Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 8261 - 8280 of 29332

By John Bohannon It may sound like a bird-brained idea, but scientists have trained pigeons to spot cancer in images of biopsied tissue. Individually, the avian analysts can't quite match the accuracy of professional pathologists. But as a flock, they did as well as trained humans, according to a new study appearing this week in PLOS ONE. Cancer diagnosis often begins as a visual challenge: Does this lumpy spot in a mammogram image justify a biopsy? And do cells in biopsy slides look malignant or benign? Training doctors and medical technicians to tell the difference is expensive and time-consuming, and computers aren't yet up to the task. To see whether a different type of trainee could do better, a team led by Richard Levenson, a pathologist and technologist at the University of California, Davis, and Edward Wasserman, a psychologist at the University of Iowa, in Iowa City, turned to pigeons. In spite of their limited intellect, the bobble-headed birds have certain advantages. They have excellent visual systems, similar to, if not better than, a human's. They sense five different colors as opposed to our three, and they don’t “fill in” the gaps like we do when expected shapes are missing. However, training animals to do a sophisticated task is tricky. Animals can pick up on unintentional cues from their trainers and other humans that may help them correctly solve problems. For example, a famous 20th century horse named Clever Hans was purportedly able to do simple arithmetic, but was later shown to be observing the reactions of his human audience. And although animals can perform extremely well on tasks that are confined to limited circumstances, overtraining on one set of materials can lead to total inaccuracy when the same information is conveyed slightly differently. © 2015 American Association for the Advancement of Science

Keyword: Vision; Learning & Memory
Link ID: 21652 - Posted: 11.21.2015

By Nicholas Bakalar Several studies have shown that there is an association between shift work and an increased risk for heart disease and diabetes. Now a new study, in the Journal of Clinical Endocrinology & Metabolism, has found a similar association in people whose sleeping schedules change on the weekend. For seven days, 447 men and women ages 30 to 54 wore devices that measured movement and tracked when they fell asleep and woke. Almost 85 percent of the group went to sleep and woke later on their days off than during the workweek. The researchers found that the greater the mismatch in sleep timing between weekdays and weekends, the higher the metabolic risk. Sleeping late on days off was linked to lower HDL (good) cholesterol, higher triglycerides, higher insulin resistance and higher body mass index. The associations persisted after controlling for physical activity, caloric intake, alcohol use and other factors. “It’s not clear yet that this is a long-term effect,” said the lead author, Patricia M. Wong, a graduate student at the University of Pittsburgh. “But we think of this as people having to sleep and work out of sync with their internal clock, and that having to be out of sync may be having these health effects.” © 2015 The New York Times Company

Keyword: Sleep
Link ID: 21651 - Posted: 11.21.2015

Human DNA is 1 to 2% Neandertal, or more, depending on where your ancestors lived. Svante Pääbo, founder of the field of paleogenetics and winner of a 2016 Breakthrough Prize, explains why that matters © 2015 Scientific American

Keyword: Evolution; Genes & Behavior
Link ID: 21650 - Posted: 11.21.2015

Ian Sample Science editor Humans buy flowers. Capuchins throw stones. Giant tortoises bellow. But the blue-capped cordon bleu, a small finch found in Africa, really knows how to win over a mate. The three-inch-high omnivores perform energetic cabaret acts to woo their partners, rattling through routines that feature head-bobbing, singing and tap dance, and often all three at once. The birds were known to sing and nod their heads to impress the opposite sex, but high speed video footage has now revealed that they spice up their displays with nifty footwork that adds percussion to their repertoire and sends vibrations racing down their perches. Scientists at Hokkaido University filmed the birds as they tried their luck with cagemates, and found that both males and females turned to tap to seduce their targets. The steps have not been seen before because they are too fast for the naked eye to spot. “Like humans, males and females of cordon-bleus are mutually choosy and both sexes need to show off,” said Masayo Soma who lead the research. “They show tap dancing throughout the courtship display, and they sometimes add songs to tap dancing.” Whether the steps and songs are coordinated is the focus of ongoing research. Footage of the birds in cabaret mode showed that an entire routine could include more than 200 steps in bursts of anything from five seconds to more than a minute. Both males and females danced more vigorously when their mate was on the same perch. Males danced more often and tapped their feet faster, but apart from that, the sexes had similar moves. © 2015 Guardian News and Media Limited

Keyword: Sexual Behavior; Animal Communication
Link ID: 21649 - Posted: 11.20.2015

By Christopher Intagliata Back in ancient times, philosophers like Aristotle were already speculating about the origins of taste, and how the tongue sensed elemental tastes like sweet, bitter, salty and sour. "What we discovered just a few years ago is that there are regions of the brain—regions of the cortex—where particular fields of neurons represent these different tastes again, so there's a sweet field, a bitter field, a salty field, etcetera." Nick Ryba [pron. Reba], a sensory neuroscientist at the National Institutes of Health. Ryba and his colleagues found that you can actually taste without a tongue at all, simply by stimulating the "taste" part of the brain—the insular cortex. They ran the experiment in mice with a special sort of brain implant—a fiber-optic cable that turns neurons on with a pulse of laser light. And by switching on the "bitter" sensing part of the brain, they were able to make mice pucker up, as if they were tasting something bitter—even though absolutely nothing bitter was touching the tongues of the mice. In another experiment, the researchers fed the mice a bitter flavoring on their tongues—but then made it more palatable by switching on the "sweet" zone of the brain. "What we were doing here was adding the sweetness, but only adding it in the brain, not in what we were giving to the mouse." Think adding sugar to your coffee—but doing it only in your mind. The findings appear in the journal Nature. © 2015 Scientific American

Keyword: Chemical Senses (Smell & Taste)
Link ID: 21648 - Posted: 11.20.2015

The town of Yarumal in Colombia is famous for all the wrong reasons: it has the world’s largest population of people with Alzheimer’s disease. In Yarumal and the surrounding state of Antioquia, 5000 people carry a gene mutation which causes early-onset Alzheimer’s – half of them will be diagnosed by the age of 45, and the other half will succumb by the time they are 65. Locals call the disease La Bobera, “the foolishness”, and the village bears uncanny parallels with the fictional Macondo in Gabriel Garcia Marquez’s novel One Hundred Years of Solitude, where people suffer memory disorders and hallucinations. But while Yarumal’s “curse” is well known, no one knew how the mutation first appeared. Now researchers have traced the ancestry of the mutation, concluding that it was probably introduced by a Spanish conquistador early in the 17th century. Ken Kosik at the University of California, Santa Barbara, and colleagues collected blood samples from 102 people in Antioquia and sequenced their genomes. The mutation causing this form of early-onset Alzheimer’s is called E280A and is found in a gene on chromosome 14 – 74 people had the mutation. Because Kosik’s team had information on the genome sequence around the mutation, they could use something called identity-by-descent analysis to determine how the people in the study were related. The analysis suggested the mutation arose from a common ancestor around 375 years ago. © Copyright Reed Business Information Ltd.

Keyword: Alzheimers; Genes & Behavior
Link ID: 21647 - Posted: 11.20.2015

Susan Milius Certain species of the crawling lumps of mollusk called chitons polka-dot their armor-plated backs with hundreds of tiny black eyes. But mixing protection and vision can come at a price. The lenses are rocky nuggets formed mostly of aragonite, the same mineral that pearls and abalone shells are made of. New analyses of these eyes support previous evidence that they form rough images instead of just sensing overall lightness or darkness, says materials scientist Ling Li of Harvard University. Adding eyes to armor does introduce weak spots in the shell. Yet the positioning of the eyes and their growth habits show how chitons compensate for that, Li and his colleagues report in the November 20 Science. Li and coauthor Christine Ortiz of MIT have been studying such trade-offs in biological materials that serve multiple functions. Human designers often need substances that multitask, and the researchers have turned to evolution’s solutions in chitons and other organisms for inspiration. Biologists had known that dozens of chiton species sprinkle their armored plates with simple-seeming eye spots. (The armor has other sensory organs: pores even tinier than the eyes.) But in 2011, a research team showed that the eyes of the West Indian fuzzy chiton (Acanthopleura granulata) were much more remarkable than anyone had realized. Their unusual aragonite lens can detect the difference between a looming black circle and a generally gray field of vision. Researchers could tell because chitons clamped their shells defensively to the bottom when a scary circle appeared but not when an artificial sky turned overall shadowy. © Society for Science & the Public 2000 - 2015

Keyword: Vision; Evolution
Link ID: 21646 - Posted: 11.20.2015

By Seth Fletcher To solve the mysteries of the brain, scientists need to delicately, precisely monitor neurons in living subjects. Brain probes, however, have generally been brute-force instruments. A team at Harvard University led by chemist Charles Lieber hopes that silky soft polymer mesh implants will change this situation. So far the researchers have tested the mesh, which is embedded with electronic sensors, in living mice. Once it has been proved safe, it could be used in people to study how cognition arises from the action of individual neurons and to treat diseases such as Parkinson's. © 2015 Scientific American

Keyword: Brain imaging
Link ID: 21645 - Posted: 11.20.2015

By Jonathan Webb Science reporter, BBC News A study of 153 brain scans has linked a particular furrow, near the front of each hemisphere, to hallucinations in schizophrenia. This fold tends to be shorter in those patients who hallucinate, compared with those who do not. It is an area of the brain that appears to have a role in distinguishing real perceptions from imagined ones. Researchers say the findings, published in Nature Communications, might eventually help with early diagnosis. The brain wrinkle, called the paracingulate sulcus or PCS, varies considerably in shape between individuals. It is one of the final folds to develop, appearing in the brain only just before birth. "The brain develops throughout life, but aspects such as whether the PCS is going to be a particularly prominent fold - or not -may be apparent in the brain at an early stage," said Jon Simons, a neuroscientist at the University of Cambridge, UK. "It might be that a reduction in this brain fold gives somebody a predisposition towards developing something like hallucinations later on in life." If further work shows that the difference can be detected before the onset of symptoms, for example, Dr Simons said it might be possible to offer extra support to people who face that elevated risk. But he stressed that schizophrenia is a complicated phenomenon. Hallucinations are one of the main symptoms, but some patients are diagnosed on the basis of other irregular thought processes. "We've known for some time that disorders like schizophrenia are not down to a single region of the brain. Changes are seen throughout various different areas. "To be able to pin such a key symptom to a relatively specific part of the brain is quite unusual." © 2015 BBC.

Keyword: Schizophrenia
Link ID: 21644 - Posted: 11.18.2015

by Bethany Brookshire Many people perceive cocaine as one of the most intense stimulant drugs available: It’s illegal, highly addictive and dangerous. Caffeine, in contrast, is the kinder, cuddlier stimulant. It’s legal, has mild effects and in forms such as coffee, it might even be good for your health. But caffeine in combination with cocaine is another story. In South America, drug distributors have started “cutting” their cocaine with caffeine. This cheaper substitute might, at first glance, seem to make the cocaine less potent. After all, there’s less of the drug there. But new data shows that when combined, cocaine and caffeine make a heck of a drug. Coca paste is a popular form of cocaine in South American countries. A smoked form of cocaine, coca paste is the intermediate product in the extraction process used to get pure cocaine out of coca leaves. Because it is smoked, the cocaine in the coca paste hits the brain very quickly, making the drug highly addictive, explains Jose Prieto, a neurochemist at the Biological Research Institute Clemente Stable in Montevideo, Uruguay. Much of the time, Coca paste isn’t acting alone, however. In a 2011 study published in Behavioral Brain Research, Prieto and his colleagues examined the contents of coca paste from police seizures. “Nearly 80 percent of the coca paste samples” were adulterated, Prieto says, “most with caffeine.” Caffeine adulteration ranged from 1 to 15 percent of the drug volume. © Society for Science & the Public 2000 - 2015.

Keyword: Drug Abuse
Link ID: 21643 - Posted: 11.18.2015

Angus Chen If you peek into classrooms around the world, a bunch of bespectacled kids peek back at you. In some countries such as China, as much as 80 percent of children are nearsighted. As those kids grow up, their eyesight gets worse, requiring stronger and thicker eyeglasses. But a diluted daily dose of an ancient drug might slow that process. The drug is atropine, one of the toxins in deadly nightshade and jimsonweed. In the 19th and early 20th centuries, atropine was known as belladonna, and fancy Parisian ladies used it to dilate their pupils, since big pupils were considered alluring at the time. A few decades later, people started using atropine to treat amblyopia, or lazy eye, since it blurs the stronger eye's vision and forces the weaker eye to work harder. As early as the 1990s, doctors had some evidence that atropine can slow the progression of nearsightedness. In some countries, notably in Asia, a 1 percent solution of atropine eyedrops is commonly prescribed to children with myopia. It's not entirely clear how atropine works. Because people become nearsighted when their eyeballs get too elongated, it's generally thought that atropine must be interfering with that unwanted growth. But as Parisians discovered long ago, the drug can have some inconvenient side effects. © 2015 npr

Keyword: Vision; Development of the Brain
Link ID: 21642 - Posted: 11.18.2015

By Gretchen Reynolds Sturdy legs could mean healthy brains, according to a new study of British twins. As I frequently have written in this column, exercise may cause robust improvements in brain health and slow age-related declines in memory and thinking. Study after study has shown correlations between physical activity, muscular health and mental acuity, even among people who are quite old. But these studies have limitations and one of them is that some people may be luckier than others. They may have been born to have a more robust brain than someone else. Their genes and early home environment might have influenced their brain health as much as or more than their exercise habits. Their genes and early home environment also might have influenced those exercise habits, as well as how their bodies and brains responded to exercise. In other words, genes and environment can seriously confound experimental results. That problem makes twins so valuable for scientific purposes. (Full disclosure, I am a twin, although not an identical one.) Twins typically share the same early home environment and many of the same genes, and if they are identical, all their genes are the same. So if one twin’s body, brain and thinking abilities begin to differ substantially over the years from their twin’s, the cause is less likely to be solely genetic or the early environment, and more likely to be attributable to lifestyle, including exercise habits. It was that possibility that recently prompted Claire Steves, a senior lecturer in twin research at King’s College London, to consider twins and their thighs. © 2015 The New York Times Company

Keyword: Alzheimers
Link ID: 21641 - Posted: 11.18.2015

Laura Sanders Faced with a shortage of the essential nutrient selenium, the brain and the testes duke it out. In selenium-depleted male mice, testes hog the trace element, leaving the brain in the lurch, scientists report in the Nov. 18 Journal of Neuroscience. The results are some of the first to show competition between two organs for trace nutrients, says analytical neurochemist Dominic Hare of the University of Technology Sydney and the Florey Institute of Neuroscience and Mental Health in Melbourne. In addition to uncovering this brain-testes scuffle, the study “highlights that selenium in the brain is something we can’t continue to ignore,” he says. About two dozen proteins in the body contain selenium, a nonmetallic chemical element. Some of these proteins are antioxidants that keep harmful molecules called free radicals from causing trouble. Male mice without enough selenium have brain abnormalities that lead to movement problems and seizures, neuroscientist Matthew Pitts of the University of Hawaii at Manoa and colleagues found. In some experiments, Pitts and his colleagues depleted selenium by interfering with genes. Male mice engineered to lack two genes that produce proteins required for the body to properly use selenium had trouble balancing on a rotating rod and moving in an open field. In their brains, a particular group of nerve cells called parvalbumin interneurons didn’t mature normally. © Society for Science & the Public 2000 - 2015.

Keyword: Miscellaneous
Link ID: 21640 - Posted: 11.18.2015

Jon Hamilton Patterns of gene expression in human and mouse brains suggest that cells known as glial cells may have helped us evolve brains that can acquire language and solve complex problems. Scientists have been dissecting human brains for centuries. But nobody can explain precisely what allows people to use language, solve problems or tell jokes, says Ed Lein, an investigator at the Allen Institute for Brain Science in Seattle. "Clearly we have a much bigger behavioral repertoire and cognitive abilities that are not seen in other animals," he says. "But it's really not clear what elements of the brain are responsible for these differences." Research by Lein and others provides a hint though. The difference may involve brain cells known as glial cells, once dismissed as mere support cells for neurons, which send and receive electrical signals in the brain. Lein and a team of researchers made that finding after studying which genes are expressed, or switched on, in different areas of the brain. The effort analyzed the expression of 20,000 genes in 132 structures in brains from six typical people. Usually this sort of study is asking whether there are genetic differences among brains, Lein says. "And we sort of flipped this question on its head and we asked instead, 'What's really common across all individuals and what elements of this seem to be unique to the human brain?' " he says. It turned out the six brains had a lot in common. © 2015

Keyword: Brain imaging; Genes & Behavior
Link ID: 21639 - Posted: 11.17.2015

Ian Sample Science editor Tiny biological compasses made from clumps of protein may help scores of animals, and potentially even humans, to find their way around, researchers say. Scientists discovered the minuscule magnetic field sensors in fruit flies, but found that the same protein structures appeared in retinal cells in pigeons’ eyes. They can also form in butterfly, rat, whale and human cells. The rod-like compasses align themselves with Earth’s geomagnetic field lines, leading researchers to propose that when they move, they act on neighbouring cell structures that feed information into the nervous system to create a broader direction-sensing system. Professor Can Xie, who led the work at Peking University, said the compass might serve as a “universal mechanism for animal magnetoreception,” referring to the ability of a range of animals from butterflies and lobsters to bats and birds, to navigate with help from Earth’s magnetic field. Whether the compasses have any bearing on human navigation is unknown, but the Peking team is investigating the possibility. “Human sense of direction is complicated,” said Xie. “However, I believe that magnetic sense plays a key role in explaining why some people have a good sense of direction.” The idea that animals could sense Earth’s magnetic field was once widely dismissed, but the ability is now well established, at least among some species. The greatest mystery that remains is how the sensing is done. © 2015 Guardian News and Media Limited

Keyword: Animal Migration
Link ID: 21638 - Posted: 11.17.2015

A clinical trial funded by the National Institutes of Health has found that the drug ranibizumab (Lucentis) is highly effective in treating proliferative diabetic retinopathy. The trial, conducted by the Diabetic Retinopathy Clinical Research Network (DRCR.net) compared Lucentis with a type of laser therapy called panretinal or scatter photocoagulation, which has remained the gold standard for proliferative diabetic retinopathy since the mid-1970s. The findings demonstrate the first major therapy advance in nearly 40 years. “These latest results from the DRCR Network provide crucial evidence for a safe and effective alternative to laser therapy against proliferative diabetic retinopathy,” said Paul A. Sieving, M.D., Ph.D., director of NIH’s National Eye Institute (NEI), which funded the trial. The results were published online today in the Journal of the American Medical Association. Treating abnormal retinal blood vessels with laser therapy became the standard treatment for proliferative diabetic retinopathy after the NEI announced results of the Diabetic Retinopathy Study in 1976. Although laser therapy effectively preserves central vision, it can damage night and side vision; so, researchers have sought therapies that work as well or better than laser but without such side effects. A complication of diabetes, diabetic retinopathy can damage blood vessels in the light-sensitive retina in the back of the eye. As the disease worsens, blood vessels may swell, become distorted and lose their ability to function properly. Diabetic retinopathy becomes proliferative when lack of blood flow in the retina increases production of a substance called vascular endothelial growth factor, which can stimulate the growth of new, abnormal blood vessels.

Keyword: Vision
Link ID: 21637 - Posted: 11.17.2015

Ewen Callaway A long stretch of DNA called a supergene explains the variety of bizarre tactics that a wading bird species deploys to win mates, a pair of genome-sequencing studies concludes1, 2. Common to marshes and wet meadows in northern Europe and Asia, ruffs (Philomachus pugnux) are named after the decorative collars popular in Renaissance Europe. But the birds’ poufy plumage is not the only baroque aspect of their biology. Males gather at mass breeding grounds where they juke, jump and lunge toward other males, in hopes of winning females. Male ruffs belong to one of three different forms, each with a unique approach to mating. 'Independent' males, with hodgepodge of brown and black neck feathers, are territorial and defend their bit of the breeding ground. White-feathered 'satellite' males, by contrast, invade the turf of independents to steal nearby females. A third, rarer form, called 'faeders' (Old English for father), take advantage of their resemblance to female ruffs to interrupt coital encounters. “They dash in and jump on the female before the territorial males does,” says Terry Burke, an evolutionary biologist at University of Sheffield, UK. “My colleague describes this as the 'sandwich'. You end up with the territorial male jumping on the back of the mimic.” Burke was part of a team that, in 1995, found that the different approaches of male ruffs were caused by a single inherited factor3. But it seemed improbable that one gene could trigger such wide-ranging differences in behaviour and appearance. © 2015 Nature Publishing Group

Keyword: Sexual Behavior; Genes & Behavior
Link ID: 21636 - Posted: 11.17.2015

By Karen Russell In late October, when the Apple TV was relaunched, Bandit’s Shark Showdown was among the first apps designed for the platform. The game stars a young dolphin with anime-huge eyes, who battles hammerhead sharks with bolts of ruby light. There is a thrilling realism to the undulance of the sea: each movement a player makes in its midnight-blue canyons unleashes a web of fluming consequences. Bandit’s tail is whiplash-fast, and the sharks’ shadows glide smoothly over rocks. Every shark, fish, and dolphin is rigged with an invisible skeleton, their cartoonish looks belied by the programming that drives them—coding deeply informed by the neurobiology of action. The game’s design seems suspiciously sophisticated when compared with that of apps like Candy Crush Soda Saga and Dude Perfect 2. Bandit’s Shark Showdown’s creators, Omar Ahmad, Kat McNally, and Promit Roy, work for the Johns Hopkins School of Medicine, and made the game in conjunction with a neuroscientist and neurologist, John Krakauer, who is trying to radically change the way we approach stroke rehabilitation. Ahmad told me that their group has two ambitions: to create a successful commercial game and to build “artistic technologies to help heal John’s patients.” A sister version of the game is currently being played by stroke patients with impaired arms. Using a robotic sling, patients learn to sync the movements of their arms to the leaping, diving dolphin; that motoric empathy, Krakauer hopes, will keep patients engaged in the immersive world of the game for hours, contracting their real muscles to move the virtual dolphin.

Keyword: Stroke; Robotics
Link ID: 21635 - Posted: 11.17.2015

by Teresa Shipley Feldhausen The benefits of drinking coffee continue to filter in. An analysis of more than 200,000 medical professionals followed for nearly 30 years finds that drinking up to five cups of coffee a day is associated with reduced risk of dying early from heart and brain diseases as well as suicide. The study’s results were adjusted for factors like smoking, weight and diet. Benefits were more pronounced for those who had never smoked, an international team of researchers report November 16 in Circulation. Both caffeinated and decaf java had positive effects, leading the researchers to speculate that coffee’s potency as a health elixir may stem from chemical compounds in the bean such as diterpenes and chlorogenic acids. © Society for Science & the Public 2000 - 2015.

Keyword: Drug Abuse
Link ID: 21634 - Posted: 11.17.2015

Sarah Schwartz With outposts in nearly every organ and a direct line into the brain stem, the vagus nerve is the nervous system’s superhighway. About 80 percent of its nerve fibers — or four of its five “lanes” — drive information from the body to the brain. Its fifth lane runs in the opposite direction, shuttling signals from the brain throughout the body. Doctors have long exploited the nerve’s influence on the brain to combat epilepsy and depression. Electrical stimulation of the vagus through a surgically implanted device has already been approved by the U.S. Food and Drug Administration as a therapy for patients who don’t get relief from existing treatments. Now, researchers are taking a closer look at the nerve to see if stimulating its fibers can improve treatments for rheumatoid arthritis,heart failure, diabetes and even intractable hiccups. In one recent study, vagus stimulation made damaged hearts beat more regularly and pump blood more efficiently. Researchers are now testing new tools to replace implants with external zappers that stimulate the nerve through the skin. But there’s a lot left to learn. While studies continue to explore its broad potential, much about the vagus remains a mystery. In some cases, it’s not yet clear exactly how the nerve exerts its influence. And researchers are still figuring out where and how to best apply electricity. © Society for Science & the Public 2000 - 2015.

Keyword: Miscellaneous
Link ID: 21633 - Posted: 11.14.2015