Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 10141 - 10160 of 29242

by Laura Sanders Some people think marijuana is nature’s gift to humankind: a nonaddictive drug, safe at any dose, that opens the mind, lifts the spirit and transports the user to a more profound reality. “The illegality of cannabis is outrageous, an impediment to full utilization of a drug which helps produce the serenity and insight, sensitivity and fellowship so desperately needed in this increasingly mad and dangerous world,” a user named Mr. X wrote in the 1971 book Marihuana Reconsidered. Close to 30 years later, Mr. X was revealed to be the legendary science communicator and astronomer Carl Sagan. His message still reverberates with many Americans, whose support for legalizing marijuana has tripled since 1989 — from 16 percent to 54 percent today. In Colorado and Washington state, voters legalized recreational marijuana use in November 2012. That formal embrace of marijuana may signal a growing shift in acceptance. Today, 21 states and the District of Columbia sanction medical use (up from 16 in 2010) and 17 have curbed punishments for possession of small amounts of recreational cannabis. Marijuana as medicine is gaining support in studies, both to tamp down nausea and pain and to directly counter insidious diseases such as epilepsy, cancer and multiple sclerosis (SN: 6/19/10, p. 16). But what about for healthy people? Is marijuana really a safe way to rise above the tumult and distress of daily life? Michele Leonhart, the head of the U.S. Drug Enforcement Administration, says no. In congressional testimony in 2012, she portrayed marijuana as a dangerous addictive drug on par with methamphetamines or heroin. Like other drugs cordoned off by her agency to a list called Schedule I, she said, marijuana has no medical use and a high potential for abuse. © Society for Science & the Public 2000 - 2013.

Keyword: Drug Abuse
Link ID: 19676 - Posted: 05.31.2014

Elizabeth Norton It's a sad fact that children born in poverty start out at a disadvantage and continue to fall further behind kids who are more privileged as they grow up. In developing countries, chiefly in Africa and Asia, some 200 million children under age 5 won't reach the same milestones—for physical growth, school performance, and earnings later on—as children who are less deprived. But a new analysis of a long-term study in Jamaica shows that surprisingly simple ways of stimulating children’s mental development can have dramatic benefits later in life. The children were participants in the Jamaican Study, a project geared toward improving cognitive development begun in the mid-1980s by child health specialists Sally Grantham-McGregor of University College London and Susan Walker of the University of the West Indies, Mona, in Jamaica. They focused on children between the ages of 9 and 24 months whose growth was stunted, placing them in the bottom 5% of height for their age and sex (an easy-to-quantify gauge of extreme poverty). Children of normal height in the same neighborhoods were also studied for comparison. For 2 years, community health workers visited the families weekly. One group was given nutritional assistance only (a formula containing 66% of daily recommended calories, along with vitamins and minerals). One group received a mental and social stimulation program only, and one group got stimulation and nutritional assistance. A final group had no intervention and served as a control. The mental stimulation program involved giving parents simple picture books and handmade toys, and encouraging them to read and sing to their children and point out names of objects, shapes, and colors. They were also taught better ways to converse and respond to their toddlers. These everyday interactions aren't always part of the culture in low-income countries, explains Paul Gertler, an economist at the University of California, Berkeley. "Parents might have five or six kids and few toys. They might be working really hard and have a lot of competing demands. They might not have been taught how to talk to their children, or how important and effective it is," he says. Past research attests to the importance of everyday conversation for children’s mental development: A recent study suggests that children of affluent parents do better in life in large part because their parents talk to them more. © 2014 American Association for the Advancement of Science

Keyword: Development of the Brain; Learning & Memory
Link ID: 19675 - Posted: 05.31.2014

Jyoti Madhusoodanan Most people handle stress well, but some find it difficult to cope and as a result develop depression and other mood disorders. Researchers have previously been able to identify the part of the brain that controls this response, but not exactly how it does so. Now, a study in mice identifies a small group of neurons that could be responsible. The research might also help elucidate the mechanism of deep brain stimulation, a therapy that uses electrical impulses to treat depression and other neurological disorders. How an animal deals with stress is controlled by a part of the brain known as the prefrontal cortex, and the neurons in this part of the brain are known to change in structure and function in response to stressful situations1. To look at the cellular basis of the responses, neuroscientist Bo Li of Cold Spring Harbor Laboratory in New York and his colleagues subjected mice to small electric shocks at random intervals to produce stress. Most of the mice tried to avoid the shocks, but just over one-fifth did not. They also started to avoid other animals or failed to choose tasty foods over plain ones — typical signs of depressive behaviour. The researchers then looked at the animals' brains and found that a specific set of neurons in the prefrontal cortex were easily excitable in depressed mice, but much harder to excite in those resilient to the stress. Furthermore, artificially increasing the activity of these neurons caused mice that were once resilient to become susceptible to depressive behaviours. “We were surprised that we were able to see a difference between depressed and resilient animals at the level of synaptic transmission,” says Li. © 2014 Nature Publishing Group,

Keyword: Depression; Stress
Link ID: 19674 - Posted: 05.31.2014

By NICHOLAS BAKALAR The hormone estrogen is the recommended treatment for menopausal night sweats and hot flashes, but some women are unable or unwilling to use it. Now a clinical trial suggests that the antidepressant venlafaxine, often used as an alternative, is equally effective. In an eight-week placebo-controlled double-blind study, researchers randomly assigned 339 perimenopausal and postmenopausal women to one of three treatments: 0.5 milligrams a day of estrogen (in the form of estradiol), 75 milligrams a day of the antidepressant venlafaxine (a generic form of Effexor), or a placebo. Before the start of the study, all the women had had symptoms at least 14 times a week. Compared to the rate before the study — an average of 8.1 episodes a day — the frequency of hot flashes and night sweats declined by 52.9 percent in the estradiol group, 47.6 percent in the Effexor group, and 28.6 percent among those who took a placebo. Both Effexor and estradiol were effective treatments, but the study, published online in JAMA Internal Medicine, was not large enough to show that one was significantly better than the other. “Women have important choices of different medications to discuss with their doctors,” said the lead author, Dr. Hadine Joffe, an associate professor of psychiatry at Harvard. “They should know, as they think about these options, that both are effective.” © 2014 The New York Times Company

Keyword: Hormones & Behavior
Link ID: 19673 - Posted: 05.31.2014

By Denali Tietjen If you watch porn, you probably have a small brain, a new study published in the Journal of the American Medical Association (JAMA) shows. The study, conducted by the Max Plank Institute for Human Development in Berlin, found a significant negative correlation between frequent pornography consumption and grey matter in the brain (that’s the stuff that tells your brain how to react to sensory information.) The keyword here is correlation. While the study’s findings are significant, the researchers don’t know if it’s the porn that causes the low grey-matter volume in porn-watchers, or if it’s the other way around. It could be a neurological pre-condition that makes watching porn particularly satisfying. However, researchers have reason to believe that porn does negatively impact the brain. Previous research proves that frequent porn consumption can cause negative social behavior. Porn consumption can cause viewers to be less satisfied during sex and viewers often want to adopt acts they’ve seen in illegal pornography, according to the report. If porn can affect social behavior, it can probably affect cognitive behavior, too. The study examined the cognitive structure of 64 males ages 21 to 45 years old that consumed porn at varying levels of frequency. While few people openly admit to watching porn, 66 percent of all men and 41 percent of American women view pornography at least once a month, and an estimated 50 percent of internet traffic is sex-related, according to the journal.

Keyword: Sexual Behavior; Brain imaging
Link ID: 19672 - Posted: 05.31.2014

By Matthew R. Francis Possibly no subject in science has inspired more nonsense than quantum mechanics. Sure, it’s a complicated field of study, with a few truly mysterious facets that are not settled to everyone’s satisfaction after nearly a century of work. At the same time, though, using quantum to mean “we just don’t know” is ridiculous—and simply wrong. Quantum mechanics is the basis for pretty much all our modern technology, from smartphones to fluorescent lights, digital cameras to fiber-optic communications. If I had to pick a runner-up in the nonsense sweepstakes, it would be human consciousness, another subject with a lot of mysterious aspects. We are made of ordinary matter yet are self-aware, capable of abstractly thinking about ourselves and of recognizing others (including nonhumans) as separate entities with their own needs. As a physicist, I’m fascinated by the notion that our consciousness can imagine realities other than our own: The universe is one way, but we are perfectly happy to think of how it might be otherwise. I hold degrees in physics and have spent a lot of time learning and teaching quantum mechanics. Nonphysicists seem to have the impression that quantum physics is really esoteric, with those who study it spending their time debating the nature of reality. In truth, most of a quantum mechanics class is lots and lots of math, in the service of using a particle’s quantum state—the bundle of physical properties such as position, energy, spin, and the like—to describe the outcomes of experiments. Sure, there’s some weird stuff and it’s fun to talk about, but quantum mechanics is aimed at being practical (ideally, at least). © 2014 The Slate Group LLC.

Keyword: Consciousness
Link ID: 19671 - Posted: 05.31.2014

Carl Zimmer All animals do the same thing to the food they eat — they break it down to extract fuel and building blocks for growing new tissue. But the metabolism of one species may be profoundly different from another’s. A sloth will generate just enough energy to hang from a tree, for example, while some birds can convert their food into a flight from Alaska to New Zealand. For decades, scientists have wondered how our metabolism compares to that of other species. It’s been a hard question to tackle, because metabolism is complicated — something that anyone who’s stared at a textbook diagram knows all too well. As we break down our food, we produce thousands of small molecules, some of which we flush out of our bodies and some of which we depend on for our survival. An international team of researchers has now carried out a detailed comparison of metabolism in humans and other mammals. As they report in the journal PLOS Biology, both our brains and our muscles turn out to be unusual, metabolically speaking. And it’s possible that their odd metabolism was part of what made us uniquely human. When scientists first began to study metabolism, they could measure it only in simple ways. They might estimate how many calories an animal burned in a day, for example. If they were feeling particularly ambitious, they might try to estimate how many calories each organ in the animal’s body burned. Those tactics were enough to reveal some striking things about metabolism. Compared with other animals, we humans have ravenous brains. Twenty percent of the calories we take in each day are consumed by our neurons as they send signals to one another. Ten years ago, Philipp Khaitovich of the Max Planck Institute of Evolutionary Anthropology and his colleagues began to study human metabolism in a more detailed way. They started making a catalog of the many molecules produced as we break down food. “We wanted to get as much data as possible, just to see what happened,” said Dr. Khaitovich. To do so, the scientists obtained brain, muscle and kidney tissues from organ donors. They then extracted metabolic compounds like glucose from the samples and measured their concentrations. All told, they measured the levels of over 10,000 different molecules. © 2014 The New York Times Company

Keyword: Evolution
Link ID: 19670 - Posted: 05.28.2014

Elizabeth Norton Cultures around the world have long assumed that women are hardwired to be mothers. But a new study suggests that caring for children awakens a parenting network in the brain—even turning on some of the same circuits in men as it does in women. The research implies that the neural underpinnings of the so-called maternal instinct aren't unique to women, or activated solely by hormones, but can be developed by anyone who chooses to be a parent. "This is the first study to look at the way dads' brains change with child care experience," says Kevin Pelphrey, a neuroscientist at Yale University who was not involved with the study. "What we thought of as a purely maternal circuit can also be turned on just by being a parent—which is neat, given the way our culture is changing with respect to shared responsibility and marriage equality." The findings come from an investigation of two types of households in Israel: traditional families consisting of a biological mother and father, in which the mother assumed most of the caregiving duties, though the fathers were very involved; and homosexual male couples, one of whom was the biological father, who'd had the child with the help of surrogate mothers. The two-father couples had taken the babies home shortly after birth and shared caregiving responsibilities equally. All participants in the study were first-time parents. Researchers led by Ruth Feldman, a psychologist and neuroscientist at Bar-Ilan University in Ramat Gan, Israel, visited with the families in their homes, videotaping each parent with the child and then the parents and children alone. The team, which included collaborators at the Tel Aviv Sourasky Medical Center in Israel, also took saliva samples from all parents before and after the videotaped sessions to measure oxytocin—a hormone that's released at times of intimacy and affection and is widely considered the "trust hormone.” Within a week of the home visit, the participants underwent functional magnetic resonance imaging scanning to determine how their brains reacted to the videotapes of themselves with their infants. © 2014 American Association for the Advancement of Science

Keyword: Sexual Behavior; Brain imaging
Link ID: 19669 - Posted: 05.28.2014

by Clare Wilson There is a new way to hack the brain. A technique that involves genetically engineering brain cells so that they fire in the presence of certain drugs has been used to treat an epilepsy-like condition in rats, and it could soon be trialled in humans. Chemogenetics builds on optogenetics, which involves engineering brain cells so they "fire" when lights are turned on. Selected neurons can then be activated with the flick of a switch. But this requires fibre optic cables to be implanted in the brain, which is impractical for treating human brain disorders. In chemogenetics, however, no cables are needed because neurons are altered to fire in the presence of a certain chemical rather than light. "It's got more potential in that you can give drugs to people more easily than you can get light into their brains," says Dimitri Kullmann of University College London. Stop the neurons Kullmann's team tested the approach by using a harmless virus to deliver a gene into the brains of rats. The gene encoded a protein that stops neurons from firing – but only in the presence of a chemical called clozapine N-oxide (CNO). Several weeks later, they injected the rats with chemicals that trigger brain seizures, to mimic epilepsy. If the rats were then given CNO, the severity of their seizures dropped within 10 minutes. This is the first time the technique has been used to treat a brain disorder, Kullmann says. "The system is neat," says Arnd Pralle of the University of Buffalo in New York state. But he points out that optogenetics allows faster control than this, because light can be turned on and off instantly. © Copyright Reed Business Information Ltd.

Keyword: Epilepsy
Link ID: 19668 - Posted: 05.28.2014

|By Bret Stetka Skepticism around fibromyalgia stemmed in part from an elusive organic explanation. Symptoms appeared to arise out of nowhere, which didn't make any sense to empirically minded physicians. “I, too, have been assigned months of futility, long and weary nights of misery. When I go to bed, I think,`When will it be morning?' But the night drags on, and I toss till dawn...Depression haunts my days. My weary nights are filled with pain as though something were relentlessly gnawing at my bones.” Job suffered badly. And his Old Testament woes are considered by many to be one of the earliest descriptions of fibromyalgia, a painful, puzzling disorder that still has experts bickering and patients frustrated, bereft of relief. The Bible isn't exactly a paragon of medical accuracy, but Job’s ailment does sound an awful lot like the modern interpretation of fibromyalgia. The classic diffuse pain, aches and discomfort aren’t the half of it; depression, fatigue, stiffness, sleep loss and generally just feeling really bad are common too. Fibromyalgia patients — 2 percent to 8 percent of the population — have also endured decades of dismissals that it's all in their head — a psychosomatic conjuring, a failure of constitution. Skepticism around fibromyalgia stemmed in part from an elusive organic explanation. Symptoms appeared to arise out of nowhere, which didn't make any sense to empirically minded physicians. But over the past two decades, research has brought clinicians closer to deciphering this mysterious pain state, once thought muscular in nature, now known to be neurologic. Based on this recent work a new article in the Journal of the American Medical Association by chronic pain expert Dr. Daniel Clauw brings us up to speed on the understanding, diagnosis and management of fibromyalgia circa 2014. And the outlook for patients is rosier than you might expect given the condition’s perplexing reputation. © 2014 Scientific American

Keyword: Stress; Pain & Touch
Link ID: 19667 - Posted: 05.28.2014

By C. CLAIBORNE RAY Q. WHY WOULD A PAIN MEDICATION LOSE ITS EFFICACY AFTER WORKING WELL FOR SEVERAL YEARS? A. The mechanism is complex, said Dr. Shakil Ahmed, a pain medicine specialist at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. “It is due to a phenomenon called tolerance,” in which there is a decrease in response over time to repeated exposures of the body to pain medication, he said. “This might be due to alteration in the way the body disposes of the medication,” Dr. Ahmed suggested. Or it could occur because drug interactions or bodily changes add a substance that induces an enzyme responsible for disposing of the drug. Another explanation is that long-term administration of pain medications results in a reduction of the number of target drug receptors or a drop in their responsiveness, and in desensitization to the pain medication in question. There is also an increase in the function of other nervous system receptors, called NMDA receptors , which may lead to the development of the tolerance, Dr. Ahmed said. Dr. Ahmed’s practice and research include several alternatives to conventional drug treatment for pain, including spinal cord stimulation, use of radio frequency to interrupt the nerve pathways of pain, delivery of pain medication with a pump directly to the space around the spinal cord, and non-invasive laser therapy. © 2014 The New York Times Company

Keyword: Pain & Touch
Link ID: 19666 - Posted: 05.28.2014

Pain is a symptom of many disorders; chronic pain can present as a disease in of itself. The economic cost of pain is estimated to be hundreds of billions of dollars annually in lost wages and productivity. “This database will provide the public and the research community with an important tool to learn more about the breadth and details of pain research supported across the federal government. They can search for individual research projects or sets of projects grouped by themes uniquely relevant to pain,” said Linda Porter, Ph.D., Policy Advisor for Pain at the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health (NIH). “It also can be helpful in identifying potential collaborators by searching for topic areas of interest or for investigators.” Users of the database easily can search over 1,200 research projects in a multi-tiered system. In Tier 1, grants are organized as basic, translational (research that can be applied to diseases), or clinical research projects. In Tier 2, grants are sorted among 29 scientific topic areas related to pain, such as biobehavioral and psychosocial mechanisms, chronic overlapping conditions, and neurobiological mechanisms. The Tier 2 categories are also organized into nine research themes: pain mechanisms, basic to clinical, disparities, training and education, tools and instruments, risk factors and causes, surveillance and human trials, overlapping conditions, and use of services, treatments, and interventions.

Keyword: Pain & Touch; Development of the Brain
Link ID: 19665 - Posted: 05.28.2014

By Susana Martinez-Conde Expanding and contracting circles, mutating colors, and false image matches dominated the 2014 Best Illusion of the Year Contest, held on May 18th in the TradeWinds Island Grand in St. Petersburg, FL. One thousand perceptual scientists joined artists and the general public to determine the TOP THREE illusion masters from a pre-selected group of TOP TEN finalists, chosen by an international committee of judges. Each winner took home a trophy designed by the acclaimed Italian sculptor Guido Moretti: the trophies are visual illusions themselves. It was the 10th annual edition of the contest, which annually draws numerous accolades from attendees as well as international media coverage. Las Vegas magician Mac King was master of ceremonies for the event, hosted by the Neural Correlate Society, a non-profit organization whose mission is to promote public awareness of neuroscience research and discovery, and sponsored by Scientific American. Each of the 10 presenters displayed and described their creations for 5 minutes, to the sounds of music and confetti cannons, in an event unlike anything else in science. Afterwards, the audience voted on their favorite illusion while Mac King performed some of his signature magic tricks for the audience. The First Prize winner of the contest, an illusion by Christopher Blair, Gideon Caplovitz and Ryan Mruczek from University of Nevada Reno, took the classical Ebbinghaus illusion, where the perceived size of a central circle varies with the size of surrounding circles, and put it on steroids by making it into an ever-changing dynamic display. Blair rhymed his 5-minute presentation Dr. Seuss-style. Second Prize went to Mark Vergeer, Stuart Anstis and Rob van Lier from the University of Leuven, UC San Diego and Radboud University Nijmegen, for showing that a single colored image can produce several different color perceptions depending on the position of black outlines over the image. © 2014 Scientific American

Keyword: Vision
Link ID: 19664 - Posted: 05.28.2014

By JAMES GORMAN H. Sebastian Seung is a prophet of the connectome, the wiring diagram of the brain. In a popular book, debates and public talks he has argued that in that wiring lies each person’s identity. By wiring, Dr. Seung means the connections from one brain cell to another, seen at the level of the electron microscope. For a human, that would be 85 billion brain cells, with up to 10,000 connections for each one. The amount of information in the three-dimensional representation of the whole connectome at that level of detail would equal a zettabyte, a term only recently invented when the amount of digital data accumulating in the world required new words. It equals about a trillion gigabytes, or as one calculation framed it, 75 billion 16-gigabyte iPads. He is also a realist. When he speaks publicly, he tells his audiences, “I am my connectome.” But he can be brutally frank about the limitations of neuroscience. “We’ve failed to answer simple questions,” he said. “People want to know, ‘What is consciousness?’ And they think that neuroscience is up to understanding that. They want us to figure out schizophrenia and we can’t even figure out why this neuron responds to one direction and not the other.” This mix of intoxicating ideas, and the profound difficulties of testing them, not only defines Dr. Seung’s career but the current state of neuroscience itself. He is one of the stars of the field, and yet his latest achievement, in a paper published this month, is not one that will set the world on fire. He and his M.I.T. colleagues have proposed an explanation of how a nerve cell in the mouse retina — the starburst amacrine cell — detects the direction of motion. If he’s right, this is significant work. But it may not be what the public expects, and what they have been led to expect, from the current push to study the brain. © 2014 The New York Times Company

Keyword: Vision; Brain imaging
Link ID: 19663 - Posted: 05.27.2014

By JAMES GORMAN Crowd-sourced science has exploded in recent years. Foldit enlists users to help solve scientific puzzles such as how proteins are put together. Zooniverse hosts dozens of projects, including searching for planets and identifying images of animals caught on automatic cameras. Eyewire, which came out of H. Sebastian Seung’s lab at the Massachusetts Institute of Technology about a year and a half ago, is neuroscience’s entry into the field. The EyeWirers, as the players are called, have scored their first scientific success, contributing to a paper in the May 4 issue of Nature by Dr. Seung and his M.I.T. colleagues that offers a solution to a longstanding problem in how motion is detected. Anyone can sign up online, learn to use the software and start working on what Amy Robinson, the creative director of Eyewire, calls a “3-D coloring book.” The task is something like tracing one piece of yarn through an extremely tangled ball. More than 130,000 players in 145 countries, at last count, work on a cube that represents a bit of retinal tissue 4.5 microns on a side. The many branches of neurons are densely packed within. A micron is .00004 inches or, in Eyewire’s calculus, about one-tenth the width of a human hair. Some of the players spend upward of 40 hours a week on Eyewire. These cubes are created by an automated process in which electron microscopes make images of ultrathin slices of brain tissue. Computers then analyze and compile the data to create a three-dimensional representation of a cube of tissue with every neuron and connection visible. © 2014 The New York Times Company

Keyword: Vision; Brain imaging
Link ID: 19662 - Posted: 05.27.2014

By By Tanya Lewis, It's not every day you see a mouse with a mohawk. But that's what researchers saw while studying mice that had a genetic mutation linked to autism. The mohawks that the mice were sporting actually resulted from their "over-grooming" behavior, repeatedly licking each other's hair in the same direction. The behavior resembles the repetitive motions displayed by some people with autism, and the researchers say their experiments reveal a link between the genetic causes of autism and their effects on the brain, suggesting potential avenues for treating the disorder. "Our study tells us that to design better tools for treating a disease like autism, you have to get to the underlying genetic roots of its dysfunctional behaviors, whether it is over-grooming in mice or repetitive motor behaviors in humans," study researcher Gordon Fishell, a neuroscientist at NYU Langone Medical Center, said in a statement. Autism is a spectrum of developmental disorders that involve social impairments and communication deficits. People with autism may also engage in repetitive behaviors, such as rocking or hand flapping. In the study, detailed today (May 25) in the journal Nature, the researchers bred mice that lacked a gene for a protein called Cntnap4, which is found in brain cells called interneurons. Having low levels of this protein leads to the abnormal release of two brain-signaling molecules, known as dopamine and GABA. Dopamine is involved in sensations of pleasure; GABA (which stands for gamma-aminobutyric acid) dampens neural activity and regulates muscle tone. Mice that lacked the gene for this critical brain protein were found to obsessively groom their fellow animals' fur into mohawk-like styles, suggesting a link between genetics, brain function and autistic behaviors.

Keyword: Autism; Genes & Behavior
Link ID: 19661 - Posted: 05.27.2014

By Sandra G. Boodman, Cheron Wicker sank to her knees and began weeping, the contents of her purse and the bags of groceries she had dropped littering the floor of her suburban Maryland kitchen. As the searing pain in her index finger left her unable to reach the counter with the bags, Wicker felt an overwhelming sense of despair. Looking up, her gaze fell on a rack of kitchen knives. An idea that would have been unthinkable months earlier flickered through her mind. That morning in the fall of 2012 when she briefly considered cutting off her finger was the lowest point in her seven-year ordeal, recalled Wicker, a former public affairs official at the U.S. Maritime Administration. The Columbia resident had repeatedly consulted pain specialists and orthopedic surgeons, as well as her internist and endocrinologist; all were mystified by the persistence of her constant, excruciating pain. Wicker had even undergone two operations to replace the herniated disks in her neck that were believed to be the cause of the pain. She had taken all sorts of painkillers and become dependent on the sleeping pill Ambien to buy her a few hours of relief each night. She was increasingly convinced that she must be crazy; madness seemed to be the only reason that nothing had worked. The real reason, she would learn weeks later when she saw a new doctor, was simple: The pain in her fingertip was caused by something inside it, not by a pinched nerve in her neck. In December 2012, after a third surgery, her pain vanished. “I had to convince her that I knew what I was doing,” recalled Baltimore orthopedic surgeon Raymond Pensy, who diagnosed Wicker’s unusual disorder minutes after meeting her. “She was at her wit’s end.” © 1996-2014 The Washington Post

Keyword: Pain & Touch
Link ID: 19660 - Posted: 05.27.2014

By KATE MURPHY The baseball hurtles toward the batter, and he must decide from its rotation whether it’s a fastball worth a swing or a slider about to drop out of the strike zone. Running full speed, the wide receiver tracks both the football flying through the air and the defensive back on his heels. Golfers must rapidly shift visual focus in order to drive the ball at their feet toward a green in the distance. Many athletes need excellent vision to perform well in their sports, and now many are adding something new to their practice regimens: vision training. The idea has been around for years, but only recently have studies hinted that it might really work — that it might be possible to train yourself to see better without resorting to glasses or surgery. “Vision training has been out there for a long time,” said Mark Blumenkranz, a professor of ophthalmology at Stanford University Medical School. “But it’s being made more respectable lately thanks to the attention it’s been getting from psychophysicists, vision scientists, neurologists and optometrists.” Vision training actually has little to do with improving eyesight. The techniques, a form of perceptual learning, are intended to improve the ability to process what is seen. The idea is that if visual sensory neurons are repeatedly activated, they increase their ability to send electrical signals from one cell to another across connecting synapses. If neurons are not used, over time these transmissions are weakened. “With sensory neurons, just like muscles, it’s use or lose it,” said Dr. Bernhard Sabel, a neuroscientist at Otto von Guericke University in Magdeburg, Germany, who studies plasticity in the brain. “This applies both to athletes and the partially blind.” Vision training may involve simple strategies — for instance, focusing sequentially on beads knotted at intervals on a length of string with one end held at the tip of the nose. This is said to improve convergence (inward turning of the eye to maintain binocular vision) and the ability to focus near and far. © 2014 The New York Times Company

Keyword: Vision; Miscellaneous
Link ID: 19659 - Posted: 05.27.2014

Eliana Dockterman @edockterman A new study that could affect whether adoption agencies are willing to work with gay couples shows that after adopting, gay men's brain activity resembles that of both new moms and new dads Research has shown that a new mother’s brain activity changes after having a baby. Turns out, gay men’s pattern of brain activity also adapts to parenthood, and resembles that of both new moms and new dads, in findings published Monday. A study published Monday in the Proceedings of the National Academy of Sciences sought to determine whether mothers’ brains became hyper-reactive to emotional cues, like hearing their child cry after birth, because of hormonal changes or parenting experience. Researchers videotaped 89 new moms and dads taking care of their infants at home. They then measured parents’ brain activity in an MRI while the parents watched videos in which their children were not featured, followed by the footage shot in their home with their kids. The 20 mothers in the study—all of whom were the primary caregivers—had heightened activity in the brain’s emotion-processing regions; the amygdala, a set of neurons that processes emotions, was five times more active than the baseline. The 21 heterosexual fathers had increased activity in their cognitive circuits, which helped them determine which of the baby’s body movements indicated the need for a new diaper and which ones signaled hunger. The 48 gay fathers’ brain waves, on the other hand, responded similarly to both the heterosexual mom and dad. Their emotional circuits were as active as mothers’, and their cognitive circuits were as active as the fathers’. Researchers also found that the more time a gay father spent with the baby, the greater a connection there was between the emotional and cognitive structures.

Keyword: Sexual Behavior; Brain imaging
Link ID: 19658 - Posted: 05.27.2014

By IAN AUSTEN Hershey stopped producing chocolate in Smiths Falls, Ontario, six years ago. The work went to Mexico, but the factory remains, along with reminders of the glory days: A sign that once directed school buses delivering children for tours. A fading, theme-park-style entrance that marks what used to be the big attraction — a “Chocolate Shoppe” that sold about $4 million of broken candy and bulk bars a year. The once ever-present sweet smell of chocolate is gone, too. In the high-ceilinged warehouse, where stacks of Hershey’s bars and Reese’s Peanut Butter Cups once awaited shipment, the nose now picks up a different odor: the woody, herbal aroma of 50,000 marijuana plants. Clinical, climate-controlled rooms with artificial sunlight house rows upon rows of plants at various stages of growth. In the “mother room,” horticulturalists use cuttings to start new plants. The “flowering rooms” are flooded with intense light 12 hours a day to nurture nearly grown plants in strains with vaguely aristocratic names like Argyle, Houndstooth and Twilling. The new owner of this factory, at 1 Hershey Drive, is Tweed Marijuana. It is one of about 20 companies officially licensed to grow medical marijuana in Canada. A court ordered the government to make marijuana available for medicinal purposes in 2000, but the first system for doing so created havoc. The government sold directly to approved consumers, but individuals were also permitted to grow for their own purposes or to turn over their growing to small operations. The free-for-all approach prompted a flood of complaints from police and local governments. So the Canadian government decided to create an extensive, heavily regulated system for growing and selling marijuana. The new rules allow users with prescriptions to buy only from one of the approved, large-scale, profit-seeking producers like Tweed, a move intended to shut down the thousands of informal growing operations scattered across the country. © 2014 The New York Times Company

Keyword: Drug Abuse
Link ID: 19657 - Posted: 05.26.2014