Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 8221 - 8240 of 29407

Pete Etchells Autonomous Sensory Meridian Response, or ASMR, is a curious phenomenon. Those who experience it often characterise it as a tingling sensation in the back of the head or neck, or another part of the body, in response to some sort of sensory stimulus. That stimulus could be anything, but over the past few years, a subculture has developed around YouTube videos, and their growing popularity was the focus of a video posted on the Guardian this last week. It’s well worth a watch, but I couldn’t help but feel it would have been a bit more interesting if there had been some scientific background in it. The trouble is, there isn’t actually much research on ASMR out there. To date, only one research paper has been published on the phenomenon. In March last year, Emma Barratt, a graduate student at Swansea University, and Dr Nick Davis, then a lecturer at the same institution, published the results of a survey of some 500 ASMR enthusiasts. “ASMR is interesting to me as a psychologist because it’s a bit ‘weird’” says Davis, now at Manchester Metropolitan University. “The sensations people describe are quite hard to describe, and that’s odd because people are usually quite good at describing bodily sensation. So we wanted to know if everybody’s ASMR experience is the same, and of people tend to be triggered by the same sorts of things.” The study asked a range of questions about where, when and why people watch ASMR videos, whether there was any consistency in ASMR-triggering content, as well as whether individuals felt it had any effect on their mood. There was a remarkable consistency across participants in terms of triggering content – whispering worked for the majority of people, followed by videos involving some sort of personal attention, crisp sounds, and slow movements. For the most part, participants reported that they watched ASMR videos for relaxation purposes, or to help them sleep or deal with stress. © 2016 Guardian News and Media Limited

Keyword: Pain & Touch
Link ID: 21767 - Posted: 01.09.2016

AUDIE CORNISH, HOST: It's unusual for an NFL player - a current player - to criticize the league, especially its handling of controversial issues like concussions or domestic violence, but author Johnny Anonymous has done just that. He's an offensive lineman who's written a book under that pseudonym. It's called "NFL Confidential." In it, he details his 2014 season, including training camp and his big break after a starting player gets injured. He's worried about being fired, so we've masked his voice. First, Johnny Anonymous says getting hurt is always on the mind of the player. ANONYMOUS: It's absolutely constant. The NFL's the only league, the only job you'll find in the world where we have a 100 percent injury rate. CORNISH: So walk us through the questions that come to mind for a player when they first hear that, you know, sickening sound and they're lying there on the field. What are you thinking? ANONYMOUS: For some guys, it's fear, which is why you'll see them kicking and screaming and crying, and some guys it's shock. I know for most of us - and probably all of us - the first thing you think is, I'm done; that's it. You think the injury's going to take the game away from you. CORNISH: So in a way, you know, this is how it happens, right, this discussion of, like, why do people take all the painkillers, you know, like, why do people defy doctors? ANONYMOUS: You have to. It's the only way you make it through. I can tell you right now, honestly, that if I am playing a game, I cannot complete that game without painkillers. I will not be an effective player. © 2016 npr

Keyword: Brain Injury/Concussion
Link ID: 21766 - Posted: 01.09.2016

By Josh Izaac Helmets can reduce the risk of traumatic brain injury by almost 20%. But what if we take so many risks when wearing them that we lose the protective edge they provide? This could be the case, according to a study published this week. Researchers observed 80 cyclists under the guise of an “eye-tracking experiment,” pretending to track their eye-motion via a head-mounted camera as the participants inflated a virtual balloon. For some of the participants, the “eye-tracking devices” were mounted on helmets, while others just wore baseball caps, as can be seen in the picture of the equipment above. The further they inflated the balloon without it popping, the higher their reward and their risk-taking score. Participants wearing helmets inflated their balloons on average 30% more than those who wore caps, the team reports in Psychological Science. The finding could affect how we approach safety design and training, the authors say, as increased risk-taking behavior when using safety equipment might counteract the perceived benefit of the equipment. But what causes this effect in the first place? The underlying mechanism might be related to the concept of “social priming,” where people’s actions towards others are altered subconsciously due to exposure to particular words, cues, objects, or symbols. Importantly, this is the first time social priming has been shown to change people’s behaviour even when they are not interacting with others, providing potential new insights into human behavior. So, next time you’re out riding with a helmet, think twice before attempting that wheelie. © 2016 American Association for the Advancement of Science

Keyword: Brain Injury/Concussion
Link ID: 21765 - Posted: 01.09.2016

By Emily Underwood As long as she can remember, 53-year-old Rosa Sundquist has tallied the number of days per month when her head explodes with pain. The migraines started in childhood and have gotten worse as she’s grown older. Since 2008, they have incapacitated her at least 15 days per month, year-round. Head-splitting pain isn’t the worst of Sundquist’s symptoms. Nausea, vomiting, and an intense sensitivity to light, sound, and smell make it impossible for her to work—she used to be an office manager—or often even to leave her light-proofed home in Dumfries, Virginia. On the rare occasions when she does go out to dinner or a movie with her husband and two college-aged children, she wears sunglasses and noise-canceling headphones. A short trip to the grocery store can turn into a full-blown attack “on a dime,” she says. Every 10 weeks, Sundquist gets 32 bee sting–like injections of the nerve-numbing botulism toxin into her face and neck. She also visits a neurologist in Philadelphia, Pennsylvania, who gives her a continuous intravenous infusion of the anesthetic lidocaine over 7 days. The lidocaine makes Sundquist hallucinate, but it can reduce her attacks, she says—she recently counted 20 migraine days per month instead of 30. Sundquist can also sometimes ward off an attack with triptans, the only drugs specifically designed to interrupt migraines after they start. Millions of others similarly dread the onset of a migraine, although many are not afflicted as severely as Sundquist. Worldwide, migraines strike roughly 12% of people at least once per year, with women roughly three times as likely as men to have an attack. © 2016 American Association for the Advancement of Science.

Keyword: Pain & Touch; Neuroimmunology
Link ID: 21764 - Posted: 01.08.2016

By Erin Blakemore Despite all that neurotic clucking and scratching, domestic chickens are pretty unflappable. After all, we’ve bred them to be that way, preferring chill chicks to freaked-out fowl. But the behaviors of more anxious chickens could do more than ruffle a bunch of feathers: New research suggests that studying the genome of flustered birds could shed light on human mental disorders. In a new study published in the journal Genetics, evolutionary biologist Dominic Wright and his team looked at whether there’s a genetic connection between anxious behavior in chickens, mice and humans. Despite the compact size of the chicken genome — it’s just a third of the size of a human’s — the birds’ genes share surprising similarity to those of people. There's another reason why chickens are so great for genetic research. Because there are both wild and domesticated chickens, researchers can observe their contrasting behaviors and easily pin them to genetic differences. Wright bred wild red junglefowl chickens with their calmer cousins, white leghorn chickens, for the experiment. After eight generations, his team was able to run open field tests — experiments during which the birds were put in a brightly-lit arena and assessed for how much time they spent cowering on the periphery instead of strutting through the room. These behavioral tests helped the team identify brave and anxious birds, then narrow down areas of the genome related to variations in anxiety. They identified 10 candidate genes in the hypothalamus, an area of the brain which helps regulate anxiety.

Keyword: Schizophrenia; Emotions
Link ID: 21763 - Posted: 01.08.2016

Blocking the production of new immune cells in the brain could reduce memory problems seen in Alzheimer's disease, a study suggests. University of Southampton researchers said their findings added weight to evidence that inflammation in the brain is what drives the disease. A drug used to block the production of these microglia cells in the brains of mice had a positive effect. Experts said the results were exciting and could lead to new treatments. Up until now, most drugs used to treat dementia have targeted amyloid plaques in the brain which are a characteristic of people with the Alzheimer's disease. But this latest study, published in the journal Brain, suggests that in fact targeting inflammation in the brain, caused by a build-up of immune cells called microglia, could halt progression of the disease. Researchers found increased numbers of microglia in the post-mortem brains of people with Alzheimer's disease. Previous studies have also suggested that these cells could play an important role. Dr Diego Gomez-Nicola, lead study author from the university, said: "These findings are as close to evidence as we can get to show that this particular pathway is active in the development of Alzheimer's disease. "The next step is to work closely with our partners in industry to find a safe and suitable drug that can be tested to see if it works in humans." © 2016 BBC

Keyword: Alzheimers; Glia
Link ID: 21762 - Posted: 01.08.2016

Bruce Bower Youngsters befuddled by printed squiggles on the pages of a storybook nonetheless understand that a written word, unlike a drawing, stands for a specific spoken word, say psychologist Rebecca Treiman of Washington University in St. Louis and her colleagues. Children as young as 3 can be tested for a budding understanding of writing’s symbolic meaning, the researchers conclude January 6 in Child Development. “Our results show that young children have surprisingly advanced knowledge about the fundamental properties of writing,” Treiman says. “This knowledge isn’t explicitly taught to children but probably gained through early exposure to print from sources such as books and computers.” Researchers and theorists have previously proposed that children who cannot yet read don’t realize that a written word corresponds to a particular spoken word. Studies have found, for instance, that nonliterate 3- to 5-year-olds often assign different meanings to the same word, such as girl, depending on whether that word appears under a picture of a girl or a cup. Treiman’s investigation “is the first to show that kids as young as 3 have the insight that print stands for something beyond what’s scripted on the page,” says psychologist Kathy Hirsh-Pasek of Temple University in Philadelphia. Preschoolers who are regularly read to have an advantage in learning that written words have specific meanings, suspects psychologist Roberta Golinkoff of the University of Delaware in Newark. © Society for Science & the Public 2000 - 2015.

Keyword: Language; Dyslexia
Link ID: 21761 - Posted: 01.08.2016

By Darryl Fears Flushed down toilets, poured down sinks and excreted in urine, a chemical component in the pill wafts into sewage systems and ends up in various waterways where it collects in fairly heavy doses. That's where fish soak it up. A recent survey by the U.S. Geological Survey found that fish exposed to a synthetic hormone called 17a-ethinylestradiol, or EE2, produced offspring that struggled to fertilize eggs. The grandchildren of the originally exposed fish suffered a 30 percent decrease in their fertilization rate. The authors mulled the impact of what they discovered and decided it wasn't good. "If those trends continued, the potential for declines in overall population numbers might be expected in future generations," said Ramji Bhandari, a University of Missouri assistant research professor and a visiting scientist at USGS. "These adverse outcomes, if shown in natural populations, could have negative impacts on fish inhabiting contaminated aquatic environments." The study, with Bhandari as lead author, also determined that the chemical BPA, used widely in plastics, had a similar effect on the small Japanese medaka fish used for the research. The medaka was chosen because it reproduces quickly so that scientists can see results of subsequent generations faster than slow reproducing species such as smallmouth bass.

Keyword: Hormones & Behavior; Sexual Behavior
Link ID: 21760 - Posted: 01.08.2016

By Emily Underwood Lumos Labs, the company that produces the popular “brain-training” program Lumosity, yesterday agreed to pay a $2 million settlement to the Federal Trade Commission (FTC) for running deceptive advertisements. Lumos had claimed that its online games can help users perform better at work and in school and stave off cognitive deficits associated with serious diseases such as Alzheimer’s, traumatic brain injury, and post-traumatic stress. The $2 million settlement will be used to compensate Lumosity consumers who were misled by false advertising, says Michelle Rusk, a spokesperson with FTC in Washington, D.C. The company will also be required to provide an easy way to cancel autorenewal billing for the service, which includes online and mobile app subscriptions, with payments ranging from $14.95 monthly to lifetime memberships for $299.95. Before consumers can access the games, a pop-up screen will alert them to FTC’s order and allow them to avoid future billing, Rusk says. The action is part of a larger crackdown on companies selling products that purportedly enhance memory or provide some other cognitive benefit, Rusk says. For some time now, FTC has been “concerned about some of the claims we’re seeing out there,” particularly those from companies like Lumos that suggest their games can reduce the effects of conditions such as dementia, she says. After evaluating the literature on Lumos's products, and the broader research on the benefits of brain-training games, “our assessment was they didn’t have adequate science for the claims that they’re making,” she says. © 2016 American Association for the Advancement of Science

Keyword: Learning & Memory; Intelligence
Link ID: 21759 - Posted: 01.07.2016

By Stephani Sutherland A technique called optogenetics has transformed neuroscience during the past 10 years by allowing researchers to turn specific neurons on and off in experimental animals. By flipping these neural switches, it has provided clues about which brain pathways are involved in diseases like depression and obsessive-compulsive disorder. “Optogenetics is not just a flash in the pan,” says neuroscientist Robert Gereau of Washington University in Saint Louis. “It allows us to do experiments that were not doable before. This is a true game changer like few other techniques in science.” Since the first papers were published on optogenetics in the mid-aughts some researchers have mused about one day using optogenetics in patients, imagining the possibility of an off-switch for depression, for instance. The technique, however, would require that a patient submit to a set of highly invasive medical procedures: genetic engineering of neurons to insert molecular switches to activate or switch off cells, along with threading of an optical fiber into the brain to flip those switches. Spurred on by a set of technical advances, optogenetics pioneer Karl Deisseroth, together with other Stanford University researchers, has formed a company to pursue optogenetics trials in patients within the next several years—one of several start-ups that are now contemplating clinical trials of the technique. Circuit Therapeutics, founded in 2010, is moving forward with specific plans to treat neurological diseases. (It also partners with pharmaceutical companies to help them use optogenetics in animal research to develop novel drug targets for human diseases.) © 2016 Scientific America

Keyword: Pain & Touch
Link ID: 21758 - Posted: 01.07.2016

By Anahad O'Connor David Ludwig often uses an analogy when he talks about weight loss: Human beings are not toaster ovens. If we were, then the types of calories we consumed would not matter, and calorie counting would be the most effective way to lose weight. Dr. Ludwig, an obesity expert and professor of nutrition at the Harvard T.H. Chan School of Public Health, argues that weight gain begins when people eat the wrong types of food, which throws their hormones out of whack and sets off a cycle of cravings, hunger and bingeing. In his new book, “Always Hungry?,” he argues that the primary driver of obesity today is not an excess of calories per se, but an excess of high glycemic foods like sugar, refined grains and other processed carbohydrates. Recently, we caught up with Dr. Ludwig to talk about which foods act as “fertilizer for fat cells,” why he thinks the conventional wisdom on weight loss is all wrong, and long-term strategies for weight loss. Here are edited excerpts from our conversation. What is the basic message of your book? The basic premise is that overeating doesn’t make you fat. The process of getting fat makes you overeat. It may sound radical, but there’s literally a century of science to support this point. Simply cutting back on calories as we’ve been told actually makes the situation worse. When we cut back on calories, our body responds by increasing hunger and slowing metabolism. It responds in an effort to save calories. And that makes weight loss progressively more and more difficult on a standard low calorie diet. It creates a battle between mind and metabolism that we’re doomed to lose. But we’ve all been told that obesity is caused by eating too much. Is that not the case? We think of obesity as a state of excess, but it’s really more akin to a state of starvation. If the fat cells are storing too many calories, the brain doesn’t have access to enough to make sure that metabolism runs properly. So the brain makes us hungry in an attempt to solve that problem, and we overeat and feel better temporarily. © 2016 The New York Times Company

Keyword: Obesity
Link ID: 21757 - Posted: 01.07.2016

Katherine Hobson Pregnant women worry about all kinds of things. Can I drink alcohol? (No.) Can I take antidepressants? (Maybe.) Can I do the downward dog? (Yes.) Now there's one less thing to fret about: harm to the baby when the mother takes birth control pill right before conceiving, or during the first few months of pregnancy. According to a study covering more than 880,000 births in Denmark, the overall rate of birth defects was consistent for women who had never taken the pill at all, for those who had used it before getting pregnant and for those who continued on the pill in early pregnancy. (There were about 25 birth defects per 1,000 births for all groups.) The study is important because so many women take the pill – about 16 percent of women of childbearing age in the U.S. When used perfectly, the failure rate of the pill is less than 1 percent, but that jumps to 9 percent under typical use because of missed pills, drug interactions or illness. That means a lot of embryos are exposed to the hormones used in the pill, which can linger for a few months after a woman stops taking it. "Our findings are really reassuring," says Brittany Charlton, an author of the study and a researcher in the Harvard T.H. Chan School of Public Health's epidemiology department. The results also confirm most of the previous research, which has pointed to no overall increase in major birth defects, she says. This study, published in the medical journal BMJ, used national birth, patient and prescription registry data to track contraceptive prescriptions among women who gave birth, then looked at whether birth defects were associated with pill use. © 2016 npr

Keyword: Development of the Brain; Sexual Behavior
Link ID: 21756 - Posted: 01.07.2016

Children conceived via infertility treatments are no more likely to have a developmental delay than children conceived without such treatments, according to a study by researchers at the National Institutes of Health, the New York State Department of Health and other institutions. The findings, published online in JAMA Pediatrics, may help to allay longstanding concerns that conception after infertility treatment could affect the embryo at a sensitive stage and result in lifelong disability. The authors found no differences in developmental assessment scores of more than 1,800 children born to women who became pregnant after receiving infertility treatment and those of more than 4,000 children born to women who did not undergo such treatment. “When we began our study, there was little research on the potential effects of conception via fertility treatments on U.S. children,” said Edwina Yeung, Ph.D., an investigator in the Division of Intramural Population Health Research at NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). “Our results provide reassurance to the thousands of couples who have relied on these treatments to establish their families.” Also taking part in the study were researchers from the University at Albany, New York; the New York State Department of Health, also in Albany; and CapitalCare Pediatrics in Troy, New York. The Upstate KIDS study enrolled infants born to women in New York State (except for New York City) from 2008 to 2010. Parents of infants whose birth certificates indicated infertility treatment were invited to enroll their children in the study, as were all parents of twins and other multiples. The researchers also recruited roughly three times as many singletons not conceived via infertility treatment. Four months after giving birth, the mothers indicated on a questionnaire the type of infertility treatment they received:

Keyword: Development of the Brain
Link ID: 21755 - Posted: 01.07.2016

Laura Sanders It didn’t take a lot of brainpower to come up with the name for a nerve cell that looks like a bushy, round tangle of fibers perched atop a nucleus. Meet the shrub cell. This botanically named cell, discovered in the brains of adult mice, made its formal debut in the Nov. 27 Science. The newly described cell lives in a particular nervy neighborhood — an area called layer 5 in the part of the brain that handles incoming visual information. Xiaolong Jiang of Baylor College of Medicine in Houston and colleagues defined shrub cells and other newcomers by their distinct shapes, their particular connections to other nerve cells or their similarities to nerve cells found elsewhere. Joining shrub cells are the freshly named horizontally elongated cells, deep-projecting cells, L5 basket cells and L5 neurogliaform cells. Each is an interneuron, a middleman that connects nerve cells to each other. The finding highlights the stunning variety of shapes and wiring patterns of cells in the brain. Citations X. Jiang et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science. Vol. 350, November 27, 2015. doi: 10.1126/science.aac9462 © Society for Science & the Public 2000 - 2015.

Keyword: Development of the Brain
Link ID: 21754 - Posted: 01.07.2016

by Helen Thompson Earth’s magnetic field guides shark movement in the open ocean, but scientists had always suspected that sharks might also get their directions from an array of other factors, including smell. To sniff out smell’s role, biologists clogged the noses of leopard sharks (Triakis semifasciata), a Pacific coastal species that makes foraging trips out to deeper waters. Researchers released the sharks out at sea and tracked their path back to the California coast over four hours. Sharks with an impaired sense of smell only made it 37.2 percent of the way back to shore, while unimpaired sharks made it 62.6 percent of the way back to shore. The study provides the first experimental evidence that smell influences a shark’s sense of direction, the team writes January 6 in PLOS ONE. The animals may be picking up on chemical gradients produced by food sources that live on the coast. © Society for Science & the Public 2000 - 2015.

Keyword: Chemical Senses (Smell & Taste); Animal Migration
Link ID: 21753 - Posted: 01.07.2016

By Debra W. Soh What should parents do if their little boy professes an intense desire to be a girl? Or if their daughter comes home from kindergarten and says she wants to be a boy? In recent years the dominant thinking has changed dramatically regarding children’s gender dysphoria. Previously, parents might hope that it would be a passing phase, as it usually is. But now they are under pressure from gender-identity politics, which asserts that children as young as 5 should be supported in wanting to live as the opposite sex. Any attempts to challenge this approach are deemed intolerant and oppressive. I myself was a gender-dysphoric child who preferred trucks and Meccano sets to Easy-Bake Ovens. I detested being female and all of its trappings. Yet when I was growing up in the 1980s, the concept of helping children transition to another sex was completely unheard of. My parents allowed me to wear boys’ clothing and shave my head, to live as a girl who otherwise looked and behaved like a boy. I outgrew my dysphoria by my late teens. Looking back, I am grateful for my parents’ support, which helped me work things out. Since then, research has established best-treatment practices for adolescents and adults with gender dysphoria: full transitioning, which includes treatment with hormones to suppress puberty and help the individual develop breasts or facial hair, as well as gender-reassignment surgery. But prepubescent children who identify with the opposite sex are another matter entirely. How best to deal with them has become so politicized that sexologists, who presumably would be able to determine the healthiest approach, are extremely reluctant to get involved. They have seen what happens when they deviate from orthodoxy. ©2016 Dow Jones & Company, Inc

Keyword: Sexual Behavior; Development of the Brain
Link ID: 21752 - Posted: 01.05.2016

Patricia Neighmond Losing your ability to think and remember is pretty scary. We know the risk of dementia increases with age. But if you have memory lapses, you probably needn't worry. There are pretty clear differences between signs of dementia and age-related memory loss. After age 50, it's quite common to have trouble remembering the names of people, places and things quickly, says Dr. Kirk Daffner, chief of the division of cognitive and behavioral neurology at Brigham and Women's Hospital in Boston. The brain ages just like the rest of the body. Certain parts shrink, especially areas in the brain that are important to learning, memory and planning. Changes in brain cells can affect communication between different regions of the brain. And blood flow can be reduced as arteries narrow. Simply put, this exquisitely complex organ just isn't functioning like it used to. Forgetting the name of an actor in a favorite movie, for example, is nothing to worry about. But if you forget the plot of the movie or don't remember even seeing it, that's far more concerning, Daffner says. When you forget entire experiences, he says, that's "a red flag that something more serious may be involved." Forgetting how to operate a familiar object like a microwave oven or forgetting how to drive to the house of a friend you've visited many times before can also be signs something is wrong. © 2016 npr

Keyword: Learning & Memory; Development of the Brain
Link ID: 21751 - Posted: 01.05.2016

A 25-year-old former college football player showed signs of a type of brain degeneration from repeated trauma, say researchers who described the autopsy-confirmed case. Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder associated with repetitive head impacts. Symptoms may include memory loss, impaired judgment, depression and progressive dementia. CTE can only be diagnosed after death by examining the brain. Monday's issue of JAMA Neurology includes a letter describing CTE in a 25-year-old man born with a heart valve disorder. He died of cardiac arrest secondary to a heart infection after playing football for 16 years and experiencing an estimated more than 10 concussions while playing. Dr. Ann McKee and Dr. Jesse Mez of Boston University School of Medicine ran neuropsychological tests on the man when he showed symptoms a year before his death, and then conducted an autopsy, reviewed his medical records and interviewed family members. "Focal lesions of CTE have been found in athletes as young as 17 years; however, widespread CTE pathology, as found in this case, is unusual in such a young football player," they wrote. To their knowledge, it's the first such case to include neuropsychological testing to document the type of cognitive issues with CTE. In this case, the athlete started playing football when he was six, including three years of college football as a defensive linebacker. His first concussion occurred at age eight. ©2015 CBC/Radio-Canada.

Keyword: Brain Injury/Concussion
Link ID: 21750 - Posted: 01.05.2016

By Melissa Healy A new study finds that policies on defining brain death vary from hospital to hospital and could result in serious errors. Since 2010, neurologists have had a clear set of standards and procedures to distinguish a brain-dead patient from one who might emerge from an apparent coma. But when profoundly unresponsive patients are rushed to hospitals around the nation, the physicians who make the crucial call are not always steeped in the diagnostic fine points of brain death and the means of identifying it with complete confidence. State laws governing the diagnosis of brain death vary widely. Some states allow any physician to make the diagnosis, while others dictate the level of specialty a physician making the call must have. Some require that a second physician confirm the diagnosis or that a given period of time elapse. Others make no such demands. Given these situations, hospital policies can be invaluable guides for physicians, hospital administrators and patients’ families. In the absence of consistent physician expertise or legal requirements, hospital protocols can translate a scientific consensus into a step-by-step checklist. That would help ensure that no one who is not brain-dead is denied further care or considered a potential organ donor and that the deceased and their families would have every opportunity to donate organs.

Keyword: Consciousness
Link ID: 21749 - Posted: 01.05.2016

Jon Hamilton There's growing evidence that a lack of sleep can leave the brain vulnerable to Alzheimer's disease. "Changes in sleep habits may actually be setting the stage" for dementia, says Jeffrey Iliff, a brain scientist at Oregon Health & Science University in Portland. The brain appears to clear out toxins linked to Alzheimer's during sleep, Iliff explains. And, at least among research animals that don't get enough solid shut-eye, those toxins can build up and damage the brain. Iliff and other scientists at OHSU are about to launch a study of people that should clarify the link between sleep problems and Alzheimer's disease in humans. It has been clear for decades that there is some sort of link. Sleep disorders are very common among people with Alzheimer's disease. For a long time, researchers thought this was simply because the disease was "taking out the centers of the brain that are responsible for regulating sleep," Iliff says. But two recent discoveries have suggested the relationship may be more complicated. The first finding emerged in 2009, when researchers at Washington University in St. Louis showed that the sticky amyloid plaques associated with Alzheimer's develop more quickly in the brains of sleep-deprived mice. Then, in 2013, Iliff was a member of a team that discovered how a lack of sleep could be speeding the development of those Alzheimer's plaques: A remarkable cleansing process takes place in the brain during deep sleep, at least in animals. What happens, Iliff says, is "the fluid that's normally on the outside of the brain — cerebrospinal fluid, it's a clean, clear fluid — it actually begins to recirculate back into and through the brain along the outsides of blood vessels." This process, via what's known as the glymphatic system, allows the brain to clear out toxins, including the toxins that form Alzheimer's plaques, Iliff says. © 2016 npr

Keyword: Sleep; Alzheimers
Link ID: 21748 - Posted: 01.04.2016