Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By John Bohannon In July 1984, a man broke into the apartment of Jennifer Thompson, a 22-year-old in North Carolina, and threatened her with a knife. She negotiated, convincing him to not kill her. Instead, he raped her and fled. Just hours later, a sketch artist worked with Thompson to create an image of the assailant's face. Then the police showed her a series of mug shots of similar-looking men. Thompson picked out 22-year-old Ronald Cotton, whose photograph was on file because of a robbery committed in his youth. When word reached Cotton that the police were looking for him, he walked into a precinct voluntarily. He was eventually sentenced to life in prison based on Thompson's testimony. Eleven years later, after DNA sequencing technology caught up, samples taken from Thomson's body matched a different man who finally confessed. Cotton was set free. When Thompson first identified Cotton by photo, she was not convinced of her choice. "I think this is the guy," she told the police after several minutes of hesitation. As time went on, she grew surer. By the time Thompson faced Cotton in court a year later, her doubts were gone. She confidently pointed to him as the man who raped her. Because of examples like these, the U.S. justice system has been changing how eyewitnesses are used in criminal cases. Juries are told to discount the value of eyewitness testimony and ignore how confident the witnesses may be about whom they think they saw. Now, a new study of robbery investigations suggests that these changes may be doing more harm than good. © 2015 American Association for the Advancement of Science
Keyword: Learning & Memory
Link ID: 21715 - Posted: 12.22.2015
By JOSEPH LEDOUX IN this age of terror, we struggle to figure out how to protect ourselves — especially, of late, from active shooters. One suggestion, promoted by the Federal Bureau of Investigation and Department of Homeland Security, and now widely disseminated, is “run, hide, fight.” The idea is: Run if you can; hide if you can’t run; and fight if all else fails. This three-step program appeals to common sense, but whether it makes scientific sense is another question. Underlying the idea of “run, hide, fight” is the presumption that volitional choices are readily available in situations of danger. But the fact is, when you are in danger, whether it is a bicyclist speeding at you or a shooter locked and loaded, you may well find yourself frozen, unable to act and think clearly. Freezing is not a choice. It is a built-in impulse controlled by ancient circuits in the brain involving the amygdala and its neural partners, and is automatically set into motion by external threats. By contrast, the kinds of intentional actions implied by “run, hide, fight” require newer circuits in the neocortex. Contemporary science has refined the old “fight or flight” concept — the idea that those are the two hard-wired options when in mortal danger — to the updated “freeze, flee, fight.” While “freeze, flee, fight” is superficially similar to “run, hide, fight,” the two expressions make fundamentally different assumptions about how and why we do what we do, when in danger. Why do we freeze? It’s part of a predatory defense system that is wired to keep the organism alive. Not only do we do it, but so do other mammals and other vertebrates. Even invertebrates — like flies — freeze. If you are freezing, you are less likely to be detected if the predator is far away, and if the predator is close by, you can postpone the attack (movement by the prey is a trigger for attack). © 2015 The New York Times Company
Keyword: Emotions; Attention
Link ID: 21714 - Posted: 12.19.2015
Bret Stetka In June of 2001 musician Peter Gabriel flew to Atlanta to make music with two apes. The jam went surprisingly well. At each session Gabriel, a known dabbler in experimental music and a founding member of the band Genesis, would riff with a small group of musicians. The bonobos – one named Panbanisha, the other Kanzi — were trained to play in response on keyboards and showed a surprising, if rudimentary, awareness of melody and rhythm. Since then Gabriel has been working with scientists to help better understand animal cognition, including musical perception. Plenty of related research has explored whether or not animals other than humans can recognize what we consider to be music – whether they can they find coherence in a series of sounds that could otherwise transmit as noise. Many do, to a degree. And it's not just apes that respond to song. Parrots reportedly demonstrate some degree of "entrainment," or the syncing up of brainwave patterns with an external rhythm; dolphins may — and I stress may — respond to Radiohead; and certain styles of music reportedly influence dog behavior (Wagner supposedly honed his operas based on the response of his Cavalier King Charles Spaniel). But most researchers agree that fully appreciating what we create and recognize as music is a primarily human phenomenon. Recent research hints at how the human brain is uniquely able to recognize and enjoy music — how we render simple ripples of vibrating air into visceral, emotional experiences. It turns out, the answer has a lot to do with timing. The work also reveals why your musician friends are sometimes more tolerant of really boring music. © 2015 npr
Keyword: Hearing; Emotions
Link ID: 21713 - Posted: 12.19.2015
Carl Zimmer Over the past few million years, the ancestors of modern humans became dramatically different from other primates. Our forebears began walking upright, and they lost much of their body hair; they gained precision-grip fingers and developed gigantic brains. But early humans also may have evolved a less obvious but equally important advantage: a peculiar sleep pattern. “It’s really weird, compared to other primates,” said Dr. David R. Samson, a senior research scientist at Duke University. In the journal Evolutionary Anthropology, Dr. Samson and Dr. Charles L. Nunn, an evolutionary biologist at Duke, reported that human sleep is exceptionally short and deep, a pattern that may have helped give rise to our powerful minds. Until recently, scientists knew very little about how primates sleep. To document orangutan slumber, for example, Dr. Samson once rigged up infrared cameras at the Indianapolis Zoo and stayed up each night to watch the apes nod off. By observing their movements, he tracked when the orangutans fell in and out of REM sleep, in which humans experience dreams. “I became nocturnal for about seven months,” Dr. Samson said. “It takes someone who wants to get their Ph.D. to be motivated enough to do that.” In the new study. Dr. Samson and Dr. Nunn combined that information with studies of 19 other primate species. The researchers found wide variations in how long the animals slept. Mouse lemurs doze for seventeen hours a day, for example, while humans sleep just seven hours or so a day — “the least of any primate on the planet,” said Dr. Samson. © 2015 The New York Times Company
Keyword: Sleep; Evolution
Link ID: 21712 - Posted: 12.19.2015
Scientists showed that they could alter brain activity of rats and either wake them up or put them in an unconscious state by changing the firing rates of neurons in the central thalamus, a region known to regulate arousal. The study, published in eLIFE, was partially funded by the National Institutes of Health. “Our results suggest the central thalamus works like a radio dial that tunes the brain to different states of activity and arousal,” said Jin Hyung Lee, Ph.D., assistant professor of neurology, neurosurgery and bioengineering at Stanford University, and a senior author of the study. Located deep inside the brain the thalamus acts as a relay station sending neural signals from the body to the cortex. Damage to neurons in the central part of the thalamus may lead to problems with sleep, attention, and memory. Previous studies suggested that stimulation of thalamic neurons may awaken patients who have suffered a traumatic brain injury from minimally conscious states. Dr. Lee’s team flashed laser pulses onto light sensitive central thalamic neurons of sleeping rats, which caused the cells to fire. High frequency stimulation of 40 or 100 pulses per second woke the rats. In contrast, low frequency stimulation of 10 pulses per second sent the rats into a state reminiscent of absence seizures that caused them to stiffen and stare before returning to sleep. “This study takes a big step towards understanding the brain circuitry that controls sleep and arousal,” Yejun (Janet) He, Ph.D., program director at NIH’s National Institute of Neurological Disorders and Stroke (NINDS).
Keyword: Consciousness
Link ID: 21711 - Posted: 12.19.2015
Scientists hunting for a drug that speeds stroke recovery might find one in the bedside cabinets of millions of Americans. Mice treated with small doses of the sleeping pill Ambien recovered more quickly from strokes than those given a placebo. Ambien is the best-known incarnation of the drug zolpidem, which was prescribed 40 million times in the US in 2011. The researchers say that the finding should be replicated by other labs before proceeding with clinical trials, but it’s an intriguing result for a problem in desperate need of solutions. Strokes cut off the blood supply to part of the brain, leading to the death of oxygen-starved tissue. Some tissue repair can take place in the months afterwards, but most people never fully recover. Although physical therapy can help, there are no drugs that increase the amount of brain tissue repaired. “There are various natural mechanisms that promote a degree of normal recovery in animals and people, but it’s limited”, says Gary Steinberg of Stanford University School of Medicine, who was lead author of the study. One such mechanism may be an increase in signalling by the GABA neurotransmitter in parts of the brain that are able to rewire themselves. Because Ambien acts on GABA receptors, Steinberg and his team wondered whether they could use it to hack this mechanism to improve recovery. © Copyright Reed Business Information Ltd.
Tina Hesman Saey SAN DIEGO — New research may help explain why chronic stress, sleep deprivation and other disruptions in the body’s daily rhythms are linked to obesity. Chronic exposure to stress hormones stimulates growth of fat cells, Mary Teruel of Stanford University reported December 16 at the annual meeting of the American Society for Cell Biology. Normally, stress hormones, such as cortisol, are released during waking hours in regular bursts that follow daily, or circadian, rhythms. Those regular pulses don’t cause fat growth, Teruel and colleagues discovered. But extended periods of exposure to the hormones, caused by such things as too little sleep, break up that rhythm and lead to more fat cells. Even though only about 10 percent of fat cells are replaced each year, the body maintains a pool of prefat cells that are poised to turn into fat. “If they all differentiated at once, you’d be drowning in fat,” Teruel said. Previous studies have shown that a protein called PPAR-gamma controls the development of fat cells and that stress hormones turn on production of PPAR-gamma. Teruel’s team discovered that prefat cells with levels of PPAR-gamma below a certain threshold don’t transform into fat in laboratory tests. Steady hormone exposure eventually allowed the precursor cells to build up enough PPAR-gamma to cross the threshold into fat making. But in cells given the same total amount of stress hormone in short pulses, PPAR-gamma levels rose and fell. © Society for Science & the Public 2000 - 2015
Keyword: Obesity; Biological Rhythms
Link ID: 21709 - Posted: 12.19.2015
Megan Scudellari In 1997, physicians in southwest Korea began to offer ultrasound screening for early detection of thyroid cancer. News of the programme spread, and soon physicians around the region began to offer the service. Eventually it went nationwide, piggybacking on a government initiative to screen for other cancers. Hundreds of thousands took the test for just US$30–50. LISTEN James Harkin, a researcher for the British TV trivia show QI, talks to Adam Levy about how he finds facts and myths for the show — and then runs a mini-quiz to see whether the Podcast team can discern science fact from science fiction 00:00 Across the country, detection of thyroid cancer soared, from 5 cases per 100,000 people in 1999 to 70 per 100,000 in 2011. Two-thirds of those diagnosed had their thyroid glands removed and were placed on lifelong drug regimens, both of which carry risks. Such a costly and extensive public-health programme might be expected to save lives. But this one did not. Thyroid cancer is now the most common type of cancer diagnosed in South Korea, but the number of people who die from it has remained exactly the same — about 1 per 100,000. Even when some physicians in Korea realized this, and suggested that thyroid screening be stopped in 2014, the Korean Thyroid Association, a professional society of endocrinologists and thyroid surgeons, argued that screening and treatment were basic human rights. © 2015 Nature Publishing Group,
Keyword: Learning & Memory; Evolution
Link ID: 21708 - Posted: 12.16.2015
Parrots can dance and talk, and now apparently they can use and share grinding tools. They were filmed using pebbles for grinding, thought to be a uniquely human activity – one that allowed our civilisations to extract more nutrition from cereal-based foods. Megan Lambert from the University of York, UK, and her colleagues were studying greater vasa parrots (Coracopsis vasa) in an aviary when they noticed some of the birds scraping shells in their enclosure with pebbles and date pips. “We were surprised,” says Lambert. “Using tools [to grind] seashells is something never seen before in animals.” Afterwards, the birds would lick the powder from the tool. Some of the parrots even passed tools to each other, which is rarely seen in animals. This behaviour was exclusively male to female. Lambert and her team, who watched the parrots for six months, noticed that the shell-scraping was more frequent before their breeding season. Since seashells contain calcium, which is critical for females before egg-laying, they suspect that the parrots could be manufacturing their own calcium supplements, as the mineral is probably better absorbed in powder form. Greater vasa parrots are native to Madagascar and have breeding and social systems unique among parrots. For example, two or more males have an exclusive sexual relationship with two or more females, and they are unusually tolerant of their group members. The reproductive ritual of sharing tools and grinding could be yet another one of their quirks. © Copyright Reed Business Information Ltd.
Keyword: Intelligence; Evolution
Link ID: 21707 - Posted: 12.16.2015
By Geoffrey S. Holtzman In November 1834, a 9-year-old boy named Major Mitchell was tried in Maine on one charge of maiming and one charge of felonious assault with intent to maim. He had lured an 8-year-old classmate into a field, beaten him with sticks, attempted to drown him in a stream, and castrated him with a piece of tin. Yet what makes this case so remarkable is neither the age of the defendant nor the violence of his crime, but the nature of his trial. Mitchell’s case marks the first time in U.S. history that a defendant’s attorney sought leniency from a jury on account of there being something wrong with the defendant’s brain. More recently, there has been an explosion in the number of criminals who have sought leniency on similar grounds. While the evidence presented by Mitchell’s defense was long ago debunked as pseudoscience (and was rightly dismissed by the judge), the case for exculpating Major Mitchell may actually be stronger today than it was 181 years ago. In a curious historical coincidence, recent advances in neuroscience suggest that there really might have been something wrong with Major Mitchell’s brain and that neurological deficits really could have contributed to his violent behavior. The case provides a unique window through which to view the relationship between 19th-century phrenology—the pseudoscientific study of the skull as an index of mental faculties—and 21st-century neuroscience. As you might expect, there is a world of difference between the two, but maintaining that difference depends crucially on the responsible use of neuroscience. Major Mitchell’s story cautions against overlooking neuroscience’s limitations, as well as its ability to be exploited for suspect purposes. © 2015 The Slate Group LLC.
Keyword: Emotions; Attention
Link ID: 21706 - Posted: 12.16.2015
Human memory is about to get supercharged. A memory prosthesis being trialled next year could not only restore long-term recall but may eventually be used to upload new skills directly to the brain – just like in the film The Matrix. The first trials will involve people with epilepsy. Seizures can sometimes damage the hippocampus, causing the brain to lose its ability to form long-term memories. To repair this ability, Theodore Berger at the University of Southern California and his colleagues used electrodes already implanted in people’s brains as part of epilepsy treatment to record electrical activity associated with memory. The team then developed an algorithm that could predict the neural activity thought to occur when a short-term memory becomes a long-term memory, as it passes through the hippocampus. Early next year, Berger’s team will use this algorithm to instruct the electrodes to predict and then mimic the activity that should occur when long-term memories are formed. “Hopefully, it will repair their long-term memory,” says Berger. Previous studies using animals suggest that the prosthesis might even give people a better memory than they could expect naturally. A similar approach could eventually be used to implant new memories into the brain. Berger’s team recorded brain activity in a rat that had been trained to perform a specific task. The memory prosthesis then replicated that activity in a rat that hadn’t been trained. The second rat was able to learn the task much faster than the first rat – as if it already had some memory of the task. © Copyright Reed Business Information Ltd.
Keyword: Learning & Memory; Robotics
Link ID: 21705 - Posted: 12.16.2015
Tina Hesman Saey SAN DIEGO — Friendly ghosts help muscles heal after injury. Connective tissue sheaths that bundle muscle cells together leave behind hollow fibers when muscles are injured, Micah Webster of the Carnegie Institution for Science in Baltimore and colleagues discovered. Muscle-repairing stem cells build new tissue from inside those empty tunnels, known as ghost fibers, Webster reported December 13 at the annual meeting of the American Society for Cell Biology. Researchers previously knew that stem cells can heal muscle, but how stem cells integrate new cells into muscle fibers has been a mystery. Webster and colleagues used a special microscopy technique to watch stem cells in live mice as the cells fixed muscles damaged by snake venom. Stem cells from undamaged parts of the muscle fiber crawled back and forth through the ghostly part of the fibers and spaced themselves out evenly. Stem cells replicated themselves to reconstruct each muscle fiber inside its ghostly shell the researchers found. Stem cells didn’t move from one ghost fiber to another. The finding suggests that researchers will need to create artificial ghost fibers to repair injuries in which chunks of muscles are lost, such as in soldiers hit by explosives, Webster said. The researchers also reported the results online December 10 in Cell Stem Cell. M.T. Webster et al. Intravital imaging reveals ghost fibers as architectural units guiding muscle progenitors. Annual meeting of the American Society for Cell Biology, San Diego, December 13, 2015. M.T. Webster et al. Intravital imaging reveals ghost fibers as architectural units guiding myogenic progenitors during regeneration. Cell Stem Cell. Published online December 10, 2015. doi: 10.1016/j.stem.2015.11.005 © Society for Science & the Public 2000 - 2015
Keyword: Muscles
Link ID: 21704 - Posted: 12.16.2015
By David Shultz As the Rolling Stones, Revlon, and Angelina Jolie can attest, not many body parts are more sexualized than the lips. A new study published online today in Royal Society Open Science, suggests that we’re not the only primates that feel this way. Black-and-white snub-nosed monkeys (Rhinopithecus bieti, pictured) have a strict social hierarchy in which a few, older males mate with multiple females, while the younger males form bachelor groups and bide their time. The males’ lips naturally redden with age, but the story seems a little more complicated than that: A series of photographs taken over multiple months shows that mating males’ lips redden during the mating season, whereas the bachelor males’ become paler. Scientists still aren’t sure why the animals’ lips seem to correspond with their social rank, but one idea is that females prefer the redder shades when choosing a mate, similar to how a female peacock chooses the male with the most elaborate tail. Another explanation could be that the males are using lip color as a preemptive indicator of their status in order to minimize conflict: Paler lips could make bachelors appear less threatening, allowing the mating males to focus their aggression on other red-lipped competitors. Both mechanisms could also be acting simultaneously, the authors say. © 2015 American Association for the Advancement of Science.
Keyword: Sexual Behavior
Link ID: 21703 - Posted: 12.16.2015
Jon Hamilton Taking antidepressants during the second or third trimester of pregnancy may increase the risk of having a child with autism spectrum disorder, according to a study of Canadian mothers and children published Monday in JAMA Pediatrics. But scientists not involved in the research say the results are hard to interpret and don't settle the long-running debate about whether expectant mothers with depression should take antidepressants. "This study doesn't answer the question," says Bryan King, program director of the autism center at Seattle Children's Hospital and a professor of psychiatry and behavioral sciences at the University of Washington. "My biggest concern is that it will be over-interpreted," says King, who wrote an editorial that accompanied the study. "It kind of leaves you more confused," says Alan Brown, a professor of psychiatry and epidemiology at Columbia University who studies risk factors for autism. "Mothers shouldn't get super worried about it," he says. One reason it's confusing is that there's strong evidence that mothers with depression are more likely than other women to have a child with autism, whether or not they take antidepressants during pregnancy. King and Brown say that makes it very hard to disentangle the effects of depression itself from those of the drugs used to treat it. © 2015 npr
Keyword: Depression; Autism
Link ID: 21702 - Posted: 12.15.2015
When anticonvulsant drugs fail to control epilepsy, surgery can be used as a last resort: removing the part of the brain thought to be the source of someone’s seizures. Unfortunately, this doesn’t always work. A computer model of brain activity could change things for the better by allowing surgeons to more precisely tailor the procedure to the individual. Seizures are caused by sudden surges in electrical activity in the brain. EEG scans made during a seizure can capture what is going on, providing a clue to the part of the brain that needs to be cut out. Even so, the surgery still fails to prevent seizures in 30 per cent of cases. There are other ways to track down the source of someone’s seizures, however. For example, the connectivity of the brain’s neurons and the surface area of affected regions is different in people with epilepsy compared with those who do not have the condition. Frances Hutchings at Newcastle University, UK and her colleagues have shown that these differences can be picked up using a combination of fMRI scans and diffusion tensor imaging (DTI). They used this data to model the brains of 22 people with epilepsy. By simulating the brain’s electrical activity, they were able to see where it went awry and identify the region where seizures were most likely to originate in each individual. © Copyright Reed Business Information Ltd.
Keyword: Epilepsy; Brain imaging
Link ID: 21701 - Posted: 12.15.2015
By Elizabeth Pennisi Imagine trying to train wild sea lions—without them ever seeing you. That was Peter Cook's challenge 8 years ago when he was trying to figure out whether poisonous algae were irrevocably damaging the animals’ brains. With a lot of patience and some luck, the comparative neuroscientist from Emory University in Atlanta has succeeded, and the news isn't good. Toxins from the algae mangle a key memory center, likely making it difficult for sick animals to hunt or navigate effectively, Cook and his colleagues report today. "Sea lions can be seen as sentinels of human health," says Kathi Lefebvre, a research biologist at the Northwest Fisheries Science Center in Seattle, Washington, who was not involved with the work. As oceans warm, toxic algae proliferate and cause so-called red tides because the water looks reddish. So "understanding these toxins in wild animals is going to become more important," she says. Red tides are produced by algae called diatoms. They make a toxin called domoic acid, which is consumed by other plankton that in turn become food for fish and other organisms. Predators such as anchovies, sardines, and other schooling fish accumulate this toxin in their bodies. So when algal populations explode, say, because of warming water, domoic acid concentrations increase in these animals to a point that they affect the sea lions that feast on them. Scientists first recognized this problem in 1998, after hundreds of sea lions were found stranded or disoriented along California's coast. Since then, researchers have studied sick and dead sea lions and documented that the toxin causes seizures and damages the brain, sometimes killing the animal. © 2015 American Association for the Advancement of Science.
Keyword: Learning & Memory; Neurotoxins
Link ID: 21700 - Posted: 12.15.2015
By SINDYA N. BHANOO Prairie voles are small Midwestern rodents known for monogamous behavior. But some males are also known to stray and seek out other females. A new study reports that mating preferences in the voles are linked to genetic differences, and that both monogamous and nonmonogamous males are readily found in nature. The study appears in the journal Science. Generally, animal neuroscientists believe that natural selection minimizes genetic variation. In this case, however, one mating strategy does not seem to be more successful than the other. Monogamous males stay near their nests, which ensures that female mates remain faithful. Promiscuous males have more partners, but they also lose sight of their own mates. “When you roam, your own female is free to mate with whoever she wants,” said Steven M. Phelps, a neurobiologist at the University of Texas at Austin and one of the study’s authors. The genetic differences between nonmonogramous and monogamous males affect a part of the brain important for spatial memory. Good memory may help a male keep track of his mate or keep him from returning to a hostile male’s territory. “We’ve shown for the first time that not only can brains be variable, but natural selection can keep that variability around,” Dr. Phelps said. © 2015 The New York Times Company
Keyword: Sexual Behavior; Evolution
Link ID: 21699 - Posted: 12.14.2015
The clock is ticking for Ronald Cohn. He wants to use CRISPR gene editing to correct the genes of his friend’s 13-year-old son. The boy, Gavriel, has Duchenne muscular dystrophy, a genetic disease in which muscles degenerate. Breathing and heart problems often start by the time people with the condition are in their early twenties. Life expectancy is about 25 years. By the standards of science, the field of CRISPR gene editing is moving at a lightning fast pace. Although the technique was only invented a few years ago, it is already being used for research by thousands of labs worldwide to make extremely precise changes to DNA. A handful of people have already been treated using therapies enabled by the technology, and last week an international summit effectively endorsed the idea of gene editing embryos. It is too soon to try the technique out, but the summit concluded that basic research on embryos should be permitted, alongside a debate on how we should use the technology. But for people like Cohn, progress can’t come fast enough. Gavriel was diagnosed at age 4. He has already lost the use of his legs but still has some movement in his upper body, and uses a manual wheelchair. Cohn, a clinician at the Hospital for Sick Children in Toronto, estimates that he has three years to develop and test a CRISPR-based treatment if he is to help Gavriel. Muscular dystrophy is caused by a faulty gene for the protein dystrophin, which holds our muscles together. Gavriel has a duplicated version of the gene. This week, Cohn’s team published a paper describing how they grew Gavriel’s cells in a dish and used CRISPR gene-editing techniques to snip out the duplication. With the duplication removed, his cells produced normal dystrophin protein. © Copyright Reed Business Information Ltd.
Keyword: Movement Disorders; Muscles
Link ID: 21698 - Posted: 12.14.2015
By C. CLAIBORNE RAY Q. We know that aquatic mammals communicate with one another, but what about fish? A. Fish have long been known to communicate by several silent mechanisms, but more recently researchers have found evidence that some species also use sound. It is well known that fish communicate by gesture and motion, as in the highly regimented synchronized swimming of schools of fish. Some species use electrical pulses as signals, and some use bioluminescence, like that of the firefly. Some kinds of fish also release chemicals that can be sensed by smell or taste. In 2011, a scientist in New Zealand suggested that what might be called fish vocalization has a role, at least in some ocean fish. In the widely publicized work, done for his doctoral thesis at the University of Auckland, Shahriman Ghazali recorded reef fish in the wild and in captivity, and found two dominant vocalizations, the croak and the purr, in choruses that lasted up to three hours, as well as a previously undescribed popping sound. The sounds of one species recorded in captivity — the bigeye, or Pempheris adspersa — carried 100 feet or more, and the researcher suggested it could be used to keep a group of fish together during nocturnal foraging. Another species, the bluefin gurnard, or Chelidonichthys kumu, was also very noisy, he found. “Vocalization” is a bit of a misnomer, as the sounds these fish make are produced by contracting and vibrating the swim bladder, not by using the mouth. © 2015 The New York Times Company
Keyword: Animal Communication; Hearing
Link ID: 21697 - Posted: 12.14.2015
By ALAN SCHWARZ Andrew Rios’s seizures began when he was 5 months old and only got worse. At 18 months, when an epilepsy medication resulted in violent behavior, he was prescribed the antipsychotic Risperdal, a drug typically used to treat schizophrenia and bipolar disorder in adults, and rarely used for children as young as 5 years. From Our Advertisers When Andrew screamed in his sleep and seemed to interact with people and objects that were not there, his frightened mother researched Risperdal and discovered that the drug was not approved, and had never even been studied, in children anywhere near as young as Andrew. “It was just ‘Take this, no big deal,’ like they were Tic Tacs,” said Genesis Rios, a mother of five in Rancho Dominguez, Calif. “He was just a baby.” Cases like that of Andrew Rios, in which children age 2 or younger are prescribed psychiatric medications to address alarmingly violent or withdrawn behavior, are rising rapidly, data shows. Many doctors worry that these drugs, designed for adults and only warily accepted for certain school-age youngsters, are being used to treat children still in cribs despite no published research into their effectiveness and potential health risks for children so young. Almost 20,000 prescriptions for risperidone (commonly known as Risperdal), quetiapine (Seroquel) and other antipsychotic medications were written in 2014 for children 2 and younger, a 50 percent jump from 13,000 just one year before, according to the prescription data company IMS Health. Prescriptions for the antidepressant fluoxetine (Prozac) rose 23 percent in one year for that age group, to about 83,000. The company’s data does not indicate how many children received these prescriptions (many children receive several prescriptions a year), but previous studies suggest that the number is at least 10,000. IMS Health researched the data at the request of The New York Times. © 2015 The New York Times Company
Keyword: Schizophrenia; Development of the Brain
Link ID: 21696 - Posted: 12.12.2015


.gif)

