Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By LISA FELDMAN BARRETT Bitterness. Hostility. Rage. The varieties of anger are endless. Some are mild, such as grumpiness, and others are powerful, such as wrath. Different angers vary not only in their intensity but also in their purpose. It’s normal to feel exasperated with your screaming infant and scornful of a political opponent, but scorn toward your baby would be bizarre. Anger is a large, diverse population of experiences and behaviors, as psychologists like myself who study emotion repeatedly discover. You can shout in anger, weep in anger, even smile in anger. You can throw a tantrum in anger with your heart pounding, or calmly plot your revenge. No single state of the face, body or brain defines anger. Variation is the norm. The Russian language has two distinct concepts within what Americans call “anger” — one that’s directed at a person, called “serditsia,” and another that’s felt for more abstract reasons such as the political situation, known as “zlitsia.” The ancient Greeks distinguished quick bursts of temper from long-lasting wrath. German has three distinct angers, Mandarin has five and biblical Hebrew has seven. In the past few weeks, many varieties of anger have been on vivid display. For starters, we now have an iconic angry man as the president-elect. Donald J. Trump is aggressive as he insists there’s something wrong with the country, and offensive when he’s provoked. He employs anger effectively to maintain his power and status. His anger is seen by his fans as strength and by his detractors as bombast. We’ve also seen Hillary Clinton’s more restrained anger, which she has directed against the divisiveness she perceived during the campaign. To her proponents, Mrs. Clinton’s anger fueled her resolve to push back against Mr. Trump’s most egregious statements. To her detractors, her anger made her a shrew. © 2016 The New York Times Company
Keyword: Emotions; Aggression
Link ID: 22865 - Posted: 11.14.2016
By Arlene Karidis As a young teenager, Inshirah Aleem was sure she’d be heading to Harvard Law School in a few years. But the straight-A student went down another road. Within months of her 14th birthday, the quiet girl was telling outrageous lies, running away from home and stealing. She eventually landed in front of a judge and later was sent to foster care, where she lived in a basement, her belongings stuffed into a trash bag. It would be a year before Aleem, now a 38-year-old schoolteacher living in Greenbelt, was diagnosed with bipolar disorder. The brain condition is characterized by high (manic) moods and low (depressed) moods as well as by fluctuating energy levels. These unstable states are coupled with impaired judgment. The diagnosis explained her racing, disjointed thoughts and almost completely sleepless nights. And it explained her terrifying hallucinations, which were followed by a catatonic state where Aleem couldn’t move or talk. About 2.6 percent of adults and about 11.2 percent of 13- to-18-year-olds have bipolar disorder, according to the Substance Abuse and Mental Health Services Administration. The disorder can be hard to recognize and harder to treat. Combining medications often brings substantial improvement, but some patients experience side effects and show minimal improvement. Researchers, who have found that bipolar disorder is inherited more than 70 percent of the time, hope to identify drugs to target the 20 genetic variations known to be associated with the disorder. © 1996-2016 The Washington Post
Keyword: Schizophrenia
Link ID: 22864 - Posted: 11.14.2016
By CHRIS BUCKLEY BEIJING — When Flappy McFlapperson and Skybomb Bolt sprang into the sky for their annual migration from wetlands near Beijing, nobody was sure where the two cuckoos were going. They and three other cuckoos had been tagged with sensors to follow them from northern China. But to where? “These birds are not known to be great fliers,” said Terry Townshend, a British amateur bird watcher living in the Chinese capital who helped organize the Beijing Cuckoo Project to track the birds. “Migration is incredibly perilous for birds, and many perish on these journeys.” The answer to the mystery — unfolding in passages recorded by satellite for more than five months — has been a humbling revelation even to many experts. The birds’ journeys have so far covered thousands of miles, across a total of a dozen countries and an ocean. The “common cuckoo,” as the species is called, turns out to be capable of exhilarating odysseys. “It’s impossible not to feel an emotional response,” said Chris Hewson, an ecologist with the British Trust for Ornithology in Thetford, England, who has helped run the tracking project. “There’s something special about feeling connected to one small bird flying across the ocean or desert.” But to follow a cuckoo, you must first seduce it. The common cuckoo is by reputation a cynical freeloader. Mothers outsource parenting by laying their eggs in the nests of smaller birds, and the birds live on grubs, caterpillars and similar soft morsels. British and Chinese bird groups decided to study two cuckoo subspecies found near Beijing, because their winter getaways were a puzzle. In an online poll for the project, nearly half the respondents guessed they went somewhere in Southeast Asia. © 2016 The New York Times Company
Keyword: Animal Migration; Sexual Behavior
Link ID: 22863 - Posted: 11.14.2016
By Jessica Hamzelou HB, who is paralysed by amyotrophic lateral sclerosis (ALS), has become the first woman to use a brain implant at home and in her daily life. She told New Scientist about her experiences using an eye-tracking device that takes about a minute to spell a word. What is your life like? All muscles are paralysed. I can only move my eyes. Why did you decide to try the implant? I want to contribute to possible improvements for people like me. What was the surgery like? The first surgery was no problem, but the second had a negative impact for my condition. Can you feel the implant at all? No. How easy is it to use? The hardware is easy to use. The software has been improved enormously by the UNP (Utrecht NeuroProsthesis) team. My part isn’t difficult anymore after these improvements. The most difficult part is timing the clicks. How has the implant changed your life? Now I can communicate outdoors when my eye track computer doesn’t work. I’m more confident and independent now outside. What are the best and worst things about it? The best is to go outside and be able to communicate. The worst were the false-positive clicks. But thanks to the UNP team that is fixed. Now that the study has been completed, would you like to keep the implant, or remove it? Of course I keep it. How do you feel about being the first person to have this implant? It’s special to be the first. Thinking ahead to the future, what else would you like to be able to do with the implant? I would like to change the television channel and my dream is to be able to drive my wheelchair. © Copyright Reed Business Information Ltd.
Keyword: Robotics; ALS-Lou Gehrig's Disease
Link ID: 22862 - Posted: 11.14.2016
Amber Dance In a study published in Science in September, Cossart, a neurobiologist at the Institute of Neurobiology of the Mediterranean in Marseilles, France, opened up mouse brains to visualize their neural activity as the animals raced on treadmills and rested. As the mice ran, some 50 neurons in their hippocampi fired in sequence, possibly to help the animals measure the distance travelled. Later, when the mice were resting, certain subsets of those neurons turned on again1. This reactivation, Cossart suspects, has to do with encoding and retrieving memory — as if the mouse is recalling its earlier exercise. “The power of imaging is really to be able to see the cells, to see not only the active ones but also the silent ones and to map them on the anatomical structure of the brain,” she says. It has not yet provided proof for Cossart's hypothesis, but the microscope and neural-activity markers behind the techniques represent the very latest in methods to study brain connectivity. In the past, researchers studied just a few neurons at a time using electrodes implanted into the brain. But that gives a fairly crude picture of what is going on, like looking at a monitor with just a couple of functioning pixels, says Rafael Yuste, director of the NeuroTechnology Center at Columbia University in New York City. But new techniques are fleshing out the picture. Scientists can now watch neurons live and in colour, helping them to work out which cells work together. Methods such as Cossart's zoom in at the microscopic scale to catch individual neurons in the act; others provide a whole-brain, or mesoscopic, view. And although it is possible to perform these experiments with an off-the-shelf microscope, scientists have been customizing them to suit their specific purposes; these devices are in various stages of commercialization. © 2016 Macmillan Publishers Limited,
Keyword: Brain imaging
Link ID: 22861 - Posted: 11.12.2016
Very stressful events affect the brains of girls and boys in different ways, a Stanford University study suggests. A part of the brain linked to emotions and empathy, called the insula, was found to be particularly small in girls who had suffered trauma. But in traumatised boys, the insula was larger than usual. This could explain why girls are more likely than boys to develop post-traumatic stress disorder (PTSD), the researchers said. Their findings suggest that boys and girls could display contrasting symptoms after a particularly distressing or frightening event, and should be treated differently as a result. The research team, from Stanford University School of Medicine, said girls who develop PTSD may actually be suffering from a faster than normal ageing of one part of the insula - an area of the brain which processes feelings and pain. Image copyright Science Photo Library Image caption The insula, also known as the insular cortex, is linked to the body's experience of pain or emotional experiences of fear The insula, or insular cortex, is a diverse and complex area, located deep within the brain which has many connections. As well as processing emotions, it plays an important role in detecting cues from other parts of the body. The researchers scanned the brains of 59 children aged nine to 17 for their study, published in Depression and Anxiety. © 2016 BBC.
Keyword: Stress; Sexual Behavior
Link ID: 22860 - Posted: 11.12.2016
By STEPH YIN Researchers have designed a system that lets a patient with late-stage Lou Gehrig’s disease type words using brain signals alone. The patient, Hanneke De Bruijne, a doctor of internal medicine from the Netherlands, received a diagnosis of amyotrophic lateral sclerosis, also known as A.L.S. or Lou Gehrig’s disease, in 2008. The neurons controlling her voluntary muscles were dying, and eventually she developed a condition called locked-in syndrome. In this state, she is cognitively aware, but nearly all of her voluntary muscles, except for her eyes, are paralyzed, and she has lost the ability to speak. In 2015, a group of researchers offered an option to help her communicate. Their idea was to surgically implant a brain-computer interface, a system that picks up electrical signals in her brain and relays them to software she can use to type out words. “It’s like a remote control in the brain,” said Nick Ramsey, a professor of cognitive neuroscience at the University Medical Center Utrecht in the Netherlands and one of the researchers leading the study. On Saturday, the research team reported in The New England Journal of Medicine that Ms. De Bruijne independently controlled the computer typing program seven months after surgery. Using the system, she is able to spell two or three words a minute. “This is the world’s first totally implanted brain-computer interface system that someone has used in her daily life with some success,” said Dr. Jonathan R. Wolpaw, the director of the National Center for Adaptive Neurotechnologies in Albany. © 2016 The New York Times Company
Keyword: ALS-Lou Gehrig's Disease
; Robotics
Link ID: 22859 - Posted: 11.12.2016
David Cyranoski For more than a decade, neuroscientist Grégoire Courtine has been flying every few months from his lab at the Swiss Federal Institute of Technology in Lausanne to another lab in Beijing, China, where he conducts research on monkeys with the aim of treating spinal-cord injuries. The commute is exhausting — on occasion he has even flown to Beijing, done experiments, and returned the same night. But it is worth it, says Courtine, because working with monkeys in China is less burdened by regulation than it is in Europe and the United States. And this week, he and his team report1 the results of experiments in Beijing, in which a wireless brain implant — that stimulates electrodes in the leg by recreating signals recorded from the brain — has enabled monkeys with spinal-cord injuries to walk. “They have demonstrated that the animals can regain not only coordinated but also weight-bearing function, which is important for locomotion. This is great work,” says Gaurav Sharma, a neuroscientist who has worked on restoring arm movement in paralysed patients, at the non-profit research organization Battelle Memorial Institute in Columbus, Ohio. The treatment is a potential boon for immobile patients: Courtine has already started a trial in Switzerland, using a pared-down version of the technology in two people with spinal-cord injury. © 2016 Macmillan Publishers Limited
Keyword: Movement Disorders; Robotics
Link ID: 22858 - Posted: 11.12.2016
By Diana Kwon In people who suffer from pain disorders, painful feelings can severely worsen and spread to other regions of the body. Patients who develop chronic pain after surgery, for example, will often feel it coming from the area surrounding the initial injury and even in some parts of the body far from where it originates. New evidence suggests glia, non-neuronal cells in the brain, may be the culprits behind this effect. Glia were once thought to simply be passive, supporting cells for neurons. But scientists now know they are involved in everything from metabolism to neurodegeneration. A growing body of evidence points to their key role in pain. In a study published today in Science, researchers at the Medical University of Vienna report that glia are involved in long-term potentiation (LTP), or the strengthening of synapses, in pain pathways in the spinal cord. Neuroscientists Timothy Bliss and Terje Lømo first described LTP in the hippocampus, a brain area involved in memory, in the 1970s. Since then scientists have been meticulously studying the role this type of synaptic plasticity—the ability of synapses to change in strength—plays in learning and memory. More recently, researchers discovered that LTP could also amplify pain in areas where injuries or inflammation occur. “We sometimes call this a ‘memory trace of pain’ because the painful insult may lead to subsequent hypersensitivity to painful stimuli, and it was clear that synaptic plasticity can play a role here,” says study co-author Jürgen Sandkühler, a neuroscientist also at the Medical University of Vienna. But current models of how LTP works could not explain why discomfort sometimes becomes widespread or experienced in areas a person has never felt it before, he adds. © 2016 Scientific American
Keyword: Pain & Touch; Glia
Link ID: 22857 - Posted: 11.12.2016
by Helen Thompson Narwhals use highly targeted beams of sound to scan their environment for threats and food. In fact, the so-called unicorns of the sea (for their iconic head tusks) may produce the most refined sonar of any living animal. A team of researchers set up 16 underwater microphones to eavesdrop on narwhal click vocalizations at 11 ice pack sites in Greenland’s Baffin Bay in 2013. The recordings show that narwhal clicks are extremely intense and directional — meaning they can widen and narrow the beam of sound to find prey over long and short distances. It’s the most directional sonar signal measured in a living species, the researchers report November 9 in PLOS ONE. The sound beams are also asymmetrically narrow on top. That minimizes clutter from echoes bouncing off the sea surface or ice pack. Finally, narwhals scan vertically as they dive, which could help them find patches of open water where they can surface and breathe amid sea ice cover. All this means that narwhals employ pretty sophisticated sonar. The audio data could help researchers tell the difference between narwhal vocalizations and those of neighboring beluga whales. It also provides a baseline for assessing the potential impact of noise pollution from increases in shipping traffic made possible by sea ice loss. |© Society for Science & the Public 2000 - 2016.
Keyword: Hearing
Link ID: 22856 - Posted: 11.12.2016
By John Bohannon When it comes to influential neuroscience research, University College London (UCL) has a lot to boast about. That's not the opinion of a human but rather the output of a computer program that has now parsed the content of 2.5 million neuroscience articles, mapped all of the citations between them, and calculated a score of each author's influence on the rest. Three of the top 10 most influential (see table below) neuroscientists hail from UCL: Karl Friston (1st), Raymond Dolan (2nd), and Chris Frith (7th). The secret of their success? "We got into human functional brain imaging very early," Frith says. Getting in early made it possible to "be first to do many of the obvious studies." The program, called Semantic Scholar, is an online tool built at the Allen Institute for Artificial Intelligence (AI2) in Seattle, Washington. When it debuted in April, it calculated the most influential computer scientists based on 2 million papers from that field. Since then, the AI2 team has expanded the corpus to 10 million papers, 25% of which are from neuroscience. They hope to expand that to all of the biomedical literature next year, over 20 million papers. When Semantic Scholar looks at a paper published online, what does it actually see? Much more than the typical academic search engine, says Oren Etzioni, CEO of AI2 who has led the project. "We are using machine learning, natural language processing, and [machine] vision to begin to delve into the semantics." © 2016 American Association for the Advancement of Science
Keyword: Miscellaneous
Link ID: 22855 - Posted: 11.12.2016
Ian Sample Science editor Partially-paralysed monkeys have learned to walk again with a brain implant that uses wireless signals to bypass broken nerves in the spinal cord and reanimate the useless limbs. The implant is the first to restore walking ability in paralysed primates and raises the prospect of radical new therapies for people with devastating spinal injuries. Scientists hope the technology will help people who have lost the use of their legs, by sending movement signals from their brains to electrodes in the spine that activate the leg muscles. One rhesus macaque that was fitted with the new implant regained the ability to walk only six days after it was partially paralysed in a surgical procedure that severed some of the nerves that controlled its right hind leg. “It was a big surprise for us,” said Grégoire Courtine, a neuroscientist who led the research at the Swiss Federal Institute of Technology. “The gait was not perfect, but it was almost like normal walking. The foot was not dragging and it was fully weight bearing.” A second animal in the study that received more serious damage to the nerves controlling its right hind leg recovered the ability to walk two weeks after having the device fitted, according to a report published in the journal, Nature. Both monkeys regained full mobility in three months. The “brain-spine interface” is the latest breakthrough to come from the rapidly-advancing area of neuroprosthetics. Scientists in the field aim to read intentions in the brain’s activity and use it to control computers, robotic arms and even paralysed limbs. © 2016 Guardian News and Media Limited
Keyword: Movement Disorders; Robotics
Link ID: 22854 - Posted: 11.10.2016
Geoff Brumfiel Scientists have pinpointed the ticklish bit of a rat's brain. The results, published in the journal Science, are another step toward understanding the origins of ticklishness, and its purpose in social animals. Although virtually every human being on the planet has been tickled, scientists really don't understand why people are ticklish. The idea that a certain kind of touching could easily lead to laughter is confusing to a neuroscientist, says Shimpei Ishiyama, a postdoc at the Berstein Center for Computational Nueroscience in Berlin, Germany. "Just a physical touch inducing such an emotional output — this is very mysterious," Ishiyama says. "This is weird." To try and get a handle on how tickling works, Ishiyama studied rats, who seem to enjoy being tickled, according to previous research. He inserted electrodes into the rats' brains, in a region called their somatosensory cortex. When rats enjoy tickling they emit high-pitched "laughter" that can't normally be heard by humans, the scientists found. In this video, the researchers transposed the audio of the squeaks to a lower frequency you can hear. That's a part of the brain that processes touch, and when Ishiyama tickled the rats, it caused neurons in that region to fire. The rats also seemed to giggle hysterically, emitting rapid-fire, ultrasonic squeaks. Earlier research has shown rats naturally emit those squeaks during frisky social interaction, such as when they are playing with other rats. © 2016 npr
Keyword: Emotions; Evolution
Link ID: 22853 - Posted: 11.10.2016
By Alison F. Takemura In the 1980s, neuroscientists were facing an imaging problem. They had developed a new way to detect neuronal activity with calcium dyes, but visualizing the markers proved challenging. The dyes fluoresced in the presence of calcium ions when illuminated with ultraviolet (UV) light, but it was difficult to build UV lenses for confocal microscopes—instruments that allowed scientists to peer hundreds of micrometers deep into the brain. To make matters worse, because biological tissue scatters light so effectively, confocal scopes required excessive light intensities, which caused irreparable damage to samples. “You basically burned your tissue,” says Winfried Denk, director of the Max Planck Institute of Neurobiology in Martinsried, Germany. The time was ripe for a gentler option, and Denk developed two-photon excitation microscopy in 1990. Instead of using a single photon to excite a calcium dye, scientists could use two photons and half the illumination energy—red or infrared lasers, instead of ultraviolet. The scatter of such low-energy rays caused far less damage to surrounding tissue. The technology had another advantage. To excite a molecule, both photons had to reach it simultaneously. This meant the laser could only excite a tiny patch of tissue where its photons were most concentrated, giving scientists a new level of precision. © 1986-2016 The Scientist
Keyword: Brain imaging
Link ID: 22852 - Posted: 11.10.2016
Kathleen Taylor The global rise in dementia should surprise no one. The figures — such as the 9.9 million new diagnoses each year — have been known for decades. As slow as we are to accept such vast changes on a personal, societal and political level, so research is slow to uncover why our brains become fragile with age. Neuroscientist and writer Kathleen Taylor's The Fragile Brain is about that research. But it is much more than a simple reflection on the best published hypotheses. Taylor has crafted a personal, astonishingly coherent review of our current state of knowledge about the causes of Alzheimer's disease and dementia, as well as possible solutions, from lifestyle adjustments to drug developments. Filled with elegant metaphors, her study covers the detail of molecular biology and larger-scale analysis, including epidemiological observations and clinical studies. It extends to dementia due to multiple sclerosis, stroke and encephalitis. For instance, some 5–30% of people who have a first stroke develop dementia. But the book's focus is Alzheimer's disease, and rightly so: it is what up to 80% of people with dementia are diagnosed with. Taylor begins with a shocking juxtaposition, setting the costs of age-related disorders and of dementia alongside the scarcity in funding. In Britain, Australia and the United States, for example, funding for dementia research is a fraction of that for cancer — in the United States, just 18%. She contextualizes with reflections on the history of dementia research, deftly unravelling the roles of pioneering scientists Alois Alzheimer, Franz Nissl and Emil Kraepelin in describing the condition. © 2016 Macmillan Publishers Limited,
Keyword: Alzheimers; Learning & Memory
Link ID: 22851 - Posted: 11.10.2016
By Anna Azvolinsky In January 1983, 22-year-old Amita Sehgal arrived in New York City from India to visit her oldest sister, who was due to have a baby. Sehgal had just been rejected from the molecular biology PhD programs at Rockefeller University and Columbia University. “I felt that I had no prospects,” says the University of Pennsylvania professor of neuroscience. She had heard about a Cornell University in NYC, so she and her other sister walked the streets of Manhattan asking its whereabouts. “Someone told us Cornell was hundreds of miles away in Ithaca, and that I must have been asking about the medical school. I had no idea, but I said ‘Yes’ and was directed to the Upper East Side.” Sehgal walked into the medical school, inquired about their PhD program, and was told that the application deadline for the program was that very day. “I sat in the office and filled out the application, wrote my essay, and handed it in!” she says. A few months later, Sehgal was admitted into the genetics program. Sehgal’s parents had also joined the visit and were returning to India in July, shortly before she started the PhD program. “It was fortuitous the way things worked out. My parents were comfortable leaving me in New York because my oldest sister was living there.” One month later, however, her sister and family moved to Florida, and Sehgal was alone, living in Cornell housing. “The first six months were really, really rough,” she says. Cornell had dissolved the genetics program to which Sehgal had been admitted and offered her tuition support with no stipend—and that only for the first semester. “My parents and sister were in no position to help me financially,” she says. Sehgal found a professor at the adjacent Memorial Sloan Kettering Cancer Center (MSKCC), Raju Chaganti, who gave her part-time work with no expectation that she join his lab. She had little money and survived on ramen noodles. © 1986-2016 The Scientist
Keyword: Sleep
Link ID: 22850 - Posted: 11.10.2016
By LESLEY ALDERMAN Take a deep breath, expanding your belly. Pause. Exhale slowly to the count of five. Repeat four times. Congratulations. You’ve just calmed your nervous system. Controlled breathing, like what you just practiced, has been shown to reduce stress, increase alertness and boost your immune system. For centuries yogis have used breath control, or pranayama, to promote concentration and improve vitality. Buddha advocated breath-meditation as a way to reach enlightenment. Science is just beginning to provide evidence that the benefits of this ancient practice are real. Studies have found, for example, that breathing practices can help reduce symptoms associated with anxiety, insomnia, post-traumatic stress disorder, depression and attention deficit disorder. “Breathing is massively practical,” says Belisa Vranich, a psychologist and author of the book “Breathe,” to be published in December. “It’s meditation for people who can’t meditate.” How controlled breathing may promote healing remains a source of scientific study. One theory is that controlled breathing can change the response of the body’s autonomic nervous system, which controls unconscious processes such as heart rate and digestion as well as the body’s stress response, says Dr. Richard Brown, an associate clinical professor of psychiatry at Columbia University and co-author of “The Healing Power of the Breath.” Consciously changing the way you breathe appears to send a signal to the brain to adjust the parasympathetic branch of the nervous system, which can slow heart rate and digestion and promote feelings of calm as well as the sympathetic system, which controls the release of stress hormones like cortisol. © 2016 The New York Times Company
Keyword: Stress
Link ID: 22849 - Posted: 11.09.2016
Elie Dolgin There are not a lot of things that could bring together people as far apart on the US political spectrum as Republican Newt Gingrich and Democrat Bob Kerrey. But in 2007, after leading a three-year commission that looked into the costs of care for elderly people, the political rivals came to full agreement on a common enemy: dementia. At the time, there were fewer than 30 million people worldwide diagnosed with the condition, but it was clear that the numbers were set to explode. By 2050, current predictions suggest, it could reach more than 130 million, at which point the cost to US health care alone from diseases such as Alzheimer’s will probably hit US$1 trillion per year in today’s dollars. “We looked at each other and said, ‘You know, if we don’t get a grip on Alzheimer’s, we can’t get anything done because it’s going to drown the system,’” recalls Gingrich, the former speaker of the US House of Representatives. He still feels that sense of urgency, and for good reason. Funding has not kept pace with the scale of the problem; targets for treatments are thin on the ground and poorly understood; and more than 200 clinical trials for Alzheimer’s therapies have been terminated because the treatments were ineffective. Of the few treatments available, none addresses the underlying disease process. “We’re faced with a tsunami and we’re trying to deal with it with a bucket,” says Gingrich. But this message has begun to reverberate around the world, which gives hope to the clinicians and scientists. Experts say that the coming wave can be calmed with the help of just three things: more money for research, better diagnostics and drugs, and a victory — however small — that would boost morale. © 2016 Macmillan Publishers Limited
Keyword: Alzheimers
Link ID: 22848 - Posted: 11.09.2016
Nancy Shute Erik Vance didn't go to a doctor until he was 18; he grew up in California in a family that practiced Christian Science. "For the first half of my life, I never questioned the power of God to heal me," Vance writes in his new book, Suggestible You: Placebos, False Memories, Hypnosis, and the Power of Your Astonishing Brain. As a young man, Vance left the faith behind, but as he became a science journalist he didn't stop thinking about how people's beliefs and expectations affect their health, whether it's with placebo pills, mystical practices or treatments like acupuncture. The answer, he found, is in our brains. Erik and I chatted about the book while attending a recent meeting of the National Association of Science Writers. Here are highlights of our conversation, edited for length and clarity. You point out that even though most of us didn't grow up Christian Scientist, we often use belief to manage our health. I've learned from writing this book that there are a lot of people around the world who really rely on expectation and placebos. And I grew up in the most extreme possible group, but it's not that different from seeing a homeopath. You're using faith to manage your body; what a psychologist would call expectation. Having had that experience really prepared me to ask some of these questions. How would your mom take care of you when you were sick? As a kid we might have 7UP with orange juice; we might go that far because it made you feel better. But the treatment was to call a practitioner, to call a healer. © 2016 npr
Keyword: Pain & Touch
Link ID: 22847 - Posted: 11.09.2016
Sara Reardon Major brain-mapping projects have multiplied in recent years, as neuroscientists develop new technologies to decipher how the brain works. These initiatives focus on understanding the brain, but the World Health Organization (WHO) wants to ensure that they work to translate their early discoveries and technological advances into tests and treatments for brain disorders. “We think there are side branches from projects that could be pursued with a very small investment to benefit public health,” says Shekhar Saxena, director of the WHO’s mental-health and substance-abuse department. Saxena will make that case on 12 November at the annual meeting of the Society for Neuroscience in San Diego, California — continuing a discussion that began in July at the WHO’s headquarters in Geneva, Switzerland. Among the roughly 70 people who attended that first meeting were leaders of the major brain initiatives, including the US BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative, launched in 2013; the European Human Brain Project, started in 2013; and the Japanese Brain/MINDS project, launched in 2014. All of these projects focus on basic research on the brain or the development of sophisticated tools to study it. Clinical applications are an ultimate, rather than an immediate, goal. But at the Geneva meeting, project leaders agreed, in principle, that they should do more to adapt brain-imaging technologies for use in clinical diagnoses. “The WHO is concerned that the emphasis on building these very expensive devices could worsen the health disparities that we have now between the developed and underdeveloped world,” says Walter Koroshetz, director of the US National Institute of Neurological Disorders and Stroke, which is part of the BRAIN Initiative. © 2016 Macmillan Publishers Limited
Keyword: Brain imaging
Link ID: 22846 - Posted: 11.09.2016


.gif)

