Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By ANAHAD O'CONNOR Americans have long been told that the cure for obesity is simple: Eat fewer calories and exercise more. But a new documentary challenges that notion, making the case that Americans have been misled by the idea that we get fat simply because we consume more calories than we expend. The film explores what it sees as some of the more insidious corporate and political forces behind the rise of childhood obesity, and it examines whether increasing levels of sugar consumption have played an outsized role in the epidemic. The film, called “Fed Up,” has as executive producers Katie Couric, the former anchor of “The CBS Evening News,” and Laurie David, who was also a producer of the global warming documentary “An Inconvenient Truth.” Ms. Couric, who narrates the film, said she came up with the idea after years of covering the obesity epidemic left her with more questions than answers. “What struck me was that the more I reported on childhood obesity and the longer I was in this business, the worse the problem seemed to be getting,” Ms. Couric said in an interview. “I felt like we were never really giving people a handle on what was causing this and why the rates were skyrocketing the way they were.” The film draws on commentary from obesity experts and nutrition scientists, and it tells the stories of several obese children around the country who struggle to lose weight despite strict dieting and in some cases hours of daily exercise. But at the heart of the film is a question that is widely debated among scientists: Are all calories equal? Dr. David Ludwig, the director of the obesity program at Boston Children’s Hospital, argues in the film that they are not. In recent studies, Dr. Ludwig has shown that high-carbohydrate diets appear to slow metabolic rates compared to diets higher in fat and protein, so that people expend less energy even when consuming the same number of calories. Dr. Ludwig has found that unlike calories from so-called low glycemic foods (like beans, nuts and non-starchy vegetables), those from high glycemic foods (such as sugar, bread and potatoes) spike blood sugar and stimulate hunger and cravings, which can drive people to overeat. © 2014 The New York Times Company
Keyword: Obesity
Link ID: 19596 - Posted: 05.10.2014
By Pippa Stephens Health reporter, BBC News A key difference in the brains of male and female MS patients may explain why more women than men get the disease, a study suggests. Scientists at Washington University School of Medicine in the US found higher levels of protein S1PR2 in tests on the brains of female mice and dead women with MS than in male equivalents. Four times more women than men are currently diagnosed with MS. Experts said the finding was "really interesting". MS affects the nerves in the brain and spinal cord, which causes problems with muscle movement, balance and vision. It is a major cause of disability, and affects about 100,000 people in the UK. Abnormal immune cells attack nerve cells in the central nervous system in MS patients. There is currently no cure, although there are treatments that can help in the early stages of the disease. Researchers in Missouri looked at relapsing remitting MS, where people have distinct attacks of symptoms that then fade away either partially or completely. About 85% of people with MS are diagnosed with this type. Scientists studied the blood vessels and brains of healthy mice, mice with MS, and mice without the gene for S1PR2, a blood vessel receptor protein, to see how it affected MS severity. They also looked at the brain tissue samples of 20 people after they had died. They found high levels of S1PR2 in the areas of the brain typically damaged by MS in both mice and people. The activity of the gene coding for S1PR2 was positively correlated with the severity of the disease in mice, the study said. Scientists said S1PR2 could work by helping to make the blood-brain barrier, in charge of stopping potentially harmful substances from entering the brain and spinal fluid, more permeable. BBC © 2014
Keyword: Multiple Sclerosis; Sexual Behavior
Link ID: 19595 - Posted: 05.10.2014
Scientists showed that people who have a variant of a longevity gene, called KLOTHO, have improved brain skills such as thinking, learning and memory regardless of their age, sex, or whether they have a genetic risk factor for Alzheimer’s disease. Increasing KLOTHO gene levels in mice made them smarter, possibly by increasing the strength of connections between nerve cells in the brain. The study was partly funded by the National Institutes of Health. “This could be a major step toward helping millions around the world who are suffering from Alzheimer’s disease and other dementias,” said Dena Dubal, M.D., Ph.D., an assistant professor of neurology, the David A. Coulter Endowed Chair in Aging and Neurodegeneration at the University of California San Francisco (UCSF) and the lead author of the study published in Cell Reports. “If we could boost the brain’s ability to function, we may be able to counter dementias.” As people live longer the effects of aging on the brain will become a greater health issue. This is especially true for dementias, a collection of brain disorders that can cause memory problems, impaired language skills and other symptoms. With the number of dementia cases worldwide estimated to double every 20 years from 35.6 million people in 2010 to 65.7 million in 2030 and 115.4 million in 2050, the need for treatments is growing. Klotho is the name of a Greek mythological goddess of fate, “who spins the thread of life.” People who have one copy of a variant, or form, of the KLOTHO gene, called KL-VS, tend to live longer and have lower chances of suffering a stroke whereas people who have two copies may live shorter lives and have a higher risk of stroke. In this study, the investigators found that people who had one copy of the KL-VS variant performed better on a battery of cognitive tests than subjects who did not have it, regardless of age, sex or the presence of the apolipoprotein 4 gene, the main genetic risk factor for Alzheimer’s disease.
Keyword: Alzheimers; Genes & Behavior
Link ID: 19594 - Posted: 05.10.2014
By ANNE SAKER CINCINNATI — The psychologist Lynda Crane found that of the many injuries inflicted by schizophrenia, the greatest could be the pain of being forgotten. Just naming the illness somehow erased the person, something she learned when her 18-year-old son’s doctors said he had schizophrenia. Six years later, he committed suicide. “It took me a long time to come to terms with it,” Dr. Crane says. “Even I had a hard time understanding it, how this bright man, with a brilliant future, could suffer like this. One thing I learned was that as soon as you mentioned the word, people stopped seeing the person. They just saw the diagnosis and a collection of symptoms. Doug, my son, was forgotten.” For years Dr. Crane, a professor at the College of Mount St. Joseph in the western hills of Cincinnati, sought a way to enlighten her students and others about the ordinary people who live with schizophrenia despite its extraordinary burdens – the confused thinking, the delusions, the hallucinations, the anxiety and fear. Then she discovered a tool more commonly used among sociologists and anthropologists: oral history. Employing the device to examine schizophrenia has shifted her own perspective about a disease she thought she knew well. “People with schizophrenia do not lose their individuality, even when the illness is very severe,” Dr. Crane says. “What I discovered through oral history is that it’s not about schizophrenia. It’s about a complexity of life that is very hard to get at any other way.” For the past three years, on their own time and with no outside money, Dr. Crane and a fellow Mount St. Joseph psychologist, Tracy McDonough, have built the Schizophrenia Oral History Project. Other oral history collections have focused on diseases like AIDS or leprosy, but this is the first to focus on schizophrenia, they say. © 2014 The New York Times Company
Keyword: Schizophrenia
Link ID: 19593 - Posted: 05.10.2014
—By Indre Viskontas and Chris Mooney When the audio of Los Angeles Clippers owner Donald Sterling telling a female friend not to "bring black people" to his team's games hit the internet, the condemnations were immediate. It was clear to all that Sterling was a racist, and the punishment was swift: The NBA banned him for life. It was, you might say, a pretty straightforward case. When you take a look at the emerging science of what motivates people to behave in a racist or prejudiced way, though, matters quickly grow complicated. In fact, if there's one cornerstone finding when it comes to the psychological underpinnings of prejudice, it's that out-and-out or "explicit" racists—like Sterling—are just one part of the story. Perhaps far more common are cases of so-called "implicit" prejudice, where people harbor subconscious biases, of which they may not even be aware, but that come out in controlled psychology experiments. Much of the time, these are not the sort of people whom we would normally think of as racists. "They might say they think it's wrong to be prejudiced," explains New York University neuroscientist David Amodio, an expert on the psychology of intergroup bias. Amodio says that white participants in his studies "might write down on a questionnaire that they are positive in their attitudes towards black people…but when you give them a behavioral measure, of how they respond to pictures of black people, compared with white people, that's when we start to see the effects come out." You can listen to our interview with Amodio on the Inquiring Minds podcast below: Welcome to the world of implicit racial biases, which research suggests are all around us, and which can be very difficult for even the most well-intentioned person to control. ©2014 Mother Jones
Keyword: Emotions; Attention
Link ID: 19592 - Posted: 05.10.2014
by Colin Barras PICTURE the scene: a weak leader is struggling to hold onto power as ambitious upstarts plot to take over. As tensions rise, the community splits and the killing begins. The war will last for years. No, this isn't the storyline of an HBO fantasy drama, but real events involving chimps in Tanzania's Gombe Stream National Park. A look at the social fragmentation that led to a four-year war in the 1970s now reveals similarities between the ways chimpanzee and human societies break down. Jane Goodall has been studying the chimpanzees of Gombe for over 50 years. During the early 1970s the group appeared to split in two, and friendliness was replaced by fighting. So extreme and sustained was the aggression that Goodall dubbed it a war. Joseph Feldblum at Duke University in Durham, North Carolina, and colleagues have re-examined Goodall's field notes from the chimp feeding station she established at Gombe to work out what led to the conflict. In the past, researchers have estimated the strength of social ties based on the amount of time two chimps spent together at the station. But the notes are so detailed that Feldblum could get a better idea of each chimp's social ties, for instance, by considering if the chimps arrived at the same time and from the same direction. His team then plugged this data into software that can describe the chimps' social network. They did this for several periods between 1968 and 1972, revealing when the nature of the network changed. © Copyright Reed Business Information Ltd.
Keyword: Aggression; Evolution
Link ID: 19591 - Posted: 05.10.2014
Jessica Morrison Interference from electronics and AM radio signals can disrupt the internal magnetic compasses of migratory birds, researchers report today in Nature1. The work raises the possibility that cities have significant effects on bird migration patterns. Decades of experiments have shown that migratory birds can orient themselves on migration paths using internal compasses guided by Earth's magnetic field. But until now, there has been little evidence that electromagnetic radiation created by humans affects the process. Like most biologists studying magnetoreception, report co-author Henrik Mouritsen used to work at rural field sites far from cities teeming with electromagnetic noise. But in 2002, he moved to the University of Oldenburg, in a German city of around 160,000 people. As part of work to identify the part of the brain in which compass information is processed, he kept migratory European robins (Erithacus rubecula) inside wooden huts — a standard procedure that allows researchers to investigate magnetic navigation while being sure that the birds are not getting cues from the Sun or stars. But he found that on the city campus, the birds could not orient themselves in their proper migratory direction. “I tried all kinds of stuff to make it work, and I couldn’t make it work,” Mouritsen says, “until one day we screened the wooden hut with aluminium.” Mouritsen and his colleagues covered the huts with aluminium plates and electrically grounded them to cut out electromagnetic noise in frequencies ranging from 50 kilohertz to 5 megahertz — which includes the range used for AM radio transmissions. The shielding reduced the intensity of the noise by about two orders of magnitude. Under those conditions, the birds were able to orient themselves. © 2014 Nature Publishing Group,
Keyword: Animal Migration
Link ID: 19590 - Posted: 05.08.2014
By Diana Kwon Would you rather have $50 now or $100 two weeks from now? Even though the $100 is obviously the better choice, many people will opt for the $50. Both humans and animals show this tendency to place lower value on later rewards, a behavior known as temporal discounting. High rates of temporal discounting can lead to impulsive behavior, and at its worst, too much of this “now bias” is associated with pathological gambling, attention deficit hyperactivity disorder and drug addiction. What determines if you’ll be an impulsive decision-maker? New evidence suggests that for women, estrogen levels might be a factor. In a recent study published in the Journal of Neuroscience, Charlotte Boettiger and her team at the University of North Carolina revealed that greater increases in estrogen levels across the menstrual cycle led to less impulsive decision making. The researchers tested the “now bias” in 87 women between the ages of 18 and 40 at two different points in their menstrual cycle – in the menstrual phase when estrogen levels are low and the follicular phase when estrogen levels are high. Participants were given a delay-discounting task where they had to choose between two options: a certain sum of money at a later date or a discounted amount immediately (e.g. $100 in one week or $70 today). Subjects showed a greater bias toward the immediate choice during the menstrual phase of the cycle, when estrogen levels were low. Estrogen levels vary between women and can change with factors like stress and age. When the researchers measured amounts of estradiol (the dominant form of estrogen) from the saliva in a subset of the participants at the two points in their menstrual cycles, they found that not all of them showed a detectable increase. Only those with a measureable rise in estradiol showed a significant change in impulsive decision-making. © 2014 Scientific American
Keyword: Attention; Hormones & Behavior
Link ID: 19589 - Posted: 05.08.2014
by Clare Wilson IMAGINE you are a doctor before the advent of modern medical tests and your patient is gasping for breath. Is it asthma, a chest injury, or are they having a heart-attack? You don't know and have no idea how best to help them. Some would argue that's what it's like for doctors trying to diagnose mental health problems today. There are no blood tests or brain scans for mental illnesses so diagnoses are subjective and unreliable. The issue came to a head one year ago this month, with the latest edition of psychiatry's "bible", the Diagnostic and Statistical Manual of Mental Disorders. The US National Institute for Mental Health (NIMH) said the DSM-5 had so many problems we effectively need to tear it up and start again. The way forward, it said, is a new research programme to discover the brain problems that underlie mental illnesses. That research is now taking off. The first milestone came earlier this year, when the NIMH published a list of 23 core brain functions and their associated neural circuitry, neurotransmitters and genes – and the behaviours and emotions that go with them (see "The mind's 23 building blocks"). Within weeks, the first drug trials conceived and funded through this new programme will begin. While just a first draft, the list arguably represents the future of neuroscience-based mental healthcare. "This is the Rosetta stone for characterising human mental function," says Andrew Krystal at Duke University in Durham, North Carolina. Criticism of psychiatry has been growing for years – existing treatments are often inadequate, and myriad advances in neuroscience and genetics have not translated into anything better. Vocal opponents are not confined to the US. Last week, the new UK Council for Evidence-based Psychiatry launched a campaign claiming that drugs such as antidepressants and antipsychotics often do more harm than good. © Copyright Reed Business Information Ltd.
Keyword: Schizophrenia; Depression
Link ID: 19588 - Posted: 05.08.2014
By Maggie Fox Treating psychiatric illnesses with antipsychotic drugs can greatly reduce the risk that a patient will commit a violent crime, researchers reported on Thursday. Their study, published in the Lancet medical journal, adds weight to the argument that severely mentally ill people need to get diagnosed and treated. Mental health experts agree that people with psychiatric illnesses such as schizophrenia are far more likely to become victims of violence than they are to hurt someone else. But Dr. Thomas Insel, director of the National Institute on Mental Health, also notes that people with severe mental illness are up to three times more likely than the general population to be violent. The question has been whether treatment lowers these risks. One high-profile case is that of Jared Loughner, a schizophrenia patient who shot and killed six people in Arizona and wounded several more, including then-congresswoman Gabrielle Giffords. Dr. Seena Fazel of Britain’s Oxford University used a Swedish national database to find out. Sweden keeps careful medical records, and has similar rates of both mental illness and violence to the United States. The only exception is homicide, where the U.S. has much higher rates than just about every other country. Fazel’s team looked at the medical records of everyone born in Sweden between 1961 and 1990. “We identified 40,937 men and 41,710 women who were prescribed any antipsychotic or mood stabilizer between Jan 1, 2006, and Dec 31, 2009,” they wrote. It worked out to about 2 percent of the population.
Keyword: Schizophrenia; Aggression
Link ID: 19587 - Posted: 05.08.2014
By Scott Barry Kaufman The latest neuroscience of aesthetics suggests that the experience of visual, musical, and moral beauty all recruit the same part of the “emotional brain”: field A1 of the medial orbitofrontal cortex (mOFC). But what about mathematics? Plato believed that mathematical beauty was the highest form of beauty since it is derived from the intellect alone and is concerned with universal truths. Similarly, the art critic Clive Bell noted: “Art transports us from the world of man’s activity to a world of aesthetic exaltation. For a moment we are shut off from human interests; our anticipations and memories are arrested; we are lifted above the stream of life. The pure mathematician rapt in his studies knows a state of mind which I take to be similar, if not identical. He feels an emotion for his speculations which arises from no perceived relation between them and the lives of men, but springs, inhuman or super-human, from the heart of an abstract science. I wonder, sometimes, whether the appreciators of art and of mathematical solutions are not even more closely allied.” A new study suggests that Bell might be right. Semir Zeki and colleagues recruited 16 mathematicians at the postgraduate or postdoctoral level as well as 12 non-mathematicians. All participants viewed a series of mathematical equations in the fMRI scanner and were asked to rate the beauty of the equations as well as their understanding of each equation. After they were out of the scanner, they filled out a questionnaire in which they reported their level of understanding of each equation as well as their emotional experience viewing the equations. © 2014 Scientific American
Keyword: Emotions
Link ID: 19586 - Posted: 05.08.2014
BERLIN—A national ad campaign targeting the work and person of neuroscientist Andreas Kreiter has caused an uproar in the German scientific community. Today, the Alliance of Scientific Organizations in Germany published a sharply worded statement against the full-page ads, which appeared in regional and national newspapers in April. The ad “crudely hurts the personal rights” of the scientist, the organizations write, and “defames biomedical research as a whole.” “The ad aims for personal annihilation,” Kreiter says, “and it is not acceptable for a state founded on the rule of law.” A professor of animal physiology at the University of Bremen (UB), Kreiter studies the neurophysiology of the macaque brain. His work has met with fierce resistance since the 1990s, but Kreiter says hostility peaked after he won a series of protracted legal battles over his work. The most recent trial finished in February, when the Federal Administrative Court of Germany confirmed earlier decisions that the animal distress caused by Kreiter’s research is justified given its scientific significance. A group called Tierversuchsgegner Bundesrepublik Deutschland (the German Association for Opponents of Animal Research), whose proclaimed goal is to end animal experimentation in Germany, has used advertising as a weapon for several years. But the most recent one (click here for a larger version in PDF) is the most personal and aggressive yet, Kreiter says; headlined “Kreiter continues in cold blood,” it features a photo of the researcher as well as a picture of a macaque, sitting immobilized in an experimental laboratory setup. It ran in many outlets on 16 and 17 April, including in leading newspapers such as the Frankfurter Allgemeine Zeitung and Die Zeit. © 2014 American Association for the Advancement of Science
Keyword: Animal Rights
Link ID: 19585 - Posted: 05.08.2014
By GRETCHEN REYNOLDS The more physically active you are at age 25, the better your thinking tends to be when you reach middle age, according to a large-scale new study. Encouragingly, the findings also suggest that if you negligently neglected to exercise when young, you can start now and still improve the health of your brain. Those of us past age 40 are generally familiar with those first glimmerings of forgetfulness and muddled thinking. We can’t easily recall people’s names, certain words, or where we left the car keys. “It’s what we scientists call having a C.R.S. problem,” said David R. Jacobs, a professor of public health at the University of Minnesota in Minneapolis and a co-author of the new study. “You can’t remember stuff.” But these slight, midlife declines in thinking skills strike some people later or less severely than others, and scientists have not known why. Genetics almost certainly play a role, most researchers agree. Yet the contribution of lifestyle, and in particular of exercise habits, has been unclear. So recently, Dr. Jacobs and colleagues from universities in the United States and overseas turned to a large trove of data collected over several decades for the Cardia study. The study, whose name is short for Coronary Artery Risk Development in Young Adults, began in the mid-1980s with the recruitment of thousands of men and women then ages 18 to 30 who underwent health testing to determine their cholesterol levels, blood pressure and other measures. Many of the volunteers also completed a treadmill run to exhaustion, during which they strode at an increasingly brisk pace until they could go no farther. The average time to exhaustion among these young adults was 10 minutes, meaning that most were moderately but not tremendously fit. © 2014 The New York Times Company
Keyword: Learning & Memory; Development of the Brain
Link ID: 19584 - Posted: 05.07.2014
Erin Allday The game seems pretty simple. An alien-looking creature stands on a block of ice that's flowing down a river. The goal is to maneuver the ice around whales and other hurdles and periodically cause the alien to "jump" to grab green fish as they leap out of the water. The game is played on a tablet, and it looks a lot like any of hundreds of apps that can be downloaded for some mindless entertainment during an afternoon commute on BART. Here's what sets the game apart: It was designed by scientists at UCSF looking for a new way to treat serious symptoms of depression. "We're trying to see whether we can get the same effects with the game as with therapy," said Patricia Arean, a clinical psychologist at UCSF who is studying the potential mental health benefits of video game play in older adults. Arean is joining the burgeoning field of research into the use of video games as tools for promoting brain health. Video games undoubtedly have some kind of effect on our brains, but harnessing the technology and forcing a lasting - and positive - change is the challenge. So far, what little evidence does exist that video games can have a measurable impact on brain activity has been gathered almost entirely on healthy subjects. But in small clinical trials - like Arean's study of depression in older adults - the effects of games on both healthy and unhealthy people are being studied to find out whether they're useful in treating mental illness, such as autism, attention deficit and hyperactivity disorder, and post-traumatic stress disorder. Some neuroscientists say video games may also strengthen neural networks, potentially preventing or slowing down the brain deterioration associated with old age or diseases like Alzheimer's or Parkinson's. "We're in the infancy of this idea that entertaining and gaming stuff can be useful for you," said Joaquin Anguera, a UCSF neuroscientist who designs cognitive training games, including the one Arean is testing with patients. © 2014 Hearst Communications, Inc.
Keyword: Learning & Memory; Alzheimers
Link ID: 19583 - Posted: 05.07.2014
The gene that most likely determines the sex of the platypus and echidna has been identified by Australian and Swiss researchers. The study also shows that the Y chromosome, contrary to previous assumptions, carries genes that are important to the basic viability of male mammals, says geneticist Dr Paul Waters from the University of New South Wales. Although the Y chromosome is known to be important in sex determination, little is known about the function and evolution of its genes, says Waters. He says this is because it has so many repetitive and palindromic sequences, which make it hard to reconstruct the true sequences of its genes from fragments of sequenced DNA. Monotremes (the platypus and the echidna), whose males have 5 X chromosomes and 5 Y chromosomes, are especially challenging. "No one had really characterised any Y chromosomes in platypus before because they've got quite a complex sex chromosome system," says Waters. Waters and colleagues from the University of Adelaide and the University of Lausanne now report on their new analysis of male and female DNA from 15 representative mammals, including human, elephants, marsupials and monotremes. The study, reported recently in the journal Nature, is the largest of its kind, and relied on a rapid new sequencing technique. © 2014 Discovery Communications, LLC.
Keyword: Sexual Behavior
Link ID: 19582 - Posted: 05.07.2014
By Felicity Muth Imagine that you walk into a room, where three people are sitting, facing you. Their faces are oriented towards you, but all three of them have their eyes directed towards the left side of the room. You would probably follow their gaze to the point where they were looking (if you weren’t too unnerved to take your eyes off these odd people). As a social species, we are particularly cued in to social cues like following others’ gazes. However, we’re not the only animals that follow the gazes of members of our species: great apes, monkeys, lemurs, dogs, goats, birds and even tortoises follow each other’s gazes too. However, we don’t all follow gazes to the same extent. One species of macaque monkey (the stumptailed macaque) follows gazes a lot more than other macaque species, bonobos do it more than chimpanzees and human children follow gazes a lot more than other great ape species do. Species also differ in their understanding of what the other animal is looking at. For example, if we saw a person gazing at a point, and between them and this point was a barrier, whether the barrier was solid or transparent would affect how far we followed their gaze. This is because we imagine ourselves in their physical position and what they might be able to see. Bonobos and chimpanzees can also do this, but not the orang-utan. Like us, great apes and old world monkeys also will follow a gaze, but then look back at the individual gazing if they don’t see what the individual is gazing at (‘are you going crazy or am I just not seeing what you’re seeing?’). Capuchin and spider monkeys don’t seem to do this. So, even though a lot of animals are capable of following the gazes of others, there is a lot of variation in the extent and flexibility of this behaviour. A recent study looked to see whether chimpanzees, bonobos, orang-utans and humans would be more likely to follow their own species’ gazes than another species. © 2014 Scientific American
Keyword: Attention; Vision
Link ID: 19581 - Posted: 05.06.2014
By Eric Niiler, Scientists studying head injuries have found something surprising: Genes may make some people more susceptible to concussion and trauma than others. A person’s genetic makeup, in fact, may play a more important role in the extent of injury than the number of blows a person sustains. While this research is still in its infancy, these scientists are working toward developing a blood test that may one day help a person decide — based on his her or her genetic predisposition — whether to try out for the football team, or perhaps take up swimming or chess instead. “Until now, all the attention has been paid to how hard and how often you get hit,” said Thomas McAllister, a professor of clinical psychiatry at the Indiana University School of Medicine. “No doubt that’s important. But it’s also becoming clear that’s it’s probably an interaction between the injury and the genetics of the person being injured.” This research is being spurred by fears that some athletes and many returning soldiers may face a lifetime of problems from head injuries. The National Football League agreed to settle a class-action concussion lawsuit by retired players last August for $765 million, although a judge rejected the agreement. In addition, the Pentagon estimates that 294,000 troops, many of whom served in Iraq and Afghanistan, suffered some kind of brain injury since 2000. “More and more we are noticing our servicemen are coming home with significant problems with brain function,” said Daniel Perl, a neuropathologist at the Center for Neuroscience and Regenerative Medicine at the Pentagon’s Uniformed Services University for Health Sciences in Bethesda. “We don’t know much about the biology of this. We need to get down to cellular level of resolution, how the brain starts to repair itself.” © 1996-2014 The Washington Post
Keyword: Brain Injury/Concussion; Genes & Behavior
Link ID: 19580 - Posted: 05.06.2014
Heidi Ledford Dutch celebrity daredevil Wim Hof has endured lengthy ice-water baths, hiked to the top of Mount Kilimanjaro in shorts and made his mark in Guinness World Records with his ability to withstand cold. Now he has made a mark on science as well. Researchers have used Hof’s methods of mental and physical conditioning to train 12 volunteers to fend off inflammation. The results, published today in the Proceedings of the National Academy of Sciences1, suggest that people can learn to modulate their immune responses — a finding that has raised hopes for patients who have chronic inflammatory disorders such as rheumatoid arthritis and inflammatory bowel disease. The results are only preliminary, warns study first author Matthijs Kox, who investigates immune responses at Radboud University Medical Center in Nijmegen, the Netherlands. Kox says that people with inflammatory disorders sometimes hear about his experiments and call to ask whether the training would enable them to reduce their medication. “We simply do not yet know that,” he says. Still, the work stands out as an illustration of the interactions between the nervous system and the immune system, says Guiseppe Matarese, an immunologist at the University of Salerno in Italy, who was not involved with the study. “This study is a nice way to show that link,” he says. “Orthodox neurobiologists and orthodox immunologists have been sceptical.” They think the study of the interactions between the nervous and immune systems is a “field in the shadows,” he says. © 2014 Nature Publishing Group,
Keyword: Stress; Neuroimmunology
Link ID: 19579 - Posted: 05.06.2014
By Christian Jarrett I must have been about seven years old, a junior in my prep school. I was standing in the dining hall surrounded by over a hundred senior boys and schoolmasters, all looking at me, some with pity, others with disdain. It was unheard of for a junior boy to be present in the dining room by the time the seniors had filed in. “What on earth do you think you’re doing Jarrett?” asked the headmaster with mock outrage. I was there because, by refusing to finish my rhubarb crumble, I’d broken a cardinal school rule. All pupils were to eat all they were given. But after vomiting up some of my rhubarb – a flesh-like fruit that still disgusts me to this day – I simply refused to eat on. Keeping me behind in the dining room as the seniors arrived was my punishment. I wanted to explain this to the assembled crowd. Yet speech completely failed me and I began to sob openly and uncontrollably, my humiliation sealed. This was an intense emotional experience for me, and as you can probably tell, the memory remains sore to this day. But is humiliation any more intense than the other negative emotions, such as anger or shame? If it were, how would psychologists and neuroscientists demonstrate that this was the case? You might imagine that the most effective method would be to ask people to rate and describe different emotional experiences – after all, to say that an emotion is intense is really to say something about how it feels, and how it affects you. Yet in a paper published earlier this year, a pair of psychologists – Marte Otten and Kai Jonas – have taken a different approach. Inspired by claims that humiliation is an unusually intense emotion, responsible even for war and strife in the world, the researchers have turned to brain-based evidence. They claim to have provided the “first empirical, neurocognitive evidence for long-standing claims in the humiliation literature that humiliation is a particularly intense emotion.” WIRED.com © 2014 Condé Nast.
Keyword: Emotions
Link ID: 19578 - Posted: 05.06.2014
|By Ariel Van Brummelen The presence of light may do more for us than merely allow for sight. A study by Gilles Vandewalle and his colleagues at the University of Montreal suggests that light affects important brain functions—even in the absence of vision. Previous studies have found that certain photoreceptor cells located in the retina can detect light even in people who do not have the ability to see. Yet most studies suggested that at least 30 minutes of light exposure is needed to significantly affect cognition via these nonvisual pathways. Vandewalle's study, which involved three completely blind participants, found that just a few seconds of light altered brain activity, as long as the brain was engaged in active processing rather than at rest. First the experimenters asked their blind subjects whether a blue light was on or off, and the subjects answered correctly at a rate significantly higher than random chance—even though they confirmed they had no conscious perception of the light. Using functional MRI, the researchers then determined that less than a minute of blue light exposure triggered changes in activity in regions of their brain associated with alertness and executive function. Finally, the scientists found that if the subjects received simultaneous auditory stimulation, a mere two seconds of blue light was enough to modify brain activity. The researchers think the noise engaged active sensory processing, which allowed the brain to respond to the light much more quickly than in previous studies when subjects rested while being exposed to light. The results confirm that the brain can detect light in the absence of working vision. They also suggest that light can quickly alter brain activity through pathways unrelated to sight. The researchers posit that this nonvisual light sensing may aid in regulating many aspects of human brain function, including sleep/wake cycles and threat detection. © 2014 Scientific American,
Keyword: Vision; Biological Rhythms
Link ID: 19577 - Posted: 05.06.2014