack of sleep may promote "neurodegenerative processes. "In conclusion, the findings of our trial indicate that a good night's sleep may be critical for maintaining brain health," he said. © CBC 2014

Keyword: Sleep
Link ID: 19085 - Posted: 01.02.2014

By KELLEY McMILLAN BEAVER CREEK, Colo. — The fact that Michael Schumacher was wearing a helmet when he sustained a life-threatening head injury while skiing in France on Sunday probably did not come as a surprise to experts who have charted the increasing presence of helmets on slopes and halfpipes in recent years. The fact that the helmet did not prevent Schumacher’s injury probably did not surprise them, either. Schumacher, the most successful Formula One driver in history, sustained a traumatic brain injury when he fell and hit his head on a rock while navigating an off-piste, or ungroomed, area at a resort in Méribel, France. Although he was wearing a helmet, he sustained injuries that have left him fighting for his life in a hospital in Grenoble, France. Schumacher’s injury also focused attention on an unsettling trend. Although skiers and snowboarders in the United States are wearing helmets more than ever — 70 percent of all participants, nearly triple the number from 2003 — there has been no reduction in the number of snow-sports-related fatalities or brain injuries in the country, according to the National Ski Areas Association. Experts ascribe that seemingly implausible correlation to the inability of helmets to prevent serious head injuries like Schumacher’s and to the fact that more skiers and snowboarders are engaging in risky behaviors: skiing faster, jumping higher and going out of bounds. © 2013 The New York Times Company

Keyword: Brain Injury/Concussion
Link ID: 19084 - Posted: 01.02.2014

By MICHAEL M. PHILLIPS Roman Tritz’s memories of the past six decades are blurred by age and delusion. But one thing he remembers clearly is the fight he put up the day the orderlies came for him. “They got the notion they were going to come to give me a lobotomy,” says Mr. Tritz, a World War II bomber pilot. “To hell with them.” The orderlies at the veterans hospital pinned Mr. Tritz to the floor, he recalls. He fought so hard that eventually they gave up. But the orderlies came for him again on Wednesday, July 1, 1953, a few weeks before his 30th birthday. This time, the doctors got their way. The U.S. government lobotomized roughly 2,000 mentally ill veterans—and likely hundreds more—during and after World War II, according to a cache of forgotten memos, letters and government reports unearthed by The Wall Street Journal. Besieged by psychologically damaged troops returning from the battlefields of North Africa, Europe and the Pacific, the Veterans Administration performed the brain-altering operation on former servicemen it diagnosed as depressives, psychotics and schizophrenics, and occasionally on people identified as homosexuals. The VA doctors considered themselves conservative in using lobotomy. Nevertheless, desperate for effective psychiatric treatments, they carried out the surgery at VA hospitals spanning the country, from Oregon to Massachusetts, Alabama to South Dakota. The VA’s practice, described in depth here for the first time, sometimes brought veterans relief from their inner demons. Often, however, the surgery left them little more than overgrown children, unable to care for themselves. Many suffered seizures, amnesia and loss of motor skills. Some died from the operation itself. Mr. Tritz, 90 years old, is one of the few still alive to describe the experience. “It isn’t so good up here,” he says, rubbing the two shallow divots on the sides of his forehead, bracketing wisps of white hair.

Keyword: Schizophrenia; Depression
Link ID: 19083 - Posted: 12.31.2013

Stephen S. Hall Hochelaga was the original Iroquoian name for the village that ultimately became Montreal, but it is also the name of a rough-hewn French–Canadian neighbourhood located east of — and a world away from — the cosmopolitan city centre. The district's tidy two- and three-storey brick duplexes, adorned with Montreal's characteristic wrought-iron staircases, predominantly house families that have, because of poverty and lack of education, never quite attained thriving middle-class status. During the 1980s, public-school officials identified Hochelaga and many other impoverished neighbourhoods in the eastern part of Montreal as places where kindergarten children disproportionately displayed severe behavioural problems, such as physical aggression. The school system asked a young University of Montreal psychologist named Richard Tremblay for help. “Their parents didn't have a high-school diploma, and many of the mothers had their first child before the age of 20,” Tremblay says of the families he began to study, as he walks along Rue Ontario in Hochelaga on a sunny afternoon in September. Those were the women, he adds, “most at risk of having children who have problems”. Over the past three decades, Hochelaga and similar neighbourhoods have served as living laboratories in the study of the roots of aggression. Since 1984, Tremblay and his collaborators have followed more than 1,000 children from 53 schools in the city from childhood into adulthood. And in 1985, he initiated a ground-breaking experiment in which some families of at-risk children were given support and counselling to help curb bad behaviour. His research overturned ideas about when aggressive behaviour first emerges, and showed that early intervention can deflect children away from adult criminality. © 2013 Nature Publishing Group

Keyword: Epigenetics; Aggression
Link ID: 19082 - Posted: 12.31.2013

By JOHN MARKOFF PALO ALTO, Calif. — Computers have entered the age when they are able to learn from their own mistakes, a development that is about to turn the digital world on its head. The first commercial version of the new kind of computer chip is scheduled to be released in 2014. Not only can it automate tasks that now require painstaking programming — for example, moving a robot’s arm smoothly and efficiently — but it can also sidestep and even tolerate errors, potentially making the term “computer crash” obsolete. The new computing approach, already in use by some large technology companies, is based on the biological nervous system, specifically on how neurons react to stimuli and connect with other neurons to interpret information. It allows computers to absorb new information while carrying out a task, and adjust what they do based on the changing signals. In coming years, the approach will make possible a new generation of artificial intelligence systems that will perform some functions that humans do with ease: see, speak, listen, navigate, manipulate and control. That can hold enormous consequences for tasks like facial and speech recognition, navigation and planning, which are still in elementary stages and rely heavily on human programming. Designers say the computing style can clear the way for robots that can safely walk and drive in the physical world, though a thinking or conscious computer, a staple of science fiction, is still far off on the digital horizon. “We’re moving from engineering computing systems to something that has many of the characteristics of biological computing,” said Larry Smarr, an astrophysicist who directs the California Institute for Telecommunications and Information Technology, one of many research centers devoted to developing these new kinds of computer circuits. © 2013 The New York Times Company

Keyword: Learning & Memory; Robotics
Link ID: 19081 - Posted: 12.31.2013

Tomas Jivanda Being pulled into the world of a gripping novel can trigger actual, measurable changes in the brain that linger for at least five days after reading, scientists have said. The new research, carried out at Emory University in the US, found that reading a good book may cause heightened connectivity in the brain and neurological changes that persist in a similar way to muscle memory. The changes were registered in the left temporal cortex, an area of the brain associated with receptivity for language, as well as the the primary sensory motor region of the brain. Neurons of this region have been associated with tricking the mind into thinking it is doing something it is not, a phenomenon known as grounded cognition - for example, just thinking about running, can activate the neurons associated with the physical act of running. “The neural changes that we found associated with physical sensation and movement systems suggest that reading a novel can transport you into the body of the protagonist,” said neuroscientist Professor Gregory Berns, lead author of the study. “We already knew that good stories can put you in someone else’s shoes in a figurative sense. Now we’re seeing that something may also be happening biologically.” 21 students took part in the study, with all participants reading the same book - Pompeii, a 2003 thriller by Robert Harris, which was chosen for its page turning plot. “The story follows a protagonist, who is outside the city of Pompeii and notices steam and strange things happening around the volcano,” said Prof Berns. “It depicts true events in a fictional and dramatic way. It was important to us that the book had a strong narrative line.” © independent.co.uk

Keyword: Attention; Learning & Memory
Link ID: 19080 - Posted: 12.31.2013