Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
// by Richard Farrell Conventional thinking has long held that pelvic bones in whales and dolphins, evolutionary throwbacks to ancestors that once walked on land, are vestigial and will disappear millions of years from now. But researchers from University of Southern California and the Natural History Museum of Los Angeles County (NHM) have upended that assumption. The scientists argue in a paper just published in the journal Evolution that cetacean (whale and dolphin) pelvic bones certainly do have a purpose and that they're specifically targeted, by selection, for mating. The muscles that control a cetacean's penis are attached to the creature's pelvic bones. Matthew Dean, assistant professor at the USC Dornsife College of Letters, Arts and Sciences, and Jim Dines, collections manager of mammalogy at NHM, wanted to find out if pelvic bones could be evolutionarily advantageous by impacting the overall amount of control an individual creature has with its penis. The pair spent four years examining whale and dolphin pelvic bones, using a 3D laser scanner to study the shape and size of the samples in extreme detail. Then they gathered as much data as they could find -- reaching back to whaler days -- on whale testis size relative to body mass. The testis data was important because in nature, species in "promiscuous," competitive mating environments (where females mate with multiple males) develop larger testes, relative to their body mass, in order to outdo the competition. © 2014 Discovery Communications, LLC.
Keyword: Evolution; Sexual Behavior
Link ID: 20046 - Posted: 09.09.2014
By MICHAEL HEDRICK I can remember the early days of having schizophrenia. I was so afraid of the implications of subtle body language, like a lingering millisecond of eye contact, the way my feet hit the ground when I walked or the way I held my hands to my side. It was a struggle to go into a store or, really, anywhere I was bound to see another living member of the human species. With a simple scratch of the head, someone could be telling me to go forward, or that what I was doing was right or wrong, or that they were acknowledging the symbolic crown on my head that made me a king or a prophet. It’s not hard to imagine that I was having a tough time in the midst of all the anxiety and delusions. Several months after my diagnosis, I took a job at a small town newspaper as a reporter. I sat in on City Council meetings, covering issues related to the lowering water table and interviewing local business owners for small blurbs in the local section, all the while wondering if I was uncovering some vague connections to an international conspiracy. The nights were altogether different. Every day, I would come home to my apartment and smoke pot, then lay on my couch watching television or head out to the bar and get so hammered that I couldn’t walk. It’s hard to admit, but the only time I felt relaxed was when I was drunk. I eventually lost my newspaper job, but that wasn’t the catalyst for change. It all came to a head one night in July. I had been out drinking all night and, in a haze, I decided it would be a good idea to drive the two miles back to my apartment. This is something I had done several times before, but it had never dawned on me that it was a serious deal. I thought I was doing well, not swerving and being only several blocks from my house, when I saw flashing lights behind me. What started as a trip to the bar to unwind ended with me calling my parents to bail me out of jail at 3 a.m. © 2014 The New York Times Company
Keyword: Schizophrenia; Drug Abuse
Link ID: 20045 - Posted: 09.08.2014
Being bullied regularly by a sibling could put children at risk of depression when they are older, a study led by the University of Oxford suggests. Around 7,000 children aged 12 were asked if they had experienced a sibling saying hurtful things, hitting, ignoring or lying about them. The children were followed up at 18 and asked about their mental health. A charity said parents should deal with sibling rivalry before it escalates. Previous research has suggested that victims of peer bullying can be more susceptible to depression, anxiety and self-harm. This study claims to be the first to examine bullying by brothers or sisters during childhood for the same psychiatric problems in early adulthood. Researchers from the Universities of Oxford, Warwick and Bristol and University College London sent questionnaires to thousands of families with 12-year-old children in 2003-04 and went back to them six years later to assess their mental health. If they had siblings they were asked about bullying by brothers and sisters. The questionnaire said: "This means when a brother or sister tries to upset you by saying nasty and hurtful things, or completely ignores you from their group of friends, hits, kicks, pushes or shoves you around, tells lies or makes up false rumours about you." Most children said they had not experienced bullying. Of these, at 18, 6.4% had depression scores in the clinically significant range, 9.3% experienced anxiety and 7.6% had self-harmed in the previous year. The 786 children who said they had been bullied by a sibling several times a week were found to be twice as likely to have depression, self-harm and anxiety as the other children. BBC © 2014
Keyword: Depression; Aggression
Link ID: 20044 - Posted: 09.08.2014
By BENEDICT CAREY Imagine that on Day 1 of a difficult course, before you studied a single thing, you got hold of the final exam. The motherlode itself, full text, right there in your email inbox — attached mistakenly by the teacher, perhaps, or poached by a campus hacker. No answer key, no notes or guidelines. Just the questions. Would that help you study more effectively? Of course it would. You would read the questions carefully. You would know exactly what to focus on in your notes. Your ears would perk up anytime the teacher mentioned something relevant to a specific question. You would search the textbook for its discussion of each question. If you were thorough, you would have memorized the answer to every item before the course ended. On the day of that final, you would be the first to finish, sauntering out with an A+ in your pocket. And you would be cheating. But what if, instead, you took a test on Day 1 that was just as comprehensive as the final but not a replica? You would bomb the thing, for sure. You might not understand a single question. And yet as disorienting as that experience might feel, it would alter how you subsequently tuned into the course itself — and could sharply improve your overall performance. This is the idea behind pretesting, one of the most exciting developments in learning-science. Across a variety of experiments, psychologists have found that, in some circumstances, wrong answers on a pretest aren’t merely useless guesses. Rather, the attempts themselves change how we think about and store the information contained in the questions. On some kinds of tests, particularly multiple-choice, we benefit from answering incorrectly by, in effect, priming our brain for what’s coming later. That is: The (bombed) pretest drives home the information in a way that studying as usual does not. We fail, but we fail forward. © 2014 The New York Times Company
Keyword: Learning & Memory
Link ID: 20043 - Posted: 09.08.2014
by Laura Beil The obesity crisis has given prehistoric dining a stardom not known since Fred Flintstone introduced the Bronto Burger. Last year, “Paleo diet” topped the list of most-Googled weight loss searches, as modern Stone Age dieters sought the advice of bestsellers like The Paleo Solution or The Primal Blueprint, which encourages followers to “honor your primal genes.” The assumption is that America has a weight problem because human metabolism runs on ancient genes that are ill equipped for contemporary eating habits. In this line of thinking, a diet true to the hunter-gatherers we once were — heavy on protein, light on carbs — will make us skinny again. While the fad has attracted skepticism from those who don’t buy the idea whole hog, there’s still plenty of acceptance for one common premise about the evolution of obesity: Our bodies want to stockpile fat. For most of human history, the theory goes, hunter-gatherers ate heartily when they managed to slay a fleeing mastodon. Otherwise, prehistoric life meant prolonged stretches of near starvation, surviving only on inner reserves of adipose. Today, modern humans mostly hunt and gather at the drive-thru, but our Pleistocene genes haven’t stopped fretting over the coming famine. The idea that evolution favored calorie-hoarding genes has long shaped popular and scientific thinking. Called the “thrifty gene” hypothesis, it has arguably been the dominant theory for evolutionary origins of obesity, and by extension diabetes. (Insulin resistance and diabetes so commonly accompany obesity that doctors have coined the term “diabesity.”) However, it’s not that difficult to find scientists who call the rise of the thrifty gene theory a feat of enthusiasm over evidence. Greg Gibson, director of the Center for Integrative Genomics at Georgia Tech in Atlanta, calls the data “somewhere between scant and nonexistent — a great example of crowd mentality in science.” © Society for Science & the Public 2000 - 2014
Keyword: Obesity
Link ID: 20042 - Posted: 09.06.2014
By Jeffrey Mervis Embattled U.K. biomedical researchers are drawing some comfort from a new survey showing that a sizable majority of the public continues to support the use of animals in research. But there’s another twist that should interest social scientists as well: The government’s decision this year to field two almost identical surveys on the topic offers fresh evidence that the way you ask a question affects how people answer it. Since 1999, the U.K. Department for Business, Innovation & Skills (BIS) has been funding a survey of 1000 adults about their attitudes toward animal experimentation. But this year the government asked the London-based pollsters, Ipsos MORI, to carry out a new survey, changing the wording of several questions. (The company also collected additional information, including public attitudes toward different animal species and current rules regarding their use.) For example, the phrase “animal experimentation” was replaced by “animal research” because the latter is “less inflammatory,” notes Ipsos MORI Research Manager Jerry Latter. In addition, says Emma Brown, a BIS spokeswoman, the word research “more accurately reflects the range of procedures that animals may be involved in, including the breeding of genetically modified animals.” But government officials also value the information about long-term trends in public attitudes that can be gleaned from the current survey. So they told the company to conduct one last round—the 10th in the series—at the same time they deployed the new survey. Each survey went to a representative, but different, sample of U.K. adults. © 2014 American Association for the Advancement of Scienc
Keyword: Animal Rights
Link ID: 20041 - Posted: 09.06.2014
Ewen Callaway Caffeine's buzz is so nice it evolved twice. The coffee genome has now been published, and it reveals that the coffee plant makes caffeine using a different set of genes from those found in tea, cacao and other perk-you-up plants. Coffee plants are grown across some 11 million hectares of land, with more than two billion cups of the beverage drunk every day. It is brewed from the fermented, roasted and ground berries of Coffea canephora and Coffea arabica, known as robusta and arabica, respectively. An international team of scientists has now identified more than 25,000 protein-making genes in the robusta coffee genome. The species accounts for about one-third of the coffee produced, much of it for instant-coffee brands such as Nescafe. Arabica contains less caffeine, but its lower acidity and bitterness make it more flavourful to many coffee drinkers. However, the robusta species was selected for sequencing because its genome is simpler than arabica’s. Caffeine evolved long before sleep-deprived humans became addicted to it, probably to defend the coffee plant against predators and for other benefits. For example, coffee leaves contain the highest levels of caffeine of any part of the plant, and when they fall on the soil they stop other plants from growing nearby. “Caffeine also habituates pollinators and makes them want to come back for more, which is what it does to us, too,” says Victor Albert, a genome scientist at the University of Buffalo in New York, who co-led the sequencing effort. The results were published on 4 September in Science1. © 2014 Nature Publishing Group
Keyword: Drug Abuse; Evolution
Link ID: 20040 - Posted: 09.06.2014
By S. Matthew Liao As many as 20 percent of war veterans return from combat in Afghanistan and Iraq with post-traumatic stress disorder (PTSD) or major depression, according to a 2008 report from the RAND Corporation. Many experience constant nightmares and flashbacks and many can’t live normal lives. For significant number of veterans, available medications do not seem to help. In 2010, at least 22 veterans committed suicide each day, according to the Department of Veterans Affairs. In her book, Demon Camp, the author Jen Percy describes damaged veterans who have even resorted to exorcism to alleviate their PTSD symptoms. As part of President Obama’s BRAIN Initiative, the federal Defense Advanced Research Projects Agency (DARPA) plans to spend more than $70 million over five years to develop novel devices that would address neurological disorders such as PTSD. DARPA is particularly interested in a technology called Deep Brain Stimulation (DBS). DBS involves inserting a thin electrode through a small opening in the skull into a specific area in the brain; the electrode is then connected by an insulated wire to a battery pack underneath the skin; the battery pack then sends electrical pulses via the wire to the brain. About 100,000 people around the world today have a DBS implant to ameliorate the effects of Parkinson’s disease, epilepsy and major depression. There is evidence that DBS can also help with PTSD. Functional neuroimaging studies indicate that amygdala hyperactivity is responsible for the symptoms of PTSD and that DBS can functionally reduce the activity of the amygdala. In animal PTSD models, DBS has been found to be more effective than current treatment using selective serotonin reuptake inhibitors. © 2014 Scientific American
Keyword: Stress
Link ID: 20039 - Posted: 09.06.2014
By Tanya Lewis, In an experiment that sounds more like science fiction than reality, two humans were able to send greetings to each other using only a digital connection linking their brains. Using noninvasive means, researchers made brain recordings of a person in India thinking the words "hola" and "ciao," and then decoded and emailed the messages to France, where a machine converted the words into brain stimulation in another person, who perceived the signals as flashes of light. From the sequence of flashes, the French recipient was able to successfully interpret the greetings, according to a new study published today (Sept. 5) in the journal PLOS ONE. The researchers wanted to know if it is possible for two people to communicate by reading out the brain activity of one person and injecting that activity into a second person. "Could we develop an experiment that would bypass the talking or typing part of [the] Internet and establish direct brain-to-brain communication between subjects located far away from each other, in India and France?" co-author Dr. Alvaro Pascual-Leone said in a statement. Pascual-Leone is a neurologist at Beth Israel Deaconess Medical Center in Boston, and a professor at Harvard Medical School, in Cambridge, Massachusetts. To answer that question, Pascual-Leone and his colleagues at Starlab Barcelona, in Spain, and Axilum Robotics, in Strasbourg, France, turned to several widely used brain technologies. Electroencephalogram, or EEG, recordings are taken by placing a cap of electrodes on a person's scalp, and recording the electrical activity of large regions of the brain's cortex. Previous studies have recorded EEG from a person thinking about an action, such as moving his or her arm, while a computer translates the signal into an output used to move a robotic exoskeleton or drive a wheelchair.
Keyword: Brain imaging; Robotics
Link ID: 20038 - Posted: 09.06.2014
By LISA SANDERS, M.D. On Thursday, we challenged Well readers to take on the case of a 19-year-old man who suddenly collapsed at work after months of weakness and fatigue dotted with episodes of nausea and vomiting. More than 500 of you wrote in with suggested diagnoses. And more than 60 of you nailed it. The cause of this man’s collapse, weakness, nausea and vomiting was… Addisonian crisis because of Addison’s disease Addison’s disease, named after Dr. Thomas Addison, the 19th-century physician who first described the disorder, occurs when the adrenal glands stop producing the fight-or-flight hormones, particularly cortisol and adrenaline and a less well known but equally important hormone called aldosterone that helps the body manage salt. In Addison’s, the immune system mistakenly attacks the adrenal glands as if they were foreign invaders. Why this happens is not well understood, but without these glands and the essential hormones they make, the body cannot respond to biological stress. The symptoms of Addison’s are vague. That’s one reason it’s so hard to diagnosis. Patients complain of weakness and fatigue. They often crave salt. And when confronted with any stress — an infection or an injury — patients with Addison’s may go into adrenal crisis, characterized by nausea and vomiting, low blood pressure and, sometimes, physical collapse. Their blood pressure may drop so low that oxygen-carrying blood cannot reach the extremities, causing skin to turn blue; if blood fails to reach even more essential organs, it can lead to death. © 2014 The New York Times Company
Keyword: Hormones & Behavior
Link ID: 20037 - Posted: 09.06.2014
On 5th May, 1953, the novelist Aldous Huxley dissolved four-tenths of a gram of mescaline in a glass of water, drank it, then sat back and waited for the drug to take effect. Huxley took the drug in his California home under the direct supervision of psychiatrist Humphry Osmond, to whom Huxley had volunteered himself as “a willing and eager guinea pig”. Osmond was one of a small group of psychiatrists who pioneered the use of LSD as a treatment for alcoholism and various mental disorders in the early 1950s. He coined the term psychedelic, meaning ‘mind manifesting’ and although his research into the therapeutic potential of LSD produced promising initial results, it was halted during the 1960s for social and political reasons. Born in Surrey in 1917, Osmond studied medicine at Guy’s Hospital, London. He served in the navy as a ship’s psychiatrist during World War II, and afterwards worked in the psychiatric unit at St. George’s Hospital, London, where he became a senior registrar. While at St. George’s, Osmond and his colleague John Smythies learned about Albert Hoffman’s discovery of LSD at the Sandoz Pharmaceutical Company in Bazel, Switzerland. Osmond and Smythies started their own investigation into the properties of hallucinogens and observed that mescaline produced effects similar to the symptoms of schizophrenia, and that its chemical structure was very similar to that of the hormone and neurotransmitter adrenaline. This led them to postulate that schizophrenia was caused by a chemical imbalance in the brain, but these ideas were not favourably received by their colleagues. In 1951 Osmond took a post as deputy director of psychiatry at the Weyburn Mental Hospital in Saskatchewan, Canada and moved there with his family. Within a year, he began collaborating on experiments using LSD with Abram Hoffer. Osmond tried LSD himself and concluded that the drug could produce profound changes in consciousness. Osmond and Hoffer also recruited volunteers to take LSD and theorised that the drug was capable of inducing a new level of self-awareness which may have enormous therapeutic potential. © 2014 Guardian News and Media Limited
Keyword: Drug Abuse; Depression
Link ID: 20036 - Posted: 09.04.2014
by Sandrine Ceurstemont Screening an instructional monkey movie in a forest reveals that marmosets do not only learn from family members: they also copy on-screen strangers. It is the first time such a video has been used for investigations in the wild. Tina Gunhold at the University of Vienna, Austria, and her colleagues filmed a common marmoset retrieving a treat from a plastic device. They then took the device to the Atlantic Forest near Aldeia in Pernambuco, Brazil, and showed the movie to wild marmosets there. Although monkeys are known to learn from others in their social group, especially when they are youngMovie Camera, little is known about their ability to learn from monkeys that do not belong to the same group. Marmosets are territorial, so the presence of an outsider – even a virtual one on a screen – could provoke an attack. "We didn't know if wild marmosets would be frightened of the video box but actually they were all attracted to it," says Gunhold. Compared to monkeys shown a static image of the stranger, video-watching marmosets were more likely to manipulate the device, typically copying the technique shown (see video). Young monkeys spent more time near the video box than older family members, suggesting that they found the movie more engaging – although as soon as one monkey mastered the task, it was impossible to tell whether the others were learning from the video or from their relative. "We think it's a combination of both," says Gunhold. © Copyright Reed Business Information Ltd.
Keyword: Learning & Memory; Evolution
Link ID: 20035 - Posted: 09.04.2014
By Fredrick Kunkle Years ago, many scientists assumed that a woman’s heart worked pretty much the same as a man’s. But as more women entered the male-dominated field of cardiology, many such assumptions vanished, opening the way for new approaches to research and treatment. A similar shift is underway in the study of Alzheimer’s disease. It has long been known that more women than men get the deadly neurodegenerative disease, and an emerging body of research is challenging the common wisdom as to why. Although the question is by no means settled, recent findings suggest that biological, genetic and even cultural influences may play heavy roles. Of the more than 5 million people in the United States who have been diagnosed with Alzheimer’s, the leading cause of dementia, two-thirds are women. Because advancing age is considered the biggest risk factor for the disease, researchers largely have attributed that disparity to women’s longer life spans. The average life expectancy for women is 81 years, compared with 76 for men. Yet “even after taking age into account, women are more at risk,” said Richard Lipton, a physician who heads the Einstein Aging Study at Albert Einstein College of Medicine in New York. With the number of Alzheimer’s cases in the United States expected to more than triple by 2050, some researchers are urging a greater focus on understanding the underlying reasons women are more prone to the disease and on developing gender-specific treatments. The area of inquiry has been growing in part because of a push by female Alzheimer’s researchers, who have formed a group to advocate for a larger leadership role in the field and more gender-specific research.
Keyword: Alzheimers; Sexual Behavior
Link ID: 20034 - Posted: 09.04.2014
Yves Frégnac & Gilles Laurent Launched in October 2013, the Human Brain Project (HBP) was sold by charismatic neurobiologist Henry Markram as a bold new path towards understanding the brain, treating neurological diseases and building information technology. It is one of two 'flagship' proposals funded by the European Commission's Future and Emerging Technologies programme (see go.nature.com/icotmi). Selected after a multiyear competition, the project seemed like an exciting opportunity to bring together neuroscience and IT to generate practical applications for health and medicine (see go.nature.com/2eocv8). Contrary to public assumptions that the HBP would generate knowledge about how the brain works, the project is turning into an expensive database-management project with a hunt for new computing architectures. In recent months, the HBP executive board revealed plans to drastically reduce its experimental and cognitive neuroscience arm, provoking wrath in the European neuroscience community. The crisis culminated with an open letter from neuroscientists (including one of us, G.L.) to the European Commission on 7 July 2014 (see www.neurofuture.eu), which has now gathered more than 750 signatures. Many signatories are scientists in experimental and theoretical fields, and the list includes former HBP participants. The letter incorporates a pledge of non-participation in a planned call for 'partnering projects' that must raise about half of the HBP's total funding. This pledge could seriously lower the quality of the project's final output and leave the planned databases empty. © 2014 Nature Publishing Group
Keyword: Brain imaging
Link ID: 20033 - Posted: 09.04.2014
By MATTHEW PERRONE AP Health Writer WASHINGTON (AP) — The Food and Drug Administration says there is little evidence that testosterone-boosting drugs taken by millions of American men are beneficial, though the agency is also unconvinced by studies suggesting the hormone carries serious risks. The agency posted its review online Wednesday ahead of a public meeting to discuss the benefits and risks of treatments that raise levels of the male hormone. Regulators agreed to convene the September 17 meeting after two federally funded studies found links between testosterone therapy and heart problems in men. The scrutiny comes amid an industry marketing blitz for new pills, patches and formulations that has transformed testosterone a multibillion-dollar market. Advertisements for prescription gels like Fortesta and Androgel promise aging men relief from ‘‘Low-T,’’ a condition they link to low libido, fatigue and weight gain. But FDA reviewers state that ‘‘the need to replace testosterone in these older men remains debatable.’’ While testosterone levels naturally decline after age 40, it’s unclear whether those lower levels actually lead to the signs commonly associated with aging, including decreased energy and loss of muscle. The FDA first approved testosterone injections in the 1950s for men who had been diagnosed with hypogonadism, a form of abnormally low testosterone caused by injury or medical illness. But the recent advertising push is focused on otherwise healthy men who simply have lower-than-normal levels of testosterone.
Keyword: Hormones & Behavior; Development of the Brain
Link ID: 20032 - Posted: 09.04.2014
By GRETCHEN REYNOLDS Amyotrophic lateral sclerosis has been all over the news lately because of the ubiquitous A.L.S. ice bucket challenge. That attention has also reinvigorated a long-simmering scientific debate about whether participating in contact sports or even vigorous exercise might somehow contribute to the development of the fatal neurodegenerative disease, an issue that two important new studies attempt to answer. Ever since the great Yankees first baseman Lou Gehrig died of A.L.S. in 1941 at age 37, many Americans have vaguely connected A.L.S. with athletes and sports. In Europe, the possible linkage has been more overtly discussed. In the past decade, several widely publicized studies indicated that professional Italian soccer players were disproportionately prone to A.L.S., with about a sixfold higher incidence than would have been expected numerically. Players were often diagnosed while in their 30s; the normal onset is after 60. These findings prompted some small, follow-up epidemiological studies of A.L.S. patients in Europe. To the surprise and likely consternation of the researchers, they found weak but measurable associations between playing contact sports and a heightened risk for A.L.S. The data even showed links between being physically active — meaning exercising regularly — and contracting the disease, raising concerns among scientists that exercise might somehow be inducing A.L.S. in susceptible people, perhaps by affecting brain neurons or increasing bodily stress. But these studies were extremely small and had methodological problems. So to better determine what role sports and exercise might play in the risk for A.L.S., researchers from across Europe recently combined their efforts into two major new studies. The results should reassure those of us who exercise. The numbers showed that physical activity — whether at work, in sports or during exercise — did not increase people’s risk of developing A.L.S. © 2014 The New York Times Company
Keyword: ALS-Lou Gehrig's Disease
Link ID: 20031 - Posted: 09.03.2014
By Kate Wong In 1871 Charles Darwin surmised that humans were evolutionarily closer to the African apes than to any other species alive. The recent sequencing of the gorilla, chimpanzee and bonobo genomes confirms that supposition and provides a clearer view of how we are connected: chimps and bonobos in particular take pride of place as our nearest living relatives, sharing approximately 99 percent of our DNA, with gorillas trailing at 98 percent. Yet that tiny portion of unshared DNA makes a world of difference: it gives us, for instance, our bipedal stance and the ability to plan missions to Mars. Scientists do not yet know how most of the DNA that is uniquely ours affects gene function. But they can conduct whole-genome analyses—with intriguing results. For example, comparing the 33 percent of our genome that codes for proteins with our relatives' genomes reveals that although the sum total of our genetic differences is small, the individual differences pervade the genome, affecting each of our chromosomes in numerous ways. © 2014 Scientific American
Keyword: Evolution; Genes & Behavior
Link ID: 20030 - Posted: 09.03.2014
By Jonathan Webb Science reporter, BBC News Monkeys at the top and bottom of the social pecking order have physically different brains, research has found. A particular network of brain areas was bigger in dominant animals, while other regions were bigger in subordinates. The study suggests that primate brains, including ours, can be specialised for life at either end of the hierarchy. The differences might reflect inherited tendencies toward leading or following, or the brain adapting to an animal's role in life - or a little of both. Neuroscientists made the discovery, which appears in the journal Plos Biology, by comparing brain scans from 25 macaque monkeys that were already "on file" as part of ongoing research at the University of Oxford. "We were also looking at learning and memory and decision-making, and the changes that are going on in your brain when you're doing those things," explained Dr MaryAnn Noonan, the study's first author. The decision to look at the animals' social status produced an unexpectedly clear result, Dr Noonan said. "It was surprising. All our monkeys were of different ages and different genders - but with fMRI (functional magnetic resonance imaging) you can control for all of that. And we were consistently seeing these same networks coming out." BBC © 2014
Keyword: Emotions; Evolution
Link ID: 20029 - Posted: 09.03.2014
|By Madhuvanthi Kannan We humans assume we are the smartest of all creations. In a world with over 8.7 million species, only we have the ability to understand the inner workings of our body while also unraveling the mysteries of the universe. We are the geniuses, the philosophers, the artists, the poets and savants. We amuse at a dog playing ball, a dolphin jumping rings, or a monkey imitating man because we think of these as remarkable acts for animals that, we presume, aren’t smart as us. But what is smart? Is it just about having ideas, or being good at language and math? Scientists have shown, time and again, that many animals have an extraordinary intellect. Unlike an average human brain that can barely recall a vivid scene from the last hour, chimps have a photographic memory and can memorize patterns they see in the blink of an eye. Sea lions and elephants can remember faces from decades ago. Animals also have a unique sense perception. Sniffer dogs can detect the first signs of colon cancer by the scents of patients, while doctors flounder in early diagnosis. So the point is animals are smart too. But that’s not the upsetting realization. What happens when, for just once, a chimp or a dog challenges man to one of their feats? Well, for one, a precarious face-off – like the one Matt Reeves conceived in the Planet of the Apes – would seem a tad less unlikely than we thought. In a recent study by psychologists Colin Camerer and Tetsuro Matsuzawa, chimps and humans played a strategy game – and unexpectedly, the chimps outplayed the humans. Chimps are a scientist’s favorite model to understand human brain and behavior. Chimp and human DNAs overlap by a whopping 99 percent, which makes us closer to chimps than horses to zebras. Yet at some point, we evolved differently. Our behavior and personalities, molded to some extent by our distinct societies, are strikingly different from that of our fellow primates. Chimps are aggressive and status-hungry within their hierarchical societies, knit around a dominant alpha male. We are, perhaps, a little less so. So the question arises whether competitive behavior is hard-wired in them. © 2014 Scientific American
Keyword: Intelligence; Evolution
Link ID: 20028 - Posted: 09.03.2014
By Virginia Morell Figaro, a Goffin’s cockatoo (Cacatua goffini) housed at a research lab in Austria, stunned scientists a few years ago when he began spontaneously making stick tools from the wooden beams of his aviary. The Indonesian parrots are not known to use tools in the wild, yet Figaro confidently employed his sticks to rake in nuts outside his wire enclosure. Wondering if Figaro’s fellow cockatoos could learn by watching his methods, scientists set up experiments for a dozen of them. One group watched as Figaro used a stick to reach a nut placed inside an acrylic box with a wire-mesh front panel; others saw “ghost demonstrators”—magnets that were hidden beneath a table and that the researchers controlled—displace the treats. Each bird was then placed in front of the box, with a stick just like Figaro’s lying nearby. The group of three males and three females that had watched Figaro also picked up the sticks, and made some efforts reminiscent of his actions. But only those three males, such as the one in the photo above, became proficient with the tool and successfully retrieved the nuts, the scientists report online today in the Proceedings of the Royal Society B. None of the females did so; nor did any of the birds, male or female, in the ghost demonstrator group. Because the latter group failed entirely, the study shows that the birds need living teachers, the scientists say. Intriguingly, the clever observers developed a better technique than Figaro’s for getting the treat. Thus, the cockatoos weren’t copying his exact actions, but emulating them—a distinction that implies some degree of creativity. Two of the successful cockatoos were later given a chance to make a tool of their own. One did so immediately (as in the video above), and the other succeeded after watching Figaro. It may be that by learning to use a tool, the birds are stimulated to make tools of their own, the scientists say. © 2014 American Association for the Advancement of Science.
Keyword: Learning & Memory
Link ID: 20027 - Posted: 09.03.2014


.gif)

