Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 8301 - 8320 of 29407

by Chris Samoray Every fall, blackpoll warblers fly from North America to South America in what’s the longest migration route of any warbler in the Western Hemisphere. But some of the tiny songbirds take a detour before making their epic transoceanic leap. Over 40 years of data from 22,295 birds show that blackpoll warblers (Setophaga striata) living in western North America head east for a pit stop to put on weight, giving the birds the energy stores they need to cross the Atlantic Ocean, researchers report December 9 in the Auk: Ornithological Advances. For birds that breed farther west in places like Alaska, the eastern stopover means a migration distance that’s nearly twice that of their eastern U.S. counterparts, the scientists find. © Society for Science & the Public 2000 - 2015.

Keyword: Animal Migration
Link ID: 21687 - Posted: 12.10.2015

By Lindzi Wessel Nighttime restlessness is common among people with Alzheimer’s, and many stay awake agitated and pacing long after their family members have gone to sleep. Now, scientists may have figured out why: The disease appears to degrade a special type of eye cell that tells the brain when it’s day or night. If the discovery holds up, it might offer clinicians a new way to monitor the progression of Alzheimer’s and could lead to treatments that restore a good night’s sleep. The cells in question are known as melanopsin retinal ganglion cells. They send signals to the brain center responsible for circadian rhythms, our body’s daily clock. The cells make up 1% to 2% of the eye’s light-responsive sensors, but they play no role in vision, says lead author Chiara La Morgia, a neuroscientist at the University of Bologna in Italy. Rather, they sense light levels around us, telling us when to get sleepy and when to be alert. La Morgia and her colleagues, aware of the profound sleep problems often seen in Alzheimer’s, wondered whether the cells may stop doing their job as the disease progresses. “If you lose them, you should see dysfunction of the circadian rhythms and see disrupted sleep,” says Alfredo Sadun, neuro-opthamologist at the University of California, Los Angeles, and co-author of the study. “That is the exact symptomology we see in Alzheimer’s disease.” To learn more, the researchers used dyes to mark melanopsin cells in the eyes of 30 recently deceased organ donors. They found approximately 24% fewer melanopsin cells in the eyes of people with Alzheimer’s than in the eyes of donors without the disease. © 2015 American Association for the Advancement of Science.

Keyword: Alzheimers; Vision
Link ID: 21686 - Posted: 12.09.2015

Ian Sample Science editor Scientists have discovered a chemical that destroys toxic plaques which build up in the brain in the early stages of Alzheimer’s disease. Preliminary tests found that when added to drinking water, the compound cleared amyloid beta plaques from the brains of mice with Alzheimer’s-like symptoms, and restored their cognitive function to normal. The work is at a very early stage, but raises hopes for drugs that can prevent the accumulation of amyloid plaques and potentially halt the progression of the disease. Amyloid plaques are one of the first hallmarks of Alzheimer’s disease and are thought to contribute to neurodegeneration by killing off brain cells. Researchers in Korea discovered the chemical, EPPS, while screening a variety of molecules for their effects on amyloid plaques. In the latest study, they added the substance to the drinking water of mice that had symptoms of Alzheimer’s disease. They found that administering EPPS for a week improved how well mice performed on maze tests, and cleared amyloid plaques from the animals’ brains. “Our findings clearly support the view that aggregated amyloid-beta is the pathological culprit of Alzheimer’s disease,” said YoungSoo Kim, who led the team at the Korea Institute of Science and Technology in Seoul. The study used mice that had amyloid plaques injected into their brains. The animals suffered cognitive impairments as a result, but they did not develop the kind of widespread brain damage seen in Alzheimer’s patients which would not be reversed by removing amyloid plaques. © 2015 Guardian News and Media Limited

Keyword: Alzheimers
Link ID: 21685 - Posted: 12.09.2015

By Michael M. Torrice, We learn from experience: It sounds like a trite sentiment posted by a friend on Facebook, but neuroscientists would agree. Our interactions with the world around us strengthen and weaken the connections between our neurons, a process that neuroscientists consider to be the cellular mechanism of learning. Now researchers report that boosting signaling of a certain receptor in the brain with a small molecule can enhance these cellular changes and improve learning in people. The findings could lead to new treatments for patients with disorders associated with deficits in learning, such as Alzheimer’s disease and schizophrenia. Through decades of research on how synapses change in animal brains, scientists have found that the N-methyl-d-aspartate receptor (NMDAR) plays a critical role in strengthening synapses during learning. Compounds that increase NMDAR signaling can drive such changes and, as a result, help animals learn new tasks. Robert F. Asarnow at UCLA and colleagues wanted to test whether one such compound, d-cycloserine, would act similarly in people. But neuroscientists measure synapse changes in animals by sticking electrodes into slices of brain tissue to record electrical signals. “Obviously, we don’t do that to our friends,” Asarnow says. So his team used electroencephalography (EEG) to record electrical activity through electrodes stuck to the scalps of its subjects. The team monitored this activity as the subjects watched a certain pattern flash on a screen at high frequency for a couple minutes. Afterward, the subjects showed a spike in EEG activity in their visual cortex when they viewed the pattern at a later time. This suggested a population of neurons had wired themselves together by strengthening their synapses. © 2015 Scientific American

Keyword: Learning & Memory
Link ID: 21684 - Posted: 12.09.2015

By Ariana Eunjung Cha Attention-deficit/hyperactivity disorder is often thought of a boy thing. In explaining the jump in cases in recent years, numerous researchers, educators and parents have theorized that perhaps boys are hardwired to be more impulsive, wiggly and less able to stay on task in the early years than their female counterparts. That may be a myth. A study published in The Journal of Clinical Psychiatry on Tuesday shows a surprising 55 percent increase in prevalence of diagnoses among girls — from 4.7 percent to 7.3 percent from 2003 to 2011. The rise in cases in girls mirrors a similar but less-sharp rise in cases in boys from a prevalence of 11.8 to 16.5 percent. During the same period, the researchers found an increase in cases across all races and ethnicities but especially in Hispanic children. In all children, the prevalence increased from 8.4 percent to 12 percent. The analysis, conducted by George Washington University biostatistician Sean D. Cleary and his co-author Kevin P. Collins of Mathematica Policy Research, was based on data from the National Survey of Children's Health in which parents were asked whether they had been told by a doctor or other health care provider that their child has ADHD.

Keyword: ADHD; Sexual Behavior
Link ID: 21683 - Posted: 12.09.2015

by Laura Sanders There’s only so much brainpower to go around, and when the eyes hog it all, the ears suffer. When challenged with a tough visual task, people are less likely to perceive a tone, scientists report in the Dec. 9 Journal of Neuroscience. The results help explain what parents of screen-obsessed teenagers already know. For the study, people heard a tone while searching for a letter on a computer screen. When the letter was easy to find, participants were pretty good at identifying a tone. But when the search got harder, people were less likely to report hearing the sound, a phenomenon called inattentional deafness. Neural responses to the tone were blunted when people worked on a hard visual task, but not when the visual task was easy, researchers found. By showing that a demanding visual job can siphon resources away from hearing, the results suggest that perceptual overload can jump between senses. © Society for Science & the Public 2000 - 2015

Keyword: Attention; Hearing
Link ID: 21682 - Posted: 12.09.2015

By SINDYA N. BHANOO Moderate levels of exercise may increase the brain’s flexibility and improve learning, a new study suggests. The visual cortex, the part of the brain that processes visual information, loses the ability to “rewire” itself with age, making it more difficult for adults to recover from injuries and illness, said Claudia Lunghi, a neuroscientist at the University of Pisa and one of the study’s authors. In a study in the journal Current Biology, she and her colleagues asked 20 adults to watch a movie with one eye patched while relaxing in a chair. Later, the participants exercised on a stationary bike for 10-minute intervals while watching a movie. When one eye is patched, the visual cortex compensates for the limited input by increasing its activity level. Dr. Lunghi and her colleagues tested the imbalance in strength between the participants’ eyes after the movie — a measure of changeability in the visual cortex. © 2015 The New York Times Company

Keyword: Regeneration
Link ID: 21681 - Posted: 12.08.2015

Angus Chen Parents of children with severe epilepsy have reported incredible recoveries when their children were given cannabidiol, a derivative of marijuana. The drug, a non-psychoactive compound that occurs naturally in cannabis, has been marketed with epithets like Charlotte's Web and Haleigh's Hope. But those parents were taking a risk; there has been no clinical data on cannabidiol's safety of efficacy as an anti-epileptic. This week, doctors are presenting the first studies trying to figure out if cannabidiol actually works. They say the studies' results are promising, but with a grain of salt. The largest study being presented at the American Epilepsy Society meeting in Philadelphia this week was started in 2014 with 313 children from 16 different epilepsy centers around the country. Over the course of the three-month trial, 16 percent of the participants withdrew because the cannabidiol was either ineffective or had adverse side-effects, says Dr. Orrin Devinsky, a neurologist at the New York University Langone Medical Center and lead author on the study. But for the 261 patients that continued taking cannabidiol, the number of convulsive seizures, called grand mal or tonic-clonic seizures, went down by about half on average. Devinsky says that some children continued to experience benefits on cannabidiol after the trial ended. "In the subsequent periods, which are very encouraging, 9 percent of all patients and 13 percent of those with Dravet Syndrome epilepsy were seizure-free. Many have never been seizure-free before," he says. It's one of several [at least four. checking] papers on cannabidiol being presented this week at the American Epilepsy Society meeting in Philadelphia. © 2015 npr

Keyword: Epilepsy; Drug Abuse
Link ID: 21680 - Posted: 12.08.2015

Laura Sanders People who use especially potent pot show signs of damage in a key part of their brain. The results, reported online November 27 in Psychological Medicine, are limited, though: The small brain scanning study doesn’t show that marijuana caused the brain abnormality — only that the two go hand-in-hand. But the findings suggest that potency matters, says study coauthor Tiago Reis Marques, a psychiatrist at King’s College London. “We are no longer talking about smoking cannabis or not smoking cannabis,” Reis Marques says. Just as vodka packs more of a punch than beer, a high-potency toke delivers much more of the psychoactive substance tetrahydrocannabinol, or THC. A bigger dose of THC may have stronger effects on the brain, Reis Marques says. That’s important because as marijuana plant breeders perfect their products, THC levels have soared. Samples sold in Colorado, for instance, now have about three times as much THC as plants grown 30 years ago, a recent survey found (SN Online: 3/24/15). Reis Marques and his colleagues scanned the brains of 43 healthy people, about half of whom use cannabis. The researchers used a method called diffusion tensor imaging to study the structure of the brain’s white matter, neural highways that carry messages between brain areas. Participants gave a detailed history of their past drug use, including information about how potent their marijuana was. POT HEAD The corpus callosum — white matter that links the left brain to the right — is weaker in people who smoke high-potency cannabis, a new study suggests. © Society for Science & the Public 2000 - 2015.

Keyword: Drug Abuse; Brain imaging
Link ID: 21679 - Posted: 12.08.2015

A new, open-source software that can help track the embryonic development and movement of neuronal cells throughout the body of the worm, is now available to scientists. The software is described in a paper published in the open access journal, eLife on December 3rd by researchers at the National Institute of Biomedical Imaging and Bioengineering (NIBIB) and the Center for Information Technology (CIT); along with Memorial Sloan-Kettering Institute, New York City; Yale University, New Haven, Connecticut; Zhejiang University, China; and the University of Connecticut Health Center, Farmington. NIBIB is part of the National Institutes of Health. As far as biologists have come in understanding the brain, much remains to be revealed. One significant challenge is determining the formation of complex neuronal structures made up of billions of cells in the human brain. As with many biological challenges, researchers are first examining this question in simpler organisms, such as worms. Although scientists have identified a number of important proteins that determine how neurons navigate during brain formation, it’s largely unknown how all of these proteins interact in a living organism. Model animals, despite their differences from humans, have already revealed much about human physiology because they are much simpler and easier to understand. In this case, researchers chose Caenorhabditis elegans (C. elegans), because it has only 302 neurons, 222 of which form while the worm is still an embryo. While some of these neurons go to the worm nerve ring (brain) they also spread along the ventral nerve cord, which is broadly analogous to the spinal cord in humans. The worm even has its own versions of many of the same proteins used to direct brain formation in more complex organisms such as flies, mice, or humans.

Keyword: Development of the Brain; Brain imaging
Link ID: 21678 - Posted: 12.08.2015

A woman born incapable of feeling pain has been hurt for the first time – thanks to a drug normally prescribed for opioid overdoses. She was burned with a laser, and quite liked the experience. The breakthrough may lead to powerful new ways to treat painful conditions such as arthritis. Only a handful people around the world are born unable to feel pain. These individuals can often suffer a range of injuries when they are young. Babies with the condition tend to chew their fingers, toes and lips until they bleed, and toddlers can suffer an increased range of knocks, tumbles and encounters with sharp or hot objects. The disorder is caused by a rare genetic mutation that results in a lack of ion channels that transport sodium across sensory nerves. Without these channels, known as Nav1.7 channels, nerve cells are unable to communicate pain. Researchers quickly sought to make compounds that blocked Nav1.7 channels, thinking they might be able to block pain in people without the disorder. “It looked like a fantastic drug target,” says John Wood at University College London. “Pharma companies went bananas and made lots of drugs.” But while a few compounds saw some success, none brought about the total pain loss seen in people who lack the channel naturally. © Copyright Reed Business Information Ltd.

Keyword: Pain & Touch; Genes & Behavior
Link ID: 21677 - Posted: 12.05.2015

Carl Zimmer In 2013, an obese man went to Hvidovre Hospital in Denmark to have his stomach stapled. All in all, it was ordinary bariatric surgery — with one big exception. A week before the operation, the man provided a sperm sample to Danish scientists. A week after the procedure, he did so again. A year later, he donated a third sample. Scientists were investigating a tantalizing but controversial hypothesis: that a man’s experiences can alter his sperm, and that those changes in turn may alter his children. That idea runs counter to standard thinking about heredity: that parents pass down only genes to their children. People inherit genes that predispose them to obesity, or stress, or cancer — or they don’t. Whether one’s parents actually were obese or constantly anxious doesn’t rewrite those genes. Yet a number of animal experiments in recent years have challenged conventional thinking on heredity, suggesting that something more is at work. In 2010, for example, Dr. Romain Barres of the University of Copenhagen and his colleagues fed male rats a high-fat diet and then mated them with females. Compared with male rats fed a regular diet, those on the high-fat diet fathered offspring that tended to gain more weight, develop more fat and have more trouble regulating insulin levels. Eating high-fat food is just one of several experiences a father can have that can change his offspring. Stress is another. Male rats exposed to stressful experiences — like smelling the odor of a fox — will father pups that have a dampened response to stress. © 2015 The New York Times Company

Keyword: Epigenetics; Obesity
Link ID: 21676 - Posted: 12.05.2015

By Nicholas Bakalar Watching television may be bad for your brain, a new study suggests. Researchers followed 3,274 people whose average age was 25 at the start of the study for 25 years, using questionnaires every five years to collect data on their physical activity and TV watching habits. At year 25, they administered three tests that measured various aspects of mental acuity. The highest level of TV watching — more than three hours a day most days — was associated with poor performance on all three tests. Compared with those who watched TV the least, those who watched the most had between one-and-a-half and two times the odds of poor performance on the tests, even after adjusting for age, sex, race, educational level, body mass index, smoking, alcohol use, hypertension and diabetes. Those with the lowest levels of physical activity and the highest levels of TV watching were the most likely to have poor test results. The authors acknowledge that their findings, published in JAMA Psychiatry, depend on self-reports, and that they had no baseline tests of cognitive function for comparison. “We can’t separate out what is going on with the TV watching,” said the lead author, Dr. Kristine Yaffe, a professor of psychiatry and neurology at the University of California, San Francisco. “Is it just the inactivity, or is there something about watching TV that’s the opposite of cognitive stimulation?” © 2015 The New York Times Company

Keyword: Intelligence
Link ID: 21675 - Posted: 12.05.2015

Laura Sanders Taking a pregnancy hormone staves off multiple sclerosis relapses, a small clinical trial suggests. The results hint at a potential therapy for women who suffer from MS, a debilitating disease in which the body’s immune system attacks the insulation that wraps around nerve cell fibers. A curious observation kicked off this line of research: Pregnancy offers a temporary reprieve for women with MS. Since that discovery, in the 1990s, scientists have been testing whether certain pregnancy hormones might combat MS in women who aren’t pregnant. In addition to a standard MS drug, 164 women with MS received either a placebo or estriol, an estrogen made by the placenta that peaks toward the end of pregnancy. After two years, women who received estriol had an average of 0.25 relapses a year, while women who received the placebo had 0.37 relapses a year, UCLA neurologist Rhonda Voskuhl and colleagues write online November 24 in Lancet Neurology. Researchers don’t know whether estriol would have similar effects in men with MS. The results warrant a larger clinical trial, the authors say. An accompanying commentary in the same issue of Lancet Neurology questions the results, though. MS specialist Annette Langer-Gould of Kaiser Permanente in Pasadena, Calif., raises methodological issues and writes that pregnancy comes with a host of changes that could be responsible for protection from MS. © Society for Science & the Public 2000 - 2015.

Keyword: Multiple Sclerosis; Hormones & Behavior
Link ID: 21674 - Posted: 12.03.2015

By John Horgan How does matter make mind? More specifically, how does a physical object generate subjective experiences like those you are immersed in as you read this sentence? How does stuff become conscious? This is called the mind-body problem, or, by philosopher David Chalmers, the “hard problem.” I expressed doubt that the hard problem can be solved--a position called mysterianism--in The End of Science. I argue in a new edition that my pessimism has been justified by the recent popularity of panpsychism. This ancient doctrine holds that consciousness is a property not just of brains but of all matter, like my table and coffee mug. Panpsychism strikes me as self-evidently foolish, but non-foolish people—notably Chalmers and neuroscientist Christof Koch—are taking it seriously. How can that be? What’s compelling their interest? Have I dismissed panpsychism too hastily? These questions lured me to a two-day workshop on integrated information theory at New York University last month. Conceived by neuroscientist Guilio Tononi (who trained under the late, great Gerald Edelman), IIT is an extremely ambitious theory of consciousness. It applies to all forms of matter, not just brains, and it implies that panpsychism might be true. Koch and others are taking panpsychism seriously because they take IIT seriously. © 2015 Scientific American

Keyword: Consciousness
Link ID: 21673 - Posted: 12.03.2015

Some people may have a get-out clause when it comes to giving up cigarettes. A third of white people who smoke have gene variations that make it harder for them to kick the habit. A gene called ANKK1 regulates the release of dopamine – a chemical involved in the brain’s reward centres. Ming Li and colleagues at the Zhejiang University School of Medicine in Hangzhou, China, wondered whether variations of this gene might affect people’s ability to give up cigarettes. So his team analysed 23 studies that have linked ANKK1 to smoking, involving more than 11,000 participants in total. Across the board, there was no significant link between successful quitting and the gene variants. But when they looked at just the studies that analysed white people, the results were striking. About two-thirds of white smokers carried a variation of the gene called A2/A2. These people were about 22 per cent more likely to be able to quit smoking than those who carried an alternative version of the gene, either A1/A1 or A1/A2. The A1/A1 and A1/A2 gene variations have previously been linked to obesity and drug addiction, which suggests they may predispose people to addictive behaviours. People carrying these versions of ANKK1 may need more aggressive strategies to fight their addiction to cigarettes, says Li. It is not clear whether the gene has the same effect for non-white people, he says. More studies that involve non-white people will be necessary to investigate this. © Copyright Reed Business Information Ltd.

Keyword: Drug Abuse; Genes & Behavior
Link ID: 21672 - Posted: 12.03.2015

Tina Hesman Saey Genies are said to have the power to grant three wishes. But genies recently released from laboratory flasks promise to fulfill nearly any wish a biologist can dream up. End the scourge of insect-borne diseases? Check. Inoculate endangered amphibians against killer fungi? Yes. Pluck invasive species from environments where they don’t belong? As you wish. These genies aren’t magical; they are research tools known as gene drives — clever bits of engineered DNA designed to propel themselves into the DNA of a pesky or troubled organism. A gene drive is a targeted contagion intended to spread within species, forever altering the offspring. Gene drive enthusiasts say these genies could wipe out malaria, saving more than half a million lives each year. Invasive species, herbicide-resistant weeds and pesticide-resistant bugs could be driven out of existence. Animals that carry harmful viruses could be immunized with ease. Scientists have sought the power of gene drives for decades. But only with the emergence of a genetic tool called CRISPR/Cas9 — the bottle opener that unleashed the genie — has gene drive technology offered the prospect of providing a speedy means to end some of the world’s greatest health and ecological scourges. “Everything is possible with CRISPR,” says geneticist Hugo Bellen. “I’m not kidding.” © Society for Science & the Public 2000 - 2015.

Keyword: Genes & Behavior
Link ID: 21671 - Posted: 12.03.2015

You may have read that having a male brain will earn you more money. Or maybe that female brains are better at multitasking. But there is no such thing as a female or male brain, according to the first search for sex differences across the entire human brain. It reveals that most people have a mix of male and female brain features. And it also supports the idea that gender is non-binary, and that gender classifications in many situations are meaningless. “This evidence that human brains cannot be categorised into two distinct classes is new, convincing, and somehow radical,” says Anelis Kaiser at the University of Bern, Switzerland. The idea that people have either a “female” or “male” brain is an old one, says Daphna Joel at Tel Aviv University in Israel. “The theory goes that once a fetus develops testicles, they secrete testosterone which masculinises the brain,” she says. “If that were true, there would be two types of brain.” To test the theory, Joel and her colleagues looked for differences in brain scans taken from 1400 people aged between 13 and 85. The team looked for variations in the size of brain regions as well as the connections between them. In total, the group identified 29 brain regions that generally seem to be different sizes in self-identified males and females. These include the hippocampus, which is involved in memory, and the inferior frontal gyrus, which is thought to play a role in risk aversion. When the group looked at each individual brain scan, however, they found that very few people had all of the brain features they might be expected to have, based on their sex. Across the sample, between 0 and 8 per cent of people had “all-male” or “all-female” brains, depending on the definition. “Most people are in the middle,” says Joel. © Copyright Reed Business Information Ltd.

Keyword: Sexual Behavior
Link ID: 21670 - Posted: 12.01.2015

By Kelli Whitlock Burton Evolutionarily speaking, we are born to make babies. Our bodies—and brains—don’t fall apart until we come to the end of our child-bearing years. So why are grandmothers, who don’t reproduce and who contribute little to food production, still around and still mentally sound? A new study offers an intriguing genetic explanation. Scientists have proposed several explanations for why our species lives as long and as healthily as it does. One idea is that grandmothers help out with child rearing. A 1998 study found, for example, that a Hadza group of hunter-gatherers in Tanzania had more babies if grandmothers helped feed their newly-weaned young grandchildren. The researchers speculated this kind of care freed up young mothers to reproduce, and ensured that the caregiver grandmother’s genes were passed on to more young. They called their theory the “grandmother hypothesis.” But grandmothers need to have all their wits about them to help out in this way, and the new study may explain how this happens. Physician-scientist Ajit Varki and evolutionary biologist Pascal Gagneux of the University of California, San Diego, arrived at the findings accidentally. The pair was studying a gene that helps control the body’s inflammatory and immune response to injury or infection. Previous studies have linked two forms of the gene—CD33—to Alzheimer’s disease. While one CD33 variant, or allele, predisposes a person to the disease, the other appears to protect against it by preventing the formation of protein clumps in the brain. © 2015 American Association for the Advancement of Science.

Keyword: Alzheimers; Genes & Behavior
Link ID: 21669 - Posted: 12.01.2015

By Diana Kwon The human brain is unique: Our remarkable cognitive capacity has allowed us to invent the wheel, build the pyramids and land on the moon. In fact, scientists sometimes refer to the human brain as the “crowning achievement of evolution.” But what, exactly, makes our brains so special? Some leading arguments have been that our brains have more neurons and expend more energy than would be expected for our size, and that our cerebral cortex, which is responsible for higher cognition, is disproportionately large—accounting for over 80 percent of our total brain mass. Suzana Herculano-Houzel, a neuroscientist at the Institute of Biomedical Science in Rio de Janeiro, debunked these well-established beliefs in recent years when she discovered a novel way of counting neurons—dissolving brains into a homogenous mixture, or “brain soup.” Using this technique she found the number of neurons relative to brain size to be consistent with other primates, and that the cerebral cortex, the region responsible for higher cognition, only holds around 20 percent of all our brain’s neurons, a similar proportion found in other mammals. In light of these findings, she argues that the human brain is actually just a linearly scaled-up primate brain that grew in size as we started to consume more calories, thanks to the advent of cooked food. Other researchers have found that traits once believed to belong solely to humans also exist in other members of the animal kingdom. Monkeys have a sense of fairness. Chimps engage in war. Rats show altruism and exhibit empathy. In a study published last week in Nature Communications, neuroscientist Christopher Petkov and his group at Newcastle University found that macaques and humans share brain areas responsible for processing the basic structures of language. © 2015 Scientific American

Keyword: Evolution; Brain imaging
Link ID: 21668 - Posted: 12.01.2015