Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By Robert Sanders, For nearly 55 years, until her retirement in 2014, Marian Diamond would often be seen walking through campus to her anatomy class carrying a flowered hat box, within which nestled a real, pickled human brain. Gently lifting it from its wrapping, she would display it to classes and express her awe that such a small, three-pound mass of protoplasm was the most complex structure known to humankind. Trailer for "My Love Affair with the Brain: The Life and Science of Dr. Marian Diamond," a new documentary by Luna Productions. Credit: Luna Productions Over the course of her career, Diamond, a professor emeritus of integrative biology at UC Berkeley, demonstrated that an enriched environment builds better brains and helped establish the now accepted idea that the brain changes throughout our lifetimes and that we need to continually “use it or lose it.” She also conducted the first scientific analysis of Albert Einstein’s brain. Now 89, Diamond is the subject of a new one-hour documentary, My Love Affair with the Brain: the Life and Science of Dr. Marian Diamond, that will get its local premiere Saturday, Feb. 27, at 1 p.m. in the new Berkeley Art Museum and Pacific Film Archive. Catherine Ryan and Gary Weimberg, co-directors and producers of the documentary, will host the free preview, along with BAMPFA, the California Alumni Association and UC Berkeley’s Helen Wills Neuroscience Institute, Lawrence Hall of Science, Department of Psychology, Division of Biological Sciences, Department of Integrative Biology, Department of Molecular and Cell Biology and Center for Research and Education on Aging. © The Regents of the University of California|Terms of Use
Keyword: Learning & Memory
Link ID: 21933 - Posted: 02.27.2016
Story by Amy Ellis Nutt She relaxed in the recliner, her eyes closed, her hands resting lightly in her lap. The psychiatrist’s assistant made small talk while pushing the woman’s hair this way and that, dabbing her head with spots of paste before attaching the 19 electrodes to her scalp. In the struggle over the future of psychiatry, researchers are looking deep within the brain to understand mental illness and find new therapeutic tools. As the test started, her anxiety ticked up. And that’s when it began: the sensation of being locked in a vise. First, she couldn’t move. Then she was shrinking, collapsing in on herself like some human black hole. It was a classic panic attack — captured in vivid color on the computer screen that psychiatrist Hasan Asif was watching. “It’s going to be okay,” he said, his voice quiet and soothing. “Just stay with it.” The images playing out in front of him were entirely unexpected; this clearly wasn’t a resting state for his patient. With each surge of anxiety, a splotch of red bloomed on the computer screen. Excessive activity of high-energy brain waves near the top of her head indicated hyper-arousal and stress. Decreased activity in the front of her brain, where emotions are managed, showed she couldn’t summon the resources to keep calm.
Keyword: Depression; Brain imaging
Link ID: 21932 - Posted: 02.25.2016
The dodo is an extinct flightless bird whose name has become synonymous with stupidity. But it turns out that the dodo was no bird brain, but instead a reasonably brainy bird. Scientists said on Wednesday they figured out the dodo's brain size and structure based on an analysis of a well-preserved skull from a museum collection. They determined its brain was not unusually small but rather completely in proportion to its body size. They also found the dodo may have had a better sense of smell than most birds, with an enlarged olfactory region of the brain. This trait, unusual for birds, probably let it sniff out ripe fruit to eat. The research suggests the dodo, rather than being stupid, boasted at least the same intelligence as its fellow members of the pigeon and dove family. Mauritius Dodo bird A skeleton of a Mauritius Dodo bird stands at an exhibition in the Mauritius Institute Museum in Port Louis in this Dec. 27, 2005 file photo. (Reuters) "If we take brain size — or rather, volume, as we measured here — as a proxy for intelligence, then the dodo was as smart as a common pigeon," paleontologist Eugenia Gold of Stony Brook University in New York state said. "Common pigeons are actually smarter than they get credit for, as they were trained as message carriers during the world wars." ©2016 CBC/Radio-Canada.
Keyword: Intelligence; Evolution
Link ID: 21931 - Posted: 02.25.2016
by Giuseppe Gangarossa When we think about sex hormones, notably estrogens and androgens, we usually associate them with sex, gender and body development. Like all hormones, they are chemical messengers, substances produced in one part of the body that go on to tell other parts what to do. However, we often have the tendency to forget the enormous impact that these steroid hormones have on brain functions. From animal studies, it has become clear that during early development, exposure of the brain to testosterone and estradiol, hormones present in both males and females, leads to irreversible changes in the nervous system (McCarthy et al., 2012). A growing and very appealing body of science suggests that sex hormones play a neuromodulatory role in cognitive brain function (Janowsky, 2006). Moreover, testosterone dysfunctions (hypogonadism, chemical castration, etc.) have shown to be associated with memory defects. However, in spite of these advances, it still remains an enigma how sex hormones affect the brain. In an interesting paper published in PLOS ONE, Picot and colleagues tried to fill in one piece of the puzzle. They investigated the neurobiological effects of cerebral androgen receptor (AR) ablation on hippocampal plasticity and cognitive performance in male rodents (Picot et al., 2016). Although several reports have already highlighted a link between sex hormones and cognitive function (Galea et al., 2008; Janowsky, 2006), much more needs to be done to fully elucidate the “non-sexual” functions of androgens.
Keyword: Hormones & Behavior; Learning & Memory
Link ID: 21930 - Posted: 02.25.2016
By Meeri Kim Teenagers tend to have a bad reputation in our society, and perhaps rightly so. When compared to children or adults, adolescents are more likely to engage in binge drinking, drug use, unprotected sex, criminal activity, and reckless driving. Risk-taking is like second nature to youth of a certain age, leading health experts to cite preventable and self-inflicted causes as the biggest threats to adolescent well-being in industrialized societies. But before going off on a tirade about groups of reckless young hooligans, consider that a recent study may have revealed a silver lining to all that misbehavior. While adolescents will take more risks in the presence of their peers than when alone, it turns out that peers can also encourage them to learn faster and engage in more exploratory acts. A group of 101 late adolescent males were randomly assigned to play the Iowa Gambling Task, a psychological game used to assess decision making, either alone or observed by their peers. The task involves four decks of cards: two are “lucky” decks that will generate long-term gain if the player continues to draw from them, while the other two are “unlucky” decks that have the opposite effect. The player chooses to play or pass cards drawn from one of these decks, eventually catching on to which of the decks are lucky or unlucky — and subsequently only playing from the lucky ones.
Keyword: Development of the Brain; Attention
Link ID: 21929 - Posted: 02.24.2016
By David Z. Hambrick We all make stupid mistakes from time to time. History is replete with examples. Legend has it that the Trojans accepted the Greek’s “gift” of a huge wooden horse, which turned out to be hollow and filled with a crack team of Greek commandos. The Tower of Pisa started to lean even before construction was finished—and is not even the world’s farthest leaning tower. NASA taped over the original recordings of the moon landing, and operatives for Richard Nixon’s re-election committee were caught breaking into a Watergate office, setting in motion the greatest political scandal in U.S. history. More recently, the French government spent $15 billion on a fleet of new trains, only to discover that they were too wide for some 1,300 station platforms. We readily recognize these incidents as stupid mistakes—epic blunders. On a more mundane level, we invest in get-rich-quick schemes, drive too fast, and make posts on social media that we later regret. But what, exactly, drives our perception of these actions as stupid mistakes, as opposed to bad luck? Their seeming mindlessness? The severity of the consequences? The responsibility of the people involved? Science can help us answer these questions. In a study just published in the journal Intelligence, using search terms such as “stupid thing to do”, Balazs Aczel and his colleagues compiled a collection of stories describing stupid mistakes from sources such as The Huffington Post and TMZ. One story described a thief who broke into a house and stole a TV and later returned for the remote; another described burglars who intended to steal cell phones but instead stole GPS tracking devices that were turned on and gave police their exact location. The researchers then had a sample of university students rate each story on the responsibility of the people involved, the influence of the situation, the seriousness of the consequences, and other factors. © 2016 Scientific American,
Keyword: Attention
Link ID: 21928 - Posted: 02.24.2016
By Michael Balter About 90% of bird species live in monogamous pairs, but that doesn’t mean they don’t fool around on the side. The females of most monogamous species breed with outside males at least occasionally. Male birds have evolved two main ways to combat such cuckoldry: They either aggressively drive away rival males, or they cement the pair bond by singing lovely duets with their partners. Which works better, making love or making war? Researchers working with the red-backed fairywren (Malurus melanocephalus), native to Australia, put the question to the test by conducting the experiment in the video above. The team mounted a taxidermically stuffed male fairywren on a branch (upper left) in a male-female pair’s territory and then observed what happened. In this case, the live male attacks its artificial rival once, but then spends most of the next minute duetting with its female partner (who is light gray and white). The researchers analyzed data from various trials involving up to 51 males, using parameters such as how long they delayed before attacking the artificial mount, how long before beginning a duet, and how many duets they sang with the females. These data were then correlated with genetic paternity tests of 186 offspring in the nests of the supposedly monogamous birds. Although the percentage of cuckoldry was high—47% of the offspring had been fathered by outside males—those males that quickly responded to the threat of a rival by repeatedly duetting with their partners were much more likely to be the fathers of the offspring in their nests, the team reports online today in Biology Letters. On the other hand, there was no correlation between how aggressive the males were to the artificial rival and the paternity rate, the researchers found. © 2016 American Association for the Advancement of Science
Keyword: Sexual Behavior; Animal Communication
Link ID: 21927 - Posted: 02.24.2016
By Claire Asher A poor night's sleep is enough to put anyone in a bad mood, and although scientists have long suspected a link between mood and sleep, the molecular basis of this connection remained a mystery. Now, new research has found several rare genetic mutations on the same gene that definitively connect the two. Sleep goes hand-in-hand with mood. People suffering from depression and mania, for example, frequently have altered sleeping patterns, as do those with seasonal affective disorder (SAD). And although no one knows exactly how these changes come about, in SAD sufferers they are influenced by changes in light exposure, the brain’s time-keeping cue. But is mood affecting sleep, is sleep affecting mood, or is there a third factor influencing both? Although a number of tantalizing leads have linked the circadian clock to mood, there is “no definitive factor that proves causality or indicates the direction of the relationship,” says Michael McCarthy, a neurobiologist at the San Diego Veterans’ Affairs Medical Center and the University of California (UC), San Diego. To see whether they could establish a link between the circadian clock, sleep, and mood, scientists in the new study looked at the genetics of a family that suffers from abnormal sleep patterns and mood disorders, including SAD and something called advanced sleep phase, a condition in which people wake earlier and sleep earlier than normal. The scientists screened the family for mutations in key genes involved in the circadian clock, and identified two rare variants of the PERIOD3 (PER3) gene in members suffering from SAD and advanced sleep phase. “We found a genetic change in people who have both seasonal affective disorder and the morning lark trait” says lead researcher Ying-Hui Fu, a neuroscientist at UC San Francisco. When the team tested for these mutations in DNA samples from the general population, they found that they were extremely rare, appearing in less than 1% of samples. © 2016 American Association for the Advancement of Science.
Keyword: Sleep
Link ID: 21926 - Posted: 02.23.2016
By GABRIELLE GLASER On the rainy fall morning of their first appointment, Dr. Mark Willenbring, a psychiatrist, welcomed a young web designer into his spacious office with a firm handshake and motioned for him to sit. The slender 29-year-old patient, dressed in a plaid shirt, jeans and a baseball cap, slouched into his chair and began pouring out a story of woe stretching back a dozen years. Addicted to heroin, he had tried more than 20 traditional faith- and abstinence-based rehabilitation programs. In 2009, a brother died of an OxyContin overdose. Last summer, he attempted suicide by swallowing a fistful of Xanax. When he woke up to find he was still alive, he overdosed on heroin. At a boot camp for troubled teenagers, he said, staffers beat him and withheld food. After he refused to climb a mountain in a team-building exercise, they strapped him to a gurney and dragged him up themselves. The young man in the psychiatrist’s office paused, tears sliding down his cheeks. “Sounds like a prison camp,” Dr. Willenbring said softly, leaning forward in his chair to pass a box of tissues. He began explaining the neuroscience of alcohol and drug dependence, 60 percent of which, he said, is attributable to a person’s genetic makeup. Listening intently, the young patient seemed relieved at the idea that his previous failures in rehab might reflect more than a lack of will. Dr. Willenbring, 66, has repeated this talk hundreds of times. But while scientifically unassailable, it is not what patients usually hear at addiction treatment centers. © 2016 The New York Times Company
Keyword: Drug Abuse
Link ID: 21925 - Posted: 02.23.2016
Bianca Nogrady Nicholas Price works to understand the brain's fundamental functions, with a view towards developing a bionic eye. The neuroscientist uses marmosets and macaques in his experiments at Monash University’s Biomedicine Discovery Institute in Melbourne. In late January, he was shocked to discover a bill before the Australian Parliament that calls for a ban on the import of non-human primates for medical research. Australia’s three main breeding colonies of research primates consist of several hundred macaques, marmosets and baboons. Regular imports of the animals are vital to maintain the genetic diversity of these colonies, says Price. Senator Lee Rhiannon, a member of the Greens party, introduced the bill on 17 September last year as an amendment to Australia’s federal Environment Protection and Biodiversity Conservation Act. But because the Senate committee that deals with this piece of legislation is not usually of interest to those in the medical research community, the amendment almost slipped under the community's radar, says Price. By the time he heard about the proposed ban, from another researcher, the window for public comment was days away from closing, though it was later extended. As soon as they found out, Price and his Monash colleagues James Bourne and Marcello Rosa began e-mailing researchers around the world. Several institutions rushed to submit statements opposing the bill, including the Federation of European Neuroscience Societies (FENS), the Society for Neuroscience, headquartered in Washington DC, and the Basel Declaration Society, which promotes the open, transparent and ethical use of animals in research. Australia’s National Health and Medical Research Council and the Australasian Neuroscience Society also sent statements of opposition to the Senate committee. © 2016 Nature Publishing Group
Keyword: Animal Rights
Link ID: 21924 - Posted: 02.23.2016
Laura Sanders In a multivirus competition, a newcomer came out on top for its ability to transport genetic cargo to a mouse’s brain cells. The engineered virus AAV-PHP.B was best at delivering a gene that instructed Purkinje cells, the dots in the micrograph above, to take on a whitish glow. Unaffected surrounding cells in the mouse cerebellum look blue. Cargo carried by viruses like AAV-PHP.B could one day replace faulty genes in the brains of people. AAV-PHP.B beat out other viruses including a similar one called AAV9, which is already used to get genes into the brains of mice. Genes delivered by AAV-PHP.B also showed up in the spinal cord, retina and elsewhere in the body, Benjamin Deverman of Caltech and colleagues report in the February Nature Biotechnology. Similar competitions could uncover viruses with the ability to deliver genes to specific types of cells, the researchers write. Selective viruses that can also get into the brain would enable deeper studies of the brain and might improve gene therapy techniques in people. © Society for Science & the Public 2000 - 2016
Keyword: Brain imaging; Genes & Behavior
Link ID: 21923 - Posted: 02.23.2016
Tina Hesman Saey Sonia Vallabh knows what will probably kill her. In 2011, the Boston-area law school graduate learned she carries the same genetic mutation that caused her mother’s death from a rare brain-wasting prion disease. Prions are twisted forms of normal brain proteins that clump together and destroy nerves. About 10 to 15 percent of prion diseases are caused by a mutation in the PRNP gene, leading to such deadly diseases as Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker syndrome and fatal familial insomnia, the disease that killed Vallabh’s mother. Grief, shared with family and friends, came first. Eventually, Vallabh realized, “We can’t get around this prognosis.… We’ve got to go through it.” So began her and husband Eric Minikel’s odyssey to learn about the disease that had turned their lives upside down. A scientist friend came by with a flash drive loaded with research papers about prion diseases. “We didn’t have the vocabulary” to understand the information, Vallabh says. So she took a sabbatical from her job to take biology and chemistry classes. Minikel kept writing transportation software, but attended night classes with his wife. Vallabh’s first foray into brain research was as a technician in a lab studying Huntington’s disease. During “science nights” at the couple’s home, scientist pals team-taught biology and biochemistry. The couple took the biggest step when Minikel left his consulting job and both enrolled in graduate school to study prion diseases. Prion proteins, some of which clump together or form fibrils, as in this E. coli bacteria, are often used to model how proteins misfold in some neurodegenerative disorders. © Society for Science & the Public 2000 - 2016
Rae Ellen Bichell "I am what I like to call 'new stroke'," says Troy Hodge, a 43-year-old resident of Carol County, Md. With a carefully trimmed beard and rectangular hipster glasses, Hodge looks spry. But two years ago, his brain stopped communicating for a time with the left half of his body. He was at home getting ready for work as a food service director at a nearby nursing home. Hodge remembers entering the downstairs bathroom to take his blood pressure medications. He sat down on the bathroom floor and couldn't get up. He says he felt so hot, he actually splashed some toilet water on his face because he couldn't reach the sink. When Hodge didn't show up for work, a colleague got worried and came over. She called 911 when she found him on the floor. "I remember telling her not to let me die," says Hodge, "and from then on I really don't remember that much." He woke up a day or so later at a trauma center one state over, in Delaware. "Troy experienced what we call an intracerebral hemorrhage, which basically just means bleeding within the substance of the brain," says Dr. Steven Kittner, a neurologist at the University of Maryland School of Medicine. Hodge's high blood pressure probably damaged the tiny vessels in his brain, Kittner says. Hodge is one of many Americans having strokes at a younger age. About 10 percent of all strokes occur in people between 18 and 50 years old, and the risk factors include some that Hodge had: high blood pressure, overweight, off-kilter cholesterol, smoking and diabetes. © 2016 npr
Keyword: Stroke
Link ID: 21921 - Posted: 02.22.2016
By Roberto A. Ferdman Poverty has a way of rearing its ugly head, slipping into the cracks in people's lives when they're young and then re-emerging later in life. Sometimes it happens in ways that are easily observable—what poor babies are fed, for instance, has been shown to alter what they crave as adults, creating life-long affinities for foods that might be better left uneaten. But sometimes the influences are hidden, and all the more insidious as a result. A team of researchers, led by Sarah Hill, who teaches psychology at Texas Christian University, believe they have uncovered evidence of one such lingering effect. Specifically, Hill and her colleagues found that people who grow up poor seem to have a significantly harder time regulating their food intake, even when they aren't hungry. "We found that they eat comparably high amounts regardless of their need," said Hill. The researchers, interested in exploring why obesity is more prevalent in poorer populations, devised three separate experiments, which tested how people from different socioeconomic backgrounds behaved in front of food. In the first, they invited 31 female participants into their lab, who were asked how long it had been since they had eaten, and how hungry they were. They were then given snacks (cookies and pretzels), which they were free to eat or leave be, as they pleased. When they were finished, Hill and her team measured the number of calories each consumed. The discrepancy between how the participants ate was alarming.
Mo Costandi People who are prone to falling and injuring and injuring themselves in middle age are at significantly increased risk of developing Parkinson’s Disease decades later, according to a new study by researchers in Sweden. The findings, published earlier this month in the open access journal PLoS Medicine, suggest that frailty – and especially an increased risk of falling and fracturing one’s hip – could be a marker for degenerative brain changes, which may occur decades before disease symptoms appear, and possibly aid in early diagnosis. Parkinson’s Disease is a progressive neurodegenerative disease characterised by the death of dopamine-producing neurons in a region of the midbrain called the substantia nigra. This causes the three main symptoms of tremor, muscle rigidity, and slow movements, which typically appear at around 60 years of age, and progress at varying rates. Although widely considered to be a movement disorder, Parkinson’s is also associated with cognitive impairments, which in severe cases can develop into full-blown dementia. Last year, Peter Nordström of Umeå University and his colleagues published the results of a large population study, in which they examined the medical records of all the approximately 1.35 million Swedish men conscripted at age 18 for compulsory military service between the years of 1969 and 1996. Looking specifically at measures of muscle strength, they found that those who scored lowest on handgrip and elbow flexion strength at the time of conscription were significantly more likely to develop Parkinson’s 30 years later. © 2016 Guardian News and Media Limited
Keyword: Parkinsons
Link ID: 21919 - Posted: 02.20.2016
By DONALD G. McNEIL Jr. A baby with a shrunken, misshapen head is surely a heartbreaking sight. But reproductive health experts are warning that microcephaly may be only the most obvious consequence of the spread of the Zika virus. Even infants who appear normal at birth may be at higher risk for mental illnesses later in life if their mothers were infected during pregnancy, many researchers fear. The Zika virus, they say, closely resembles some infectious agents that have been linked to the development of autism, bipolar disorder and schizophrenia. Schizophrenia and other debilitating mental illnesses have no single cause, experts emphasized in interviews. The conditions are thought to arise from a combination of factors, including genetic predisposition and traumas later in life, such as sexual or physical abuse, abandonment or heavy drug use. But illnesses in utero, including viral infections, are thought to be a trigger. “The consequences of this go way beyond microcephaly,” said Dr. W. Ian Lipkin, who directs The Center for Infection and Immunity at Columbia University. Here is a look at the most prominent rumors and theories about Zika virus, along with responses from scientists. Among children in Latin America and the Caribbean, “I wouldn’t be surprised if we saw a big upswing in A.D.H.D., autism, epilepsy and schizophrenia,” he added. “We’re looking at a large group of individuals who may not be able to function in the world.” © 2016 The New York Times Company
Keyword: Development of the Brain; Schizophrenia
Link ID: 21918 - Posted: 02.20.2016
By Ariana Eunjung Cha The Centers for Disease Control and Prevention just published their first national survey of sleep for all 50 states and the District of Columbia. In many respects, it's consistent with our image of ourselves as bleary-eyed insomniacs downing triple espresso shots and melatonin pills as we stare at our iPhones like zombies. The CDC found that more than a third of American adults are not getting the recommended amount of seven-plus hours of sleep on a regular basis. Here's a look at what sleep looks like across the United States, as broken down by marital status, geography, race/ethnicity and employment. The results aren't always what you might expect. 1. First, here's a breakdown of how much sleep Americans are getting overall. This is based on a random telephone survey of 444,306 respondents. Overall, about 65 percent reported a "healthy sleep duration" (seven or more hours of sleep on a regular basis) and about 35 percent reported they were getting less than that. 2. Being unable to work or being unemployed appears to affect sleep in a negative way. That's consistent with previous research on sleep quality and mental health issues like depression that can be related to unemployment. 3. People with college degrees or higher were more likely to get enough sleep. Maybe it's because they are more likely to know how important good sleep is to your health or maybe because they have jobs or income that allow them to get more sleep?
Sara Reardon In July 2015, the major antibody provider Santa Cruz Biotechnology owned 2,471 rabbits and 3,202 goats. Now the animals have vanished, according to a recent federal inspection report from the US Department of Agriculture (USDA). The company, which is headquartered in Dallas, Texas, is one of the world’s largest providers of antibodies — extracting them from animals such as goats and rabbits by injecting the animals with proteins to stimulate antibody production. Biomedical researchers can then use these antibodies to detect and label the same protein in cell or tissue samples. But Santa Cruz Biotech is also the subject of three animal-welfare complaints filed by the USDA after its inspectors found evidence that the firm mistreated goats at its facility in California. Santa Cruz Biotech has contested the complaints, prompting a hearing in August before a USDA administrative law judge in Washington DC. Four days into the hearing, both parties asked to suspend the proceedings in order to negotiate a settlement. But those negotiations fell through in September. The USDA hearing is set to resume on 5 April. If Santa Cruz Biotech is found to have violated the US Animal Welfare Act, it could be fined or lose its licence to keep animals for commercial use. The USDA says that the company could face a maximum fine of US$10,000 per violation for each day that a given violation persists. The agency has reported 31 alleged violations by the company. © 2016 Nature Publishing Group
Keyword: Animal Rights
Link ID: 21916 - Posted: 02.20.2016
Alison Abbott. More than 50 years after a controversial psychologist shocked the world with studies that revealed people’s willingness to harm others on order, a team of cognitive scientists has carried out an updated version of the iconic ‘Milgram experiments’. Their findings may offer some explanation for Stanley Milgram's uncomfortable revelations: when following commands, they say, people genuinely feel less responsibility for their actions — whether they are told to do something evil or benign. “If others can replicate this, then it is giving us a big message,” says neuroethicist Walter Sinnot-Armstrong of Duke University in Durham, North Carolina, who was not involved in the work. “It may be the beginning of an insight into why people can harm others if coerced: they don’t see it as their own action.” The study may feed into a long-running legal debate about the balance of personal responsibility between someone acting under instruction and their instructor, says Patrick Haggard, a cognitive neuroscientist at University College London, who led the work, published on 18 February in Current Biology1. Milgram’s original experiments were motivated by the trial of Nazi Adolf Eichmann, who famously argued that he was ‘just following orders’ when he sent Jews to their deaths. The new findings don’t legitimize harmful actions, Haggard emphasizes, but they do suggest that the ‘only obeying orders’ excuse betrays a deeper truth about how a person feels when acting under command. © 2016 Nature Publishing Group
Keyword: Attention; Emotions
Link ID: 21915 - Posted: 02.19.2016
Leo Benedictus It seems so obvious when you hear it, yet it could have shaped society for centuries without our knowing. According to research presented by Dr Daniel Casasanto to the American Association for the Advancement of Science annual conference in Washington DC, people just prefer things that are in front of their favourite hand. It could be products on a shelf, or applicants for a job. “Righties would on average choose the person or product on the right; lefties, on average, the person or product on the left,” Dr Casasanto explained. And, from his research conducted at the University of Chicago, it is easy to see how this could have serious political implications. “We found in a large simulated election, that compared to lefties, righties will choose the candidate they see on the right of the ballot paper about 15% more,” Dr Casasanto said. His theory, in simple terms, is that because people go through life with a “fluent side” and a “clumsy side”, they develop a kind of unconscious favouritism, even for things that don’t require them to use their hands. “It seems blindingly obvious that you will have a preference for that bit of space where you operate more frequently,” says Professor Philip Corr, a psychologist at City University, London. “You’ll feel more comfortable operating in that part of the world. Intuitively it makes sense to me.” Many papers have been published on the subject, but we still don’t really know why people don’t all use the same hand - or an even balance of the two, as do most primates.
Keyword: Laterality; Emotions
Link ID: 21914 - Posted: 02.19.2016