Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 7241 - 7260 of 29480

By Chelsea Whyte FACING a big problem and finding it hard to decide what to do? A sprinkling of disgust might boost your confidence. Common sense suggests that our confidence in the decisions we make comes down to the quality of the information available – the clearer that information, the more confident we feel. But it seems that the state of our body also guides us. Micah Allen at University College London and his colleagues showed 29 people a screen of dots moving in varied directions. They asked the volunteers which direction most of the spots were moving in, and how confident they were in their decisions. Before each task, the participants briefly saw a picture of a face on the screen. It was either twisted in disgust or had a neutral expression. Although this happened too quickly for the faces to be consciously perceived, the volunteers’ bodies reacted. Seeing disgust, which is a powerful evolutionary sign of danger, boosted the volunteers’ alertness, pushing up their heart rates and dilating their pupils. “When you induce disgust, high confidence becomes lower and low confidence becomes higher“ When shown a neutral face, the volunteers became less confident as the task got more difficult. As the movement of the dots became more varied, they were less sure of the main direction. But when they were shown the disgusted face, they reacted differently. In easy tasks, in which people were previously confident, they became more doubtful of their decisions. In more difficult tasks, their confidence grew. Neither face made any difference to the accuracy of their answers (eLife, doi.org/bsgd). © Copyright Reed Business Information Ltd.

Keyword: Emotions; Attention
Link ID: 22825 - Posted: 11.03.2016

Sarah Boseley Health editor Hundreds of children and young people are to get treatment for chronic fatigue syndrome for the first time, to see whether methods that have proved highly successful in the Netherlands can be adopted by the NHS. Up to 2% of young people are affected by CFS, also known as myalgic encephalopathy (ME). But few get any treatment, and attempts to help have sometimes stoked the row over the causes of the condition. Activists on social media frequently denounce doctors who suggest that psychological issues play any part in the disease. Treatment given to young people in the Netherlands has had remarkable results, helping 63% recover within six months and return to school and a normal life, compared with 8% of those who had other care. The children are given cognitive behavioural therapy to understand and overcome the debilitating exhaustion that neither sleep nor rest can help. The sessions are conducted with a therapist over the internet, using Skype, diaries and questionnaires. This means children will be able to get treatment in their own homes in parts of the country where there is nothing currently available to them. Esther Crawley, a professor of child health at Bristol University, said she would argue that the trial she is leading is not controversial. “Paediatric CFS/ME is really important and common,” she said. “One per cent of children at secondary school are missing a day a week because of CFS/ME. Probably 2% of children are affected. They are teenagers who can’t do the things teenagers are doing.” © 2016 Guardian News and Media Limited

Keyword: Depression
Link ID: 22824 - Posted: 11.03.2016

By NICHOLAS BAKALAR Is use of antibiotics in infancy tied to childhood obesity? Some studies suggest so, but a new analysis suggests the link may be with infections, rather than antibiotics. Using records of a large health maintenance organization, researchers tracked 260,556 infants born from January 1997 through the end of March 2013. The database included details on antibiotic use, diagnosis and height and weight measurements from birth through age 18. The study is in Lancet Diabetes and Endocrinology. The scientists compared children who had no infections and no antibiotic use in the first year of life with those who had untreated infections. They found that an infant with one untreated infection had a 15 percent increased risk for childhood obesity, and the risk increased to 40 percent in those with three untreated infections. But there was no difference in obesity risk between infants treated with antibiotics and those with a similar infection left untreated. In other words, infections, but not the use of antibiotics, were associated with childhood obesity. “If there is an infection during infancy, particularly a respiratory or ear infection, it should be treated,” said the lead author, Dr. De-Kun Li of the Kaiser Permanente Division of Research. “You shouldn’t avoid antibiotics because you are concerned about childhood obesity.” © 2016 The New York Times Company

Keyword: Obesity
Link ID: 22823 - Posted: 11.03.2016

Mo Costandi Stem cells obtained from patients with schizophrenia carry a genetic mutation that alters the ratio of the different type of nerve cells they produce, according to a new study by researchers in Japan. The findings, published today in the journal Translational Psychiatry, suggest that abnormal neural differentiation may contribute to the disease, such that fewer neurons and more non-neuronal cells are generated during the earliest stages of brain development. Schizophrenia is a debilitating mental illness that affects about 1 in 100 people. It is known to be highly heritable, but is genetically complex: so far, researchers have identified over 100 rare genetic variations and dozens of mutations associated with increased risk of developing the disease. One of the best characterised mutations associated with the disease is a microdeletion on chromosome 22, within a region containing dozens of genes known to be involved in the development, maturation, and function of brain circuits. This deletion is found in 1 in every 2,000 – 4,000 live births; all patients carrying it exhibit various psychiatric symptoms and conditions, with just under a third of them developing schizophrenia in adolescence or early adulthood. Manabu Toyoshima of the RIKEN Brain Science Institute and his colleagues obtained skin cells from two female schizophrenic patients diagnosed with the chromosome 22 deletion and two healthy individuals, then reprogrammed them to generate induced pluripotent stem cells (iPSCs), unspecialised cells which, like embryonic stem cells, retain the ability to differentiate into all the different cell types in the body. They then compared the properties of iPSCs obtained from the schizophrenic patients with those from the healthy controls. © 2016 Guardian News and Media Limited

Keyword: Schizophrenia
Link ID: 22822 - Posted: 11.02.2016

Hannah Devlin The human brain is predisposed to learn negative stereotypes, according to research that offers clues as to how prejudice emerges and spreads through society. The study found that the brain responds more strongly to information about groups who are portrayed unfavourably, adding weight to the view that the negative depiction of ethnic or religious minorities in the media can fuel racial bias. Hugo Spiers, a neuroscientist at University College London, who led the research, said: “The newspapers are filled with ghastly things people do ... You’re getting all these news stories and the negative ones stand out. When you look at Islam, for example, there’s so many more negative stories than positive ones and that will build up over time.” The scientists also uncovered a characteristic brain signature seen when participants were told a member of a “bad” group had done something positive - an observation that is likely to tally with the subjective experience of minorities. “Whenever someone from a really bad group did something nice they were like, ‘Oh, weird,’” said Spiers. Previous studies have identified brain areas involved in gender or racial stereotyping, but this is the first attempt to investigate how the brain learns to link undesirable traits to specific groups and how this is converted into prejudice over time. © 2016 Guardian News and Media Limited

Keyword: Attention
Link ID: 22821 - Posted: 11.02.2016

By Virginia Morell Human hunters may be making birds smarter by inadvertently shooting those with smaller brains. That’s the conclusion of a new study, which finds that hunting may be exerting a powerful evolutionary force on bird populations in Denmark, and likely wherever birds are hunted. But the work also raises a red flag for some researchers who question whether the evolution of brain size can ever be tied to a single factor. The new work “broadens an emerging view that smarts really do matter in the natural, and increasingly human-dominated, world,” says John Marzluff, a wildlife biologist and expert on crow cognition at the University of Washington in Seattle who was not involved with the work. Hunting and fishing are known to affect many animal populations. For instance, the pike-perch in the Finnish Archipelago Sea has become smaller over time thanks to fishing, which typically removes the largest individuals from a population. This pressure also causes fish to reach sexual maturity earlier. On land, natural predators like arctic foxes and polar bears can also drive their prey species to become smarter because predators are most likely to catch those with smaller brains. For instance, a recent study showed that common eiders (maritime ducks) that raise the most chicks also have the largest heads and are better at forming protective neighborhood alliances than ducks with smaller heads—and presumably, brains. © 2016 American Association for the Advancement of Science

Keyword: Learning & Memory; Evolution
Link ID: 22820 - Posted: 11.02.2016

By Brian Owens Cooperation makes it happen. Sailfish that work together in groups to hunt sardines can catch more fish than if they hunt alone, even without a real coordinated strategy. To catch their sardine dinner, a group of sailfish circle a school of sardines – known as a baitball – and break off a small section, driving it to the surface. They then take turns attacking these sardines, slashing at them with their long sword-like bills, which account for a quarter of their total length of up to 3.5 metres. Knocking their prey off-balance makes them easier to grab. These attacks only result in a catch about 25 per cent of the time, but they almost always injure several sardines. As the number of injured fish increases, it becomes ever easier for everyone to snag a meal. “There’s no coordination, no strict turn-taking or specific hunting roles, it’s opportunistic,” says James Herbert-Read, from Uppsala University in Sweden. But Herbert-Reads computer models now show that even this rudimentary form of cooperation is better than going it alone. Sailfish that work in groups capture more sardines than a lone fish would get in the same amount of time. © Copyright Reed Business Information Ltd

Keyword: Aggression; Evolution
Link ID: 22819 - Posted: 11.02.2016

Laura Sanders The eyes may reveal whether the brain’s internal stopwatch runs fast or slow. Pupil size predicted whether a monkey would over- or underestimate a second, scientists report in the Nov. 2 Journal of Neuroscience. Scientists knew that pupils get bigger when a person is paying attention. They also knew that paying attention can influence how people perceive the passage of time. Using monkeys, the new study links pupil size and timing directly. “What they’ve done here is connect those dots,” says neuroscientist Thalia Wheatley of Dartmouth College. More generally, the study shows how the eyes are windows into how the brain operates. “There’s so much information coming out of the eyes,” Wheatley says. Neuroscientist Masaki Tanaka of Hokkaido University School of Medicine in Japan and colleagues trained three Japanese macaques to look at a spot on a computer screen after precisely one second had elapsed. The study measured the monkeys’ subjective timing abilities: The monkeys had to rely on themselves to count the milliseconds. Just before each trial, the researchers measured pupil diameters. When the monkeys underestimated a second by looking too soon, their pupil sizes were slightly larger than in trials in which the monkeys overestimated a second, the researchers found. That means that when pupils were large, the monkeys felt time zoom by. But when pupils were small, time felt slower. |© Society for Science & the Public 2000 - 2016.

Keyword: Attention
Link ID: 22818 - Posted: 11.02.2016

Nicola Davis The proficiency of elite football referees could be down to their eagle eyes, say researchers. A study of elite and sub-elite referees has found that a greater tendency to predict and watch contact zones between players contributes to the greater accuracy of top-level referees. “Over the years they develop so much experience that they now can anticipate, very well, future events so that they can already direct their attention to those pieces of information where they expect something to happen,” said lead author Werner Helsen from the University of Leuven. Keith Hackett, a former football referee and former general manager of the Professional Game Match Officials Limited, said the research chimed with his own experiences. “In working with elite referees for a number of years I have recognised their ability to see, recognise think and then act in a seamless manner,” he said. “They develop skill sets that enable them to see and this means good game-reading and cognitive skills to be in the right place at the right time.” Mistakes, he believes, often come down to poor visual perception. “Last week, we saw an elite referee fail to detect the violent act of [Moussa] Sissoko using his arm/elbow, putting his opponent’s safety at risk,” he said. “The review panel, having received confirmation from the referee that he failed to see the incident despite looking in the direction of the foul challenge, were able to act.” Writing in the journal Cognitive Research, researchers from the University of Leuven in Belgium and Brunel University in west London say they recruited 39 referees, 20 of whom were elite referees and 19 were experienced but had never refereed at a professional level. © 2016 Guardian News and Media Limited

Keyword: Attention
Link ID: 22817 - Posted: 11.01.2016

Bruce Bower Many preschoolers take a surprisingly long and bumpy mental path to the realization that people can have mistaken beliefs — say, thinking that a ball is in a basket when it has secretly been moved to a toy box. Traditional learning curves, in which kids gradually move from knowing nothing to complete understanding, don’t apply to this landmark social achievement and probably to many other types of learning, a new study concludes. Kids ranging in age from 3 to 5 often go back and forth between passing and failing false-belief tests for several months to more than one year, say psychologist Sara Baker of the University of Cambridge and her colleagues. A small minority of youngsters jump quickly from always failing to always passing these tests, the scientists report October 20 in Cognitive Psychology. “If these results are replicated, it will surprise a lot of researchers that there is such a low level of sudden insight into false beliefs,” says psychologist Malinda Carpenter, currently at the Max Planck Institute for Evolutionary Anthropology in Leipzig. Early childhood researchers generally assume that preschoolers either pass or fail false-belief tests, with a brief transition between the two, explains Carpenter, who did not participate in the new study. Grasping that others sometimes have mistaken beliefs is a key step in social thinking. False-belief understanding may start out as something that can be indicated nonverbally but not described. Human 2-year-olds and even chimpanzees tend to look toward spots where a person would expect to find a hidden item that only the children or apes have seen moved elsewhere (SN Online: 10/6/16). © Society for Science & the Public 2000 - 2016

Keyword: Learning & Memory; Development of the Brain
Link ID: 22816 - Posted: 11.01.2016

By GINA KOLATA Americans believe that obesity is the biggest health threat in the nation today — bigger even than cancer. But though scientific research shows that diet and exercise are insufficient solutions, a large majority say fat people should be able to summon the willpower to lose weight on their own. The findings are from a nationally representative survey of 1,509 adults released on Tuesday by the National Opinion Research Center at the University of Chicago, an independent research institution. The study, funded by the American Society for Metabolic and Bariatric Surgery, found that concerns about obesity have risen. Just a few years ago, in a more limited survey, cancer was seen as the most serious health threat. The lead researcher, Jennifer Benz of the survey group at the University of Chicago, said that to her knowledge no other survey has provided so comprehensive a view of Americans’ beliefs about obesity, including how to treat it, whether people are personally responsible for it and whether it is a disease. Researchers say obesity, which affects one-third of Americans, is caused by interactions between the environment and genetics and has little to do with sloth or gluttony. There are hundreds of genes that can predispose to obesity in an environment where food is cheap and portions are abundant. Yet three-quarters of survey participants said obesity resulted from a lack of willpower. The best treatment, they said, is to take responsibility for yourself, go on a diet and exercise. Obesity specialists said the survey painted an alarming picture. They said the findings went against evidence about the science behind the disease, and showed that outdated notions about obesity persisted, to the detriment of those affected. © 2016 The New York Times Company

Keyword: Obesity; Genes & Behavior
Link ID: 22815 - Posted: 11.01.2016

By Julie Hecht Come across an image like this, and you’d be a weirdo not to investigate. Meet infrared thermography, a non-invasive way to visualize changes to body surface temperature. Thermographic video cameras not only produce images that would make Andy Warhol proud (or at least sue for infringement), but the tool allows researchers to assess physiological changes—and potentially emotional states—in a wide variety of species like distantly related BFFs Canis familiaris and Homo sapiens. Think about it—physiological changes are part of the emotional response. When you are frightened, blood rushes away from your extremities to get your muscles ready to go, which means your extremities get cooler as your core gets warmer. Infrared thermography, which captures changes to body surface temperature, is going to pick this up. The tip of a scared person’s nose gets cooler (more blue) under an infrared camera, and studies find that when scared or distressed, rat paws and tails appear cooler, as do the outer parts of sheep and rabbit ears. Dog ears recently caught the attention of Stefanie Riemer and colleagues at the Animal Behavior, Cognition and Welfare Research Group (Twitter) at the University of Lincoln, UK. They wanted to know whether dog ears would show differential blood-flow patterns in response to something good as well as something less good. Dogs participated in a separation test where they were briefly alone in a novel environment (which elicits short-term distress) and then reunited with people (typically a positive experience). The separation, the researchers assumed, would be associated with negative emotions and therefore cooling of the ears, while being reunited with people (excellent!) would show an increase in ear temperature. The study appears in the current issue of Physiology & Behavior. © 2016 Scientific American

Keyword: Emotions
Link ID: 22814 - Posted: 11.01.2016

By Jesse Singal For a long time, the United States’ justice system has been notorious for its proclivity for imprisoning children. Because of laws that grant prosecutors and judges discretion to bump juveniles up to the category of “adult” when they commit crimes deemed serious enough by the authorities, the U.S. is an outlier in locking up kids, with some youthful defendants even getting life sentences. Naturally, this has attracted a great deal of outrage and advocacy from human-rights organizations, who argue that kids, by virtue of not lacking certain judgment, foresight, and decision-making abilities, should be treated a bit more leniently. Writing for the Marshall Project and drawing on some interesting brain science, Dana Goldstein takes the argument about youth incarceration even further: We should also rethink our treatment of offenders who are young adults. As Goldstein explains, the more researchers study the brain, the more they realize that it takes decades for the organ to develop fully and to impart to its owners their full, adult capacities for reasoning. “Altogether,” she writes, “the research suggests that brain maturation continues into one’s twenties and even thirties.” Many of these insights come from the newest generation of neuroscience research. “Everyone has always known that there are behavioral changes throughout the lifespan,” Catherine Lebel, an assistant professor of radiology at the University of Calgary who has conducted research into brain development, told Goldstein. “It’s only with new imaging techniques over the last 15 years that we’ve been able to get at some of these more subtle changes.” ! © 2016, New York Media LLC.

Keyword: Attention; Development of the Brain
Link ID: 22813 - Posted: 11.01.2016

Bedtime use of cellphones or tablets by children — even just having access to them — is consistently linked to excessive daytime sleepiness and poor sleep, researchers say. They called on teachers, health care professionals, parents and children to be educated about the damaging influence of device use on sleep. The portable media devices have entered the bedroom, giving children unprecedented access to technology and media before researchers have had a chance to explore the positive and negative impacts. To explore whether there's an association between use of, or access to, media devices and sleep quantity and quality, researchers reviewed 20 sleep studies involving 125,198 children aged six to 19. In Monday's issue of JAMA Pediatrics, the reviewers concluded there's strong and consistent evidence of an association between access to or use of devices and reduced sleep quantity (defined as less than 10 hours for children and less than nine hours for adolescents) or quality, as well as increased daytime sleepiness. The way device use leads to poor sleep is thought to be light emission. But the review looked at examples of holding a device in the bedroom and not using it, which excludes light emission as the sole mechanism, said study author Ben Carter of the Institute of Psychiatry, Psychology and Neuroscience at King's College London. "We are presenting results that highlight that it looks likely there are also other causes," Carter said in an email. ©2016 CBC/Radio-Canada.

Keyword: Sleep
Link ID: 22812 - Posted: 11.01.2016

Emily Sohn After a mother killed her four young children and then herself last month in rural China, onlookers quickly pointed to life circumstances. The family lived in extreme poverty, and bloggers speculated that her inability to escape adversity pushed her over the edge. Can poverty really cause mental illness? It's a complex question that is fairly new to science. Despite high rates of both poverty and mental disorders around the world, researchers only started probing the possible links about 25 years ago. Since then, evidence has piled up to make the case that, at the very least, there is a connection. People who live in poverty appear to be at higher risk for mental illnesses. They also report lower levels of happiness. That seems to be true all over the globe. In a 2010 review of 115 studies that spanned 33 countries across the developed and developing worlds, nearly 80 percent of the studies showed that poverty comes with higher rates of mental illness. Among people living in poverty, those studies also found, mental illnesses were more severe, lasted longer and had worse outcomes. And there's growing evidence that levels of depression are higher in poorer countries than in wealthier ones. Those kinds of findings challenge a long-held myth of the "poor but happy African sitting under a palm tree," says Johannes Haushofer, an economist and neurobiologist who studies interactions between poverty and mental health at Princeton University. © 2016 npr

Keyword: Schizophrenia; Depression
Link ID: 22811 - Posted: 10.31.2016

By Diana Kwon Can you feel your heart beating? Most people cannot, unless they are agitated or afraid. The brain masks the sensation of the heart in a delicate balancing act—we need to be able to feel our pulse racing occasionally as an important signal of fear or excitement, but most of the time the constant rhythm would be distracting or maddening. A growing body of research suggests that because of the way the brain compensates for our heartbeat, it may be vulnerable to perceptual illusions—if they are timed just right. In a study published in May in the Journal of Neuroscience, a team at the Swiss Federal Institute of Technology in Lausanne conducted a series of studies on 143 participants and found that subjects took longer to identify a flashing object when it appeared in sync with the rhythm of their heartbeats. Using functional MRI, they also found that activity in the insula, a brain area associated with self-awareness, was suppressed when people viewed these synchronized images. The authors suggest that the flashing object was suppressed by the brain because it got lumped in with all the other bodily changes that occur with each heartbeat—the eyes make tiny movements, eye pressure changes slightly, the chest expands and contracts. “The brain knows that the heartbeat is coming from the self, so it doesn't want to be bothered by the sensory consequences of these signals,” says Roy Salomon, one of the study's co-authors. © 2016 Scientific American

Keyword: Attention; Vision
Link ID: 22810 - Posted: 10.31.2016

A snake with the largest venom glands in the world could hold the answer to pain relief, scientists have found. Dubbed the "killer of killers", the long-glanded blue coral snake is known to prey on the likes of king cobras. The venom of the two-metre-long snake native to South East Asia acts "almost immediately" and causes prey to spasm. New research published in the journal Toxin found it targets receptors which are critical to pain in humans and could be used as a method of treatment. "Most snakes have a slow-acting venom that works like a powerful sedative. You get sleepy, slow, before you die," said Dr Bryan Fry of the University of Queensland who is one of a team of researchers working on a study into the effect of the snake's venom. "This snake's venom however, works almost immediately because it usually preys on very dangerous animals that need to be quickly killed before they can retaliate. It's the killer of killers." Turning into medicine? Cone snails and scorpions are some of a handful of invertebrates whose venom has been studied for its medical use. However, as a vertebrate, the snake is evolutionarily closer to humans, and so a medicine developed from its venom could potentially be more effective, says Dr Fry. "The venom targets our sodium channels, which are central to our transmission of pain. We could potentially turn this into something that could help relieve pain, and which might work better on us." The snake's venom glands extend to up to one-quarter of its body length. "It's got freaky venom glands, the longest of any in the world, but it's so beautiful. It's easily my favourite species of snake," said Dr Fry. © 2016 BBC.

Keyword: Pain & Touch; Neurotoxins
Link ID: 22809 - Posted: 10.31.2016

Erin Wayman SALT LAKE CITY — The earliest primate was a tiny, solitary tree dweller that liked the night life. Those are just some conclusions from new reconstructions of the primate common ancestor, presented October 27 at the annual meeting of the Society of Vertebrate Paleontology. Eva Hoffman, now a graduate student at the University of Texas at Austin, and colleagues at Yale University looked at behavioral and ecological data from 178 modern primate species. Examining patterns of traits across the primate family tree, the researchers inferred the most likely characteristics of ancestors at different branching points in the tree — all the way back to the common ancestor. This ancient primate, which may have lived some 80 million to 70 million years ago, was probably no bigger than a guinea pig, lived alone and gave birth to one offspring at a time, the researchers suggest. Living in trees and active at night, the critter probably ventured out to the ends of tree branches to eat fruits, leaves and insects. But this mix of traits probably didn’t arise in primates, Hoffman says. After adding tree shrews and colugos — primates’ closest living relatives — to the analysis, the researchers concluded these same attributes were also present in the three groups’ common ancestor. So explanations of early primate evolution that rely on these features need to be reconsidered, Hoffman says. |© Society for Science & the Public 2000 - 2016.

Keyword: Evolution
Link ID: 22808 - Posted: 10.31.2016

By STEPH YIN Halloween is here again. That means your co-workers have planted surprise spiders around the office. You’ve been invited to a haunted hayride. Your neighbor’s yard has a full cemetery, rigged with motion detectors and pop-up zombies. Chicken-livered from the start, I have always dreaded this time of year. Haunted houses, ghost tours and horror film fests are not my thing, and why people love having the daylights scared out of them completely escapes me. I decided to try to understand my friends who are on the lookout for thrills this time of year. As it turns out, there are many possible reasons some people like to be scared stiff. Each person’s threshold for experiences that provoke fear is made up of a unique recipe that blends nature and nurture. “The ingredients vary from person to person,” said Frank Farley, a psychologist at Temple University and a former president of the American Psychological Association. Dr. Farley is interested in what draws certain people to extreme behaviors, like driving racecars, climbing Mount Everest and flying hot air balloons across oceans. In the 1980s, he coined the term “Type T” personality to refer to the behavioral profile of thrill-seekers. What makes someone thrill-seeking, he said, comes down to a mix of genes, environment and early development. Spooky Science Stories, Just in Time for Halloween Gather around as the crypt keepers of our Science department share scientific curiosities of things that slither and crawl and fly. David Zald, a neuropsychologist at Vanderbilt University, studies one piece of the equation. His research partly focuses on dopamine, a chemical involved in our brain’s response to reward. In the past, he has found that people who lack what he calls “brakes” on dopamine release tend to pursue thrilling activities. © 2016 The New York Times Company

Keyword: Emotions; Stress
Link ID: 22807 - Posted: 10.29.2016

By Bob Holmes It’s not something to be sniffed at. Computers have cracked a problem that has stumped chemists for centuries: predicting a molecule’s odour from its structure. The feat may allow perfumers and flavour specialists to create new products with much less trial and error. Unlike vision and hearing, the result of which can be predicted by analysing wavelengths of light or sound, our sense of smell has long remained inscrutable. Olfactory chemists have never been able to predict how a given molecule will smell, except in a few special cases, because so many aspects of a molecule’s structure could be important in determining its odour. Andreas Keller and Leslie Vosshall at Rockefeller University in New York City decided to crowdsource the power of machine learning to address the problem. First, they had 49 volunteers rate the odour of 476 chemicals according to how intense and how pleasant the smell was, and how well it matched 19 other descriptors, such as garlic, spice or fruit. Then they released the data for 407 of the chemicals, along with 4884 different variables measuring chemical structure, and invited anyone to develop machine-learning algorithms that would make sense of the patterns. They used the remaining 69 chemicals to evaluate the accuracy of the algorithms of the 22 teams that took up the challenge. © Copyright Reed Business Information Ltd.

Keyword: Chemical Senses (Smell & Taste)
Link ID: 22806 - Posted: 10.29.2016