Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By Rodrigo Pérez Ortega Politically and ethically fraught, research into what leads to bisexual behavior or exclusive homosexuality typically sparks controversy. The latest study, published today in Science Advances, is no exception. By mining a DNA database of some 450,000 people in the United Kingdom, a research team has concluded that the genes underlying bisexual behavior are distinct from those driving exclusive same-sex behavior, and may be intertwined with a propensity for taking risks. This connection to risk-taking, the authors suggest, may also explain why men with a history of bisexual behavior still have a reasonably high number of offspring, albeit fewer than heterosexual men, possibly explaining why the genes driving such sexual behavior have persisted. The work has drawn a mix of strong reactions. Some scientists called the findings valuable, whereas others found fault with the underlying data. Still others argued the research could potentially stigmatize sexual minorities. The result that bisexuality is tied with risky behavior, some scientists say, could be used by others to discriminate against, and further perpetuate false narratives about, bisexual people. However, study co-author Jianzhi Zhang, an evolutionary geneticist at the University of Michigan (UM), counters that the association between bisexual behavior and risk-taking “is an empirical observation. … We hold no moral judgement on risk-taking and believe [it] has pros and cons (depending on the situation), as almost any trait.” He also pushes back at the idea such research should be taboo or off limits. “We should welcome more studies of bisexuality and homosexuality. … This is partly a biological question, so we should understand it.” From one stark evolutionary perspective, sex without the prospect of producing children could be seen as waste of time and energy—behavior that might be selected against. Yet population surveys have consistently found that about 2% to 10% of people engage in sex with others of the same sex. Studies of twins have suggested such sexual activity is at least partly heritable, and therefore has a genetic component. And scientists have proposed several evolutionary theories explaining why same-sex sexual behavior may persist.
Keyword: Sexual Behavior; Genes & Behavior
Link ID: 29080 - Posted: 01.06.2024
Allison Aubrey Among the roughly 40 million adults in the U.S. who have hearing loss, most don't use hearing aids. This means they may be missing out on more than just good hearing. Research shows hearing loss, if left untreated, can increase the risk of frailty, falls, social isolation, depression and cognitive decline. One study from scientists at Johns Hopkins University found that even people with mild hearing loss doubled their risk of dementia. Now a new study finds that restoring hearing loss with hearing aids may lengthen people's lives. Dr. Janet Choi, an otolaryngologist with Keck Medicine of USC, wanted to evaluate whether restoring hearing with hearing aids may increase the chances of living longer. Using data from the the National Health and Nutrition Examination Survey, a large, national study, Choi and her colleagues tracked the status of nearly 1,900 adults who had been shown to have hearing loss during screenings. The participants completed questionnaires about their use of hearing aids. "The group of patients who were using hearing aids regularly had a 24% lower risk of mortality compared to the group who never use hearing aids," Choi says. Meaning, the participants who were in the habit of wearing hearing aids were significantly less likely to die early. The researchers had hypothesized this would be the case given all the studies pointing to the negative impacts of untreated hearing loss. But Choi says they did not expect such a big difference in mortality risk. "We were surprised," she says. Prior research has shown that age-related hearing loss – if untreated – can take its toll on physical and mental health. And a recent study found restoring hearing with hearing aids may slow cognitive decline among people at high risk. © 2024 npr
Keyword: Hearing
Link ID: 29079 - Posted: 01.06.2024
By Gina Kolata People taking the wildly popular drugs Ozempic, to treat diabetes, and Wegovy, to combat obesity, are slightly less likely to have suicidal thoughts than people who are not taking them, researchers reported on Friday. Millions of people take Ozempic and Wegovy, which are considered to be among the biggest blockbusters in medical history. But last year a European drug safety agency said it was investigating whether the drugs cause suicidal thoughts. The new study, published in the journal Nature Medicine, was funded by the National Institutes of Health and used a huge population. The findings provide data that may potentially reassure people who take the drugs. Novo Nordisk, maker of the drugs, had no role in the study, and the study’s investigators had no conflicts of interest. The investigators used anonymized electronic health records from a database of 100.8 million people. That allowed them to look at two groups: 240,618 who were prescribed Wegovy or other weight loss drugs, and 1,589,855 who were prescribed Ozempic or other medicines to lower their blood sugar. Suicidal thoughts were included in patients’ records as part of routine monitoring of their health. The investigators compared the incidence of suicidal thoughts in people who were taking the drugs with the incidence among similar people who were not taking them but were taking other weight loss and anti-diabetes medications. They also asked if there was an increase in the recurrence of suicidal thoughts among those taking the drugs who had previously reported thoughts of suicide. The database’s size allowed the researchers to look at subgroups such as sex, race and age groups. “No matter how hard we tried we did not see any increased risk,” said Rong Xu, director of the Center for Artificial Intelligence in Drug Discovery at Case Western Reserve University in Cleveland. Dr. Xu conceived the study and interpreted the data with Dr. Nora D. Volkow, director of the National Institute on Drug Abuse. But it was an observational study, so it is impossible to draw conclusions about cause and effect. Such studies can only show associations. “More studies are absolutely needed,” Dr. Volkow said. © 2024 The New York Times Company
Keyword: Obesity; Depression
Link ID: 29078 - Posted: 01.06.2024
Kamal Nahas Peter Hegemann, a biophysicist at Humboldt University, has spent his career exploring interactions between proteins and light. Specifically, he studies how photoreceptors detect and respond to light, focusing largely on rhodopsins, a family of membrane photoreceptors in animals, plants, fungi, protists, and prokaryotes.1 Early in his career, his curiosity led him to an unknown rhodopsin in green algae that later proved to have useful applications in neuroscience research. Hegemann became a pioneer in the field of optogenetics, which revolutionized the ways in which scientists draw causal links between neuronal activity and behavior. In the early 1980s during his graduate studies at the Max Planck Institute of Biochemistry, Hegemann spent his days exploring rhodopsins in bacteria and archaea. However, the field was crowded, and he was eager to study a rhodopsin that scientists knew nothing about. Around this time, Kenneth Foster, a biophysicist at Syracuse University, was investigating whether the green algae Chlamydomonas, a photosynthetic unicellular eukaryote related to plants, used a rhodopsin in its eyespot organelle to detect light and trigger the algae to swim. He struggled to pinpoint the protein itself, so he took a roundabout approach and started interfering with nearby molecules that interact with rhodopsins.2 Rhodopsins require the small molecule retinal to function as a photoreceptor. When Foster depleted Chlamydomonas of its own retinal, the algae were unable to use light to direct movement, a behavior that was restored when he introduced retinal analogues. In 1985, Hegemann joined Foster’s group as a postdoctoral researcher to continue this work. “I wanted to find something new,” Hegemann said. “Therefore, I worked on an exotic organism and an exotic topic.” A year later, Hegemann started his own research group at the Max Planck Institute of Biochemistry where he searched for the green algae’s rhodopsin that Foster proposed should exist. © 1986–2024 The Scientist.
Keyword: Brain imaging; Vision
Link ID: 29077 - Posted: 01.03.2024
By April Dembosky Every year, an estimated 100,000 young adults or adolescents in the U.S. experience a psychotic episode. Only 10-20% of them gain access to the holistic treatment approach recommended by the National Institute of Mental Health as the gold standard of care for early psychosis, due to lack of space or because insurance won't cover it. Illustration by Anna Vignet/KQED After M graduated from high school in California, she got a job at a fast food restaurant making burgers. Her coworkers were chatting over the fryer one day when M got a weird feeling, like somehow they knew what she was thinking. It was like her coworkers could read her mind and were discussing her thoughts with each other. "I was like, are they talking about burgers or are they talking about me?" says M, now 21. NPR has agreed to identify M by her middle initial because she fears the stigma around her mental illness could disrupt her career path. There was one coworker in particular, a guy she had a crush on, and she was pretty sure he was watching her. She suspected he hacked into her phone so he could listen to her conversations, find out where she was and follow her around. If she was walking down the street, or hanging out in the park, she saw him. Her mom remembers M wanted to sleep with the lights on, repeatedly asking her through the night, "Mom, is someone here?" One day, her mom said M got so paranoid, so scared, she locked herself in the bathroom and just screamed and screamed and screamed. Her mom wanted to call for help. But she didn't have a job at the time. This was about a year into the pandemic, and the hotel where M's mom worked had been closed since the first lockdown. When she lost her job, she lost her family's health benefits, too. "My husband was like, 'What is that going to cost?'" her mom remembers. © 2024 npr
Keyword: Schizophrenia
Link ID: 29076 - Posted: 01.03.2024
By Katie Engelhart The doctors told Naomi that she could not leave the hospital. She was lying in a narrow bed at Denver Health Medical Center. Someone said something about a judge and a court order. Someone used the phrase “gravely disabled.” Naomi did not think she was gravely disabled. Still, she decided not to fight it. She could deny that she was mentally incompetent — but this would probably just be taken as proof of her mental incompetence. Of her lack of insight. She would, instead, “succumb to it.” It was early 2018. She had come to the hospital voluntarily, because she was getting so thin. In the days before, she had felt her electrolyte levels dip toward the danger zone — and she had decided that, even after everything, she did not want to be dead. By then, Naomi was 37 and had been starving herself for 26 years, and she was exquisitely attuned to her body’s corrupted chemistry. At the hospital, she was admitted to the ACUTE Center for Eating Disorders & Severe Malnutrition for medical stabilization. There, doctors began what was once called refeeding but is now more commonly called nutritional rehabilitation, using an intravenous line that fed into her neck. Reintroducing food to an emaciated body can be dangerous and even lethal if done too quickly. Physicians identified this phenomenon in the aftermath of World War II, when they observed skeletal concentration-camp survivors and longtime prisoners of war eat high-caloric foods and then drop dead of cardiac failure. “Well, here I am,” Naomi said in a video message that she recorded for her parents. “I am alive, but am I happy? I don’t know. … It’s pretty pathetic. I don’t know how I feel about the fact that I would have died had I not come.” In the video, she was wearing a hot pink tank top, even though it was cool in the hospital room, because she wanted to shiver, because shivering burned calories. A few days later, when she was not imminently dying anymore, Naomi announced that she was going home — and the hospital responded by placing her on a 72-hour mental-health hold. Clinicians then obtained what Colorado calls a short-term certification, which required, by judicial order, that Naomi be detained and treated, in her case until she reached what physicians determined to be 80 percent of her “ideal body weight.” In Colorado, as in most states, a patient can be treated against her will if she is mentally ill and found incapable of making informed decisions. That day, Naomi was transferred to a residential program at Denver’s Eating Recovery Center (E.R.C.) © 2024 The New York Times Company
Keyword: Anorexia & Bulimia
Link ID: 29075 - Posted: 01.03.2024
By Regina G. Barber Human brains aren't built to comprehend large numbers, like the national debt or how much to save for retirement. But with a few tools — analogies, metaphors and visualizations — we can get better at it. erhui1979/Getty Images Imagine a horizontal line. The very left is marked one thousand and the very right is marked one billion. On this line, where would you add a marker to represent one million? If you said somewhere in the middle, you answered the same as the roughly 50 percent of people who have done this exercise in a number line study. But the answer is actually much closer to one thousand since there are one thousand millions in one billion. This error makes sense because "our human brains are pretty bad at comprehending large numbers," says Elizabeth Toomarian, an educational neuroscientist at Stanford University. She studies how the brain makes sense of numbers. Or doesn't. "Our brains are evolutionarily very old and we are pushing them to do things that we've only just recently conceptualized," says Toomarian. Instead, the human brain is built to understand how much of something is in its environment. For example, which bush has more berries or how many predators are in that clearing? But comprehending the national debt or imagining the size of our universe? "We certainly can use our brains in that way, but we're recycling these sort of evolutionarily old brain architectures to do something really new," she says. In other words, it's not our fault that we have trouble wrapping our heads around big numbers. © 2024 npr
Keyword: Attention
Link ID: 29074 - Posted: 01.03.2024
By Fletcher Reveley One afternoon in May 2020, Jerry Tang, a Ph.D. student in computer science at the University of Texas at Austin, sat staring at a cryptic string of words scrawled across his computer screen: “I am not finished yet to start my career at twenty without having gotten my license I never have to pull out and run back to my parents to take me home.” The sentence was jumbled and agrammatical. But to Tang, it represented a remarkable feat: A computer pulling a thought, however disjointed, from a person’s mind. For weeks, ever since the pandemic had shuttered his university and forced his lab work online, Tang had been at home tweaking a semantic decoder — a brain-computer interface, or BCI, that generates text from brain scans. Prior to the university’s closure, study participants had been providing data to train the decoder for months, listening to hours of storytelling podcasts while a functional magnetic resonance imaging (fMRI) machine logged their brain responses. Then, the participants had listened to a new story — one that had not been used to train the algorithm — and those fMRI scans were fed into the decoder, which used GPT1, a predecessor to the ubiquitous AI chatbot ChatGPT, to spit out a text prediction of what it thought the participant had heard. For this snippet, Tang compared it to the original story: “Although I’m twenty-three years old I don’t have my driver’s license yet and I just jumped out right when I needed to and she says well why don’t you come back to my house and I’ll give you a ride.” The decoder was not only capturing the gist of the original, but also producing exact matches of specific words — twenty, license. When Tang shared the results with his adviser, a UT Austin neuroscientist named Alexander Huth who had been working towards building such a decoder for nearly a decade, Huth was floored. “Holy shit,” Huth recalled saying. “This is actually working.”
Keyword: Brain imaging; Language
Link ID: 29073 - Posted: 01.03.2024
By Laura Sanders In this busy holiday season, many of us multitask. Arctic reindeer are no exception. Reindeer can eat and sleep at the same time, a new study suggests. This timesaving strategy, described December 22 in Current Biology, adds to the number of ingenious ways animals can catch some z’s under tough conditions (SN: 11/30/23). Arctic reindeer are quite busy in the summer — eating when the sun shines around the clock and the food is abundant. Like other ruminants, reindeer spend a considerable amount of time chewing on regurgitated food, making it smaller and easier to digest. Finding time to sleep amid all this cud chewing might be tough. But not if the reindeer could sleep while they chewed. To find out if the reindeer could actually sleep-eat, neuroscientist Melanie Furrer and chronobiologist Sara Meier, along with their colleagues, trained four female Eurasian tundra reindeer (Rangifer tarandus tarandus) to tolerate a pen and electrodes on shaved patches of skin. The process involved some kicks and lots of lichen treats, “which is like candy to them,” says Meier, of the University of Zurich. The researchers were looking for the brain waves that appear during non-REM sleep, a deep, restorative sleep phase. These waves appeared when the reindeer were chewing cud, though the chewing motion itself made it hard to say whether the signal was identical to that of a regular sleep session. “We couldn’t go into detail by looking only at the brain waves, because we have this chewing in there that disturbs it a bit,” says Furrer, also of the University of Zurich. Still, other signs also pointed to sleep while chewing. The reindeer were calm while chewing, often with their eyes closed. “They were in a very relaxed state that resembles the body position of non-REM sleep,” Furrer says. Ruminating reindeer were also harder to disturb; rustling from neighboring reindeer was less likely to get a look from a ruminating reindeer. When reindeer are kept awake, they need catch-up recovery sleep. But time spent chewing decreased this time spent in recovery sleep, the researchers found. © Society for Science & the Public 2000–2023.
Keyword: Sleep; Attention
Link ID: 29072 - Posted: 12.31.2023
By Catherine Pearson Dry January sounds like a simple proposition: No alcohol. For 31 days. And some enthusiasts jump in without much planning — perhaps even hungover after a rowdy New Year’s Eve. There is no data suggesting that those folks won’t be able to abstain from drinking, said Dr. David Wolinsky, an assistant professor of psychiatry and behavioral sciences with Johns Hopkins Medicine, who specializes in addiction. But starting the month with a few strategies in your back pocket — and with a clear sense of your goals — may help you get the most out of the challenge. “Most of the benefits of Dry January are probably going to be related to the intention with which you go into Dry January,” Dr. Wolinsky said. The challenge isn’t a stand-in for treatment for people with alcohol use disorder, he stressed, but those who are looking to get a fresh start to the year may benefit from the mental and physical reset it can offer, and the opportunity to adopt new habits. For instance, a 2016 study found that six months after Dry January ended, participants were drinking less than they were before. We spoke to Dr. Wolinsky and other experts about some strategies for a successful month. One of the simplest steps is to spread the word among friends and family that you intend to take the month off, said Casey McGuire Davidson, a sobriety coach and host of “The Hello Someday Podcast,” which focuses on “sober-curious” topics. Research has shown that accountability can play a critical role in helping habits stick, and you might find a friend or partner to join you, Ms. Davidson suggested. Even if you don’t, you may be surprised by how encouraging people are of your goal (though she said you should share it only with people you trust). “Dry January gives people a period of time when they can stop drinking with community and support,” she said, “without a lot of questions.” Ms. Davidson also recommended reading books that may help you evaluate your relationship with alcohol, or listening to sobriety podcasts. © 2023 The New York Times Company
Keyword: Drug Abuse
Link ID: 29071 - Posted: 12.31.2023
Rudi Zygadlo To celebrate our anniversary, my partner and I dine in a trendy London restaurant in Hackney with a Michelin star – my first time in such a place. A crispy little bonbon is introduced to us simply as “Pine, kvass lees and vin brûlé.” I watch my partner light up, the flickering candle in her eyes, as the waiter sets the thing down. The impact of the aroma has already registered on her face. With her first bite she is transported to her childhood in Massachusetts. “Gosh,” she gasps, closing her eyes as a New England virgin pine forest explodes in her mind. When she blinks open, returning to the here and now, she looks at me guiltily. I take a bite and wince. No coniferous wonderland for me. Just unpleasant bitterness, confined very much to the tongue. I am pleased for her, truly. I’m a magnanimous guy. But from that moment on, the whole evening is a bit of a spectator sport and, by the end of it, I have a feeling that she is even playing her enjoyment down, muting her reactions, as if to say, “You’re not missing out.” She finds some dishes prove more successful than others – the sweetness of cherry, an umami-rich mushroom – but I am missing out: on the nuances, the emotions, the memories. The smell. It’s been three years since I lost it. November 2020. I was living with three friends in a flat in Glasgow when we all caught Covid in the pre-vaccine days. Two of us lost our smell and never fully recovered it. We’re in good company. Around 700,000 people in the UK are believed to have total smell loss caused by the virus, with around six million still experiencing some olfactory dysfunction. I estimate mine has returned by about 30%, but it’s inconsistent and often distorted. To summarise my symptoms of anosmia, as total or partial loss of smell is known: some things have a faint odour, some don’t smell as they should and others don’t smell at all. For example: basil smells mild but good, ground coffee and a certain brand of toothpaste smell like fish and, mercifully, shit doesn’t stink at all. Apart from the latter, all bad news.
Keyword: Chemical Senses (Smell & Taste)
Link ID: 29070 - Posted: 12.31.2023
By Gary Stix This year was full of roiling debate and speculation about the prospect of machines with superhuman capabilities that might, sooner than expected, leave the human brain in the dust. A growing public awareness of ChatGPT and other so-called large language models (LLMs) dramatically expanded public awareness of artificial intelligence. In tandem, it raised the question of whether the human brain can keep up with the relentless pace of AI advances. The most benevolent answer posits that humans and machines need not be cutthroat competitors. Researchers found one example of potential cooperation by getting AI to probe the infinite complexity of the ancient game of Go—which, like chess, has seen a computer topple the highest-level human players. A study published in March showed how people might learn from machines with such superhuman skills. And understanding ChatGPT’s prodigious abilities offers some inkling as to why an equivalence between the deep neural networks that underlie the famed chatbot and the trillions of connections in the human brain is constantly invoked. Importantly, the machine learning incorporated into AI has not totally distracted mainstream neuroscience from avidly pursuing better insights into what has been called “the most complicated object in the known universe”: the brain. One of the grand challenges in science—understanding the nature of consciousness—received its due in June with the prominent showcasing of experiments that tested the validity of two competing theories, both of which purport to explain the underpinnings of the conscious self. The past 12 months provided lots of examples of impressive advances for you to store in your working memory. Now here’s a closer look at some of the standout mind and brain stories we covered in Scientific American in 2023. © 2023 SCIENTIFIC AMERICAN
Keyword: Brain imaging; Consciousness
Link ID: 29069 - Posted: 12.31.2023
By The Transmitter It has been a year of many firsts for the Transmitter team. Despite launching this site just over a month ago, though, we published dozens of news stories on a range of important topics in neuroscience research earlier in the year in Spectrum. Here, we bring you a short list of some of our favorites, which broke news about changes in research leadership, exposed issues in studies involving human participants, provided new insights into the brain’s neuropeptide signaling network and memory-encoding mechanisms, and gave glimpses into the lives neuroscientists lead outside of work. ‘Wireless’ connectomes detail signaling outside synapses Connectomes were once again all the rage this year. As some teams continued to map the complete circuitry of increasingly larger brains — including those of a larval and an adult fruit fly — other teams went back to basics, plugging some invisible gaps of the humble roundworm’s synaptic connectome. Those latter efforts detail how neurons communicate using short proteins called neuropeptides outside synapses, helping to address key criticisms of conventional wiring diagrams. Neural ‘barcodes’ help seed-stashing birds recall their hidden haul As we enter the throes of winter here in New York City, some of the resident non-migratory birds may begin to seek out the seeds they stashed earlier in the year to help them survive for the next few months. Their ability to relocate their caches may stem from memories stored in the hippocampus in the form of non-overlapping patterns of brain activity, or “barcodes,” new research suggests. These barcodes originate when a bird hides a seed and reappear only when the bird returns to that same seed — and may represent the basis for episodic memories of specific events in time. © 2023 Simons Foundation.
Keyword: Miscellaneous
Link ID: 29068 - Posted: 12.27.2023
By Henkjan Honing In 2009, my research group found that newborns possess the ability to discern a regular pulse— the beat—in music. It’s a skill that might seem trivial to most of us but that’s fundamental to the creation and appreciation of music. The discovery sparked a profound curiosity in me, leading to an exploration of the biological underpinnings of our innate capacity for music, commonly referred to as “musicality.” In a nutshell, the experiment involved playing drum rhythms, occasionally omitting a beat, and observing the newborns’ responses. Astonishingly, these tiny participants displayed an anticipation of the missing beat, as their brains exhibited a distinct spike, signaling a violation of their expectations when a note was omitted. Yet, as with any discovery, skepticism emerged (as it should). Some colleagues challenged our interpretation of the results, suggesting alternate explanations rooted in the acoustic nature of the stimuli we employed. Others argued that the observed reactions were a result of statistical learning, questioning the validity of beat perception being a separate mechanism essential to our musical capacity. Infants actively engage in statistical learning as they acquire a new language, enabling them to grasp elements such as word order and common accent structures in their native language. Why would music perception be any different? To address these challenges, in 2015, our group decided to revisit and overhaul our earlier beat perception study, expanding its scope, method and scale, and, once more, decided to include, next to newborns, adults (musicians and non-musicians) and macaque monkeys. The results, recently published in Cognition, confirm that beat perception is a distinct mechanism, separate from statistical learning. The study provides converging evidence on newborns’ beat perception capabilities. In other words, the study was not simply a replication but utilized an alternative paradigm leading to the same conclusion. © 2023 NautilusNext Inc., All rights reserved.
Keyword: Hearing; Language
Link ID: 29067 - Posted: 12.27.2023
By Elizabeth Svoboda Esther Oladejo knew she'd crossed an invisible boundary when she started forgetting to eat for entire days at a time. A gifted rugby player, Oladejo had once thrived on her jam-packed school schedule. But after she entered her teenage years, her teachers started piling on assignments and quizzes to prepare students for high-stakes testing that would help them to qualify for university. As she devoted hours on hours to cram sessions, Oladejo's resolve began to fray. Every time she got a low grade, her mood tanked—and with it, her resolve to study hard for the next test. “Teachers [were] saying, ‘Oh, you can do much better than this,’” says Oladejo, now 18, who lives in Merseyside, England. “But you're thinking, ‘Can I? I tried my best on that. Can I do any more than what I've done before?’” One morning, as Oladejo steeled herself for another endless day, her homeroom teacher passed out a questionnaire to the students, explaining that it would help assess their moods and well-being. Oladejo filled it out, her mind ticking forward to her upcoming classes. Soon after that, someone called to tell her she'd been slotted into a new school course called the Blues Program. Developed by Oregon Research Institute psychologist Paul Rohde and his colleagues at Stanford University, the program—a six-week series of hour-long group sessions—teaches students skills for managing their emotions and stress. The goal is to head off depression in vulnerable teens. Although Oladejo didn't know it at the time, her course was one in an expanding series of depression prevention programs for young people, including Vanderbilt University's Teens Achieving Mastery Over Stress (TEAMS); the University of Pennsylvania's Penn Resiliency Program; Happy Lessons, developed by Dutch social scientists; and Spain's Smile Program. The growing global interest in depression prevention is helping to establish the efficacy of a range of programs in diverse settings. © 2023 SCIENTIFIC AMERICAN,
Keyword: Depression; Development of the Brain
Link ID: 29066 - Posted: 12.27.2023
By Mariana Lenharo Could artificial intelligence (AI) systems become conscious? A trio of consciousness scientists says that, at the moment, no one knows — and they are expressing concern about the lack of inquiry into the question. In comments to the United Nations, three leaders of the Association for Mathematical Consciousness Science (AMCS) call for more funding to support research on consciousness and AI. They say that scientific investigations of the boundaries between conscious and unconscious systems are urgently needed, and they cite ethical, legal and safety issues that make it crucial to understand AI consciousness. For example, if AI develops consciousness, should people be allowed to simply switch it off after use? Such concerns have been mostly absent from recent discussions about AI safety, such as the high-profile AI Safety Summit in the United Kingdom, says AMCS board member Jonathan Mason, a mathematician based in Oxford, UK and one of the authors of the comments. Nor did US President Joe Biden’s executive order seeking responsible development of AI technology address issues raised by conscious AI systems, Mason notes. “With everything that’s going on in AI, inevitably there’s going to be other adjacent areas of science which are going to need to catch up,” Mason says. Consciousness is one of them. The other authors of the comments were AMCS president Lenore Blum, a theoretical computer scientist at Carnegie Mellon University in Pittsburgh, Pennsylvania, and board chair Johannes Kleiner, a mathematician studying consciousness at the Ludwig Maximilian University of Munich in Germany. © 2023 Springer Nature Limited
Keyword: Consciousness; Robotics
Link ID: 29065 - Posted: 12.27.2023
By Esther Landhuis When Frank Lin was in junior high, his grandma started wearing hearing aids. During dinner conversations, she was often painfully silent, and communicating by phone was nearly impossible. As a kid, Lin imagined “what her life would be like if she wasn’t always struggling to communicate.” It was around that time that Lin became interested in otolaryngology, the study of the ears, nose, and throat. He would go on to study to be an ENT physician, which, he hoped, could equip him to help patients with similar age-related hardships. Those aspirations sharpened during his residency at Johns Hopkins University School of Medicine in the late 2000s. Administering hearing tests in the clinic, Lin noticed that his colleagues had vastly different reactions to the same results in young versus old patients. If mild deficits showed up in a kid, “it would be like, ‘Oh, that hearing is critically important,’” said Lin, who today is the director of the Cochlear Center for Hearing and Public Health at Hopkins. But when they saw that same mild to moderate hearing loss in a 70-something patient, many would downplay the findings. Yet today, research increasingly suggests that untreated hearing loss puts people at higher risk for cognitive decline and dementia. And, unlike during Lin’s early training, many patients can now do something about it: They can assess their own hearing using online tests or mobile phone apps, and purchase over-the-counter hearing aids, which are generally more affordable their predecessors and came under regulation by the Food and Drug Administration in October 2022. Despite this expanded accessibility, interest in direct-to-consumer hearing devices has lagged thus far — in part, experts suggest, due to physician inattention to adult hearing health, inadequate insurance coverage for hearing aids, and lingering stigma around the issue. (As Lin put it: “There’s always been this notion that everyone has it as you get older, how can it be important?”) Even now, hearing tests aren’t necessarily recommended for individuals unless they report a problem.
Keyword: Hearing; Alzheimers
Link ID: 29064 - Posted: 12.27.2023
Ian Sample Science editor Human tears carry a substance that dampens down aggression, according to researchers, who believe the drops may have evolved over time to protect wailing babies from harm. Sniffing emotional tears from women reduced male aggression by more than 40% in computerised tests, and prompted corresponding changes in the brain, though the scientists behind the study think all human tears would have a similar effect. “The reduction in aggression was impressive to us, it seems real,” said Noam Sobel, a professor of neurobiology at the Weizmann Institute of Science in Israel. “Whatever is in tears actually lowers aggression.” Charles Darwin puzzled over the point of weeping. Writing in The Expression of Emotions in Man and Animals in 1872, the great naturalist declared sobbing as “purposeless as the secretion of tears from a blow outside the eye”. But in the 150 years since, researchers have proposed all manner of roles, from signalling vulnerability and helplessness to clearing bacteria from the eyes. Previous work at Sobel’s lab found that sniffing women’s tears reduced male testosterone but it was unclear whether this affected behaviour. In animals, the picture is clearer: subordinate mole rats, for example, cover themselves in tears to protect themselves from aggressors. For the latest study, Dr Shani Agron and others in Sobel’s lab collected tears rolling down women’s faces as they watched sad movies. The researchers did not specifically advertise for female tear donors but nearly all who came forward were women, of whom six were selected because they produced tears in such quantities. The experiments involved 31 men who sniffed either saline or women’s tears before having swabs dabbed with the droplets stuck to their upper lip. The men then took part in a computerised game used in psychology to provoke aggressive behaviour by unfairly deducting players’ points. © 2023 Guardian News & Media Limited
Keyword: Aggression; Chemical Senses (Smell & Taste)
Link ID: 29063 - Posted: 12.22.2023
By Elise Cutts On a summer night in the Bay of Naples, hordes of worms swam upward from the seagrass toward the water’s surface under the light of a waning moon. Not long before, the creatures began a gruesome sexual metamorphosis: Their digestive systems withered, and their swimming muscles grew, while their bodies filled with eggs or sperm. The finger-length creatures, now little more than muscular bags of sex cells, fluttered to the surface in unison and, over a few hours, circled each other in a frantic nuptial dance. They released countless eggs and sperm into the bay — and then the moonlit waltz ended in the worms’ deaths. The marine bristle worm Platynereis dumerilii gets only one chance to mate, so its final dance had better not be a solo. To ensure that many worms congregate at the same time, the species synchronizes its reproductive timing with the cycles of the moon. How can an undersea worm tell when the moon is at its brightest? Evolution’s answer is a precise celestial clock wound by a molecule that can sense moonbeams and sync the worms’ reproductive lives to lunar phases. No one had ever seen how one of these moonlight molecules worked. Recently, however, in a study published in Nature Communications, researchers in Germany determined the different structures that one such protein in bristle worms takes in darkness and in sunlight. They also uncovered biochemical details that help explain how the protein distinguishes between brighter sunbeams and softer moonglow. It’s the first time that scientists have determined the molecular structure of any protein responsible for syncing a biological clock to the phases of the moon. “I’m not aware of another system that has been looked at with this degree of sophistication,” said the biochemist Brian Crane of Cornell University, who was not involved in the new study. © 2023 An editorially independent publication supported by the Simons Foundation.
Keyword: Biological Rhythms; Evolution
Link ID: 29062 - Posted: 12.22.2023
By Cathleen O’Grady Why do some children learn to talk earlier than others? Linguists have pointed to everything from socioeconomic status to gender to the number of languages their parents speak. But a new study finds a simpler explanation. An analysis of nearly 40,000 hours of audio recordings from children around the world suggests kids speak more when the adults around them are more talkative, which may also give them a larger vocabulary early in life. Factors such as social class appear to make no difference, researchers report this month in the Proceedings of the National Academy of Sciences. The paper is a “wonderful, impactful, and much needed contribution to the literature,” says Ece Demir-Lira, a developmental scientist at the University of Iowa who was not involved in the work. By looking at real-life language samples from six different continents, she says, the study provides a global view of language development sorely lacking from the literature. Most studies on language learning have focused on children in Western, industrialized nations. To build a more representative data set, Harvard University developmental psychologist Elika Bergelson and her collaborators scoured the literature for studies that had used LENA devices: small audio recorders that babies can wear—tucked into a pocket on a specially made vest—for days at a time. These devices function as a kind of “talk pedometer,” with an algorithm that estimates how much its wearer speaks, as well as how much language they hear in their environment—from parents, other adults, and even siblings. The team asked 18 research groups across 12 countries whether they would share their data from the devices, leaving them with a whopping 2865 days of recordings from 1001 children. Many of the kids, who ranged from 2 months to 4 years old, were from English-speaking families, but the data also included speakers of Dutch, Spanish, Vietnamese, and Finnish, as well as Yélî Dnye (Papua New Guinea), Wolof (Senegal), and Tsimané (Bolivia). Combining these smaller data sets gave the researchers a more powerful, diverse sample.
Keyword: Language; Development of the Brain
Link ID: 29061 - Posted: 12.22.2023