Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
Ah, to sleep, perchance … to shrink your neural connections? That's the conclusion of new research that examined subtle changes in the brain during sleep. The researchers found that sleep provides a time when thebrain's synapses — the connections among neurons—shrink back by nearly 20 percent. During this time, the synapses rest and prepare for the next day, when they will grow stronger while receiving new input—that is, learning new things, the researchers said. Without this reset, known as "synaptic homeostasis," synapses could become overloaded and burned out, like an electrical outlet with too many appliances plugged in to it, the scientists said. "Sleep is the perfect time to allow the synaptic renormalization to occur … because when we are awake, we are 'slaves' of the here and now, always attending some stimuli and learning something," said study co-author Dr. Chiara Cirelli of the University of Wisconsin-Madison Center for Sleep and Consciousness. "During sleep, we are much less preoccupied by the external world … and the brain can sample [or assess] all our synapses, and renormalize them in a smart way," Cirelli told Live Science. Cirelli and her colleague, Dr. Giulio Tononi, also of the University of Wisconsin-Madison, introduced this synaptic homeostasis hypothesis (SHY) in 2003. © 2017 Scientific American
Keyword: Sleep; Learning & Memory
Link ID: 23186 - Posted: 02.04.2017
by Bethany Brookshire Gender bias works in subtle ways, even in the scientific process. The latest illustration of that: Scientists recommend women less often than men as reviewers for scientific papers, a new analysis shows. That seemingly minor oversight is yet another missed opportunity for women that might end up having an impact on hiring, promotions and more. Peer review is one of the bricks in the foundation supporting science. A researcher’s results don’t get published in a journal until they successfully pass through a gauntlet of scientific peers, who scrutinize the paper for faulty findings, gaps in logic or less-than-meticulous methods. The scientist submitting the paper gets to suggest names for those potential reviewers. Scientific journal editors may contact some of the recommended scientists, and then reach out to a few more. But peer review isn’t just about the paper (and scientist) being examined. Being the one doing the reviewing “has a number of really positive benefits,” says Brooks Hanson, an earth scientist and director of publications at the American Geophysical Union in Washington, D.C. “You read papers differently as a reviewer than you do as a reader or author. You look at issues differently. It’s a learning experience in how to write papers and how to present research.” Serving as a peer reviewer can also be a networking tool for scientific collaborations, as reviewers seek out authors whose work they admired. And of course, scientists put the journals they review for on their resumes when they apply for faculty positions, research grants and awards. |© Society for Science & the Public 2000 - 2017.
Keyword: Attention; Sexual Behavior
Link ID: 23185 - Posted: 02.04.2017
Carl Zimmer Over the years, scientists have come up with a lot of ideas about why we sleep. Some have argued that it’s a way to save energy. Others have suggested that slumber provides an opportunity to clear away the brain’s cellular waste. Still others have proposed that sleep simply forces animals to lie still, letting them hide from predators. A pair of papers published on Thursday in the journal Science offer evidence for another notion: We sleep to forget some of the things we learn each day. In order to learn, we have to grow connections, or synapses, between the neurons in our brains. These connections enable neurons to send signals to one another quickly and efficiently. We store new memories in these networks. In 2003, Giulio Tononi and Chiara Cirelli, biologists at the University of Wisconsin-Madison, proposed that synapses grew so exuberantly during the day that our brain circuits got “noisy.” When we sleep, the scientists argued, our brains pare back the connections to lift the signal over the noise. In the years since, Dr. Tononi and Dr. Cirelli, along with other researchers, have found a great deal of indirect evidence to support the so-called synaptic homeostasis hypothesis. It turns out, for example, that neurons can prune their synapses — at least in a dish. In laboratory experiments on clumps of neurons, scientists can give them a drug that spurs them to grow extra synapses. Afterward, the neurons pare back some of the growth. Other evidence comes from the electric waves released by the brain. During deep sleep, the waves slow down. Dr. Tononi and Dr. Cirelli have argued that shrinking synapses produce this change. © 2017 The New York Times Company
Keyword: Sleep; Learning & Memory
Link ID: 23184 - Posted: 02.03.2017
Ian Sample Science editor As an antidote to one of the ills of modern life, it may leave some quite cold. When the lure of the TV or fiddling on the phone keep you up late at night, it is time to grab the tent and go camping. The advice from scientists in the US follows a field study that found people fell asleep about two hours earlier than usual when they were denied access to their gadgets and electrical lighting and packed off to the mountains with a tent. A weekend in the wilds of the Rocky Mountains in Colorado helped reset people’s internal clocks and reversed the tendency of artificial light to push bedtime late into the night. A spell outdoors, the researchers conclude, could be just the thing for victims of social jetlag who find themselves yawning all day long. “Our modern environment has really changed the timing of our internal clocks, but also the timing of when we sleep relative to our clock,” said Kenneth Wright, director of the sleep and chronobiology lab at the University of Colorado in Boulder. “A weekend camping trip can reset the clock rapidly.” To explore the sleep-altering effects of the natural environment, Wright sent five hardy colleagues, aged 21 to 39, on a six day camping trip to the Rocky Mountains one December. They left their torches and gadgets behind, and had only sunlight, moonlight and campfires for illumination. The campers went to bed on average two and a half hours earlier than they did at home, and racked up nearly 10 hours of sleep per night compared with their usual seven and a half hours. Monitors showed that they were more active in the daytime and were exposed to light levels up to 13 times higher than they typically received at home.
Keyword: Biological Rhythms; Sleep
Link ID: 23183 - Posted: 02.03.2017
By CATHERINE SAINT LOUIS During her pregnancy, she never drank alcohol or had a cigarette. But nearly every day, Stacey, then 24, smoked marijuana. With her fiancé’s blessing, she began taking a few puffs in her first trimester to quell morning sickness before going to work at a sandwich shop. When sciatica made it unbearable to stand during her 12-hour shifts, she discreetly vaped marijuana oil on her lunch break. “I wouldn’t necessarily say, ‘Go smoke a pound of pot when you’re pregnant,’” said Stacey, now a stay-at-home mother in Deltona, Fla., who asked that her full name be withheld because street-bought marijuana is illegal in Florida. “In moderation, it’s O.K.” Many pregnant women, particularly younger ones, seem to agree, a recent federal survey shows. As states legalize marijuana or its medical use, expectant mothers are taking it up in increasing numbers — another example of the many ways in which acceptance of marijuana has outstripped scientific understanding of its effects on human health. Often pregnant women presume that cannabis has no consequences for developing infants. But preliminary research suggests otherwise: Marijuana’s main psychoactive ingredient — tetrahydrocannabinol, or THC — can cross the placenta to reach the fetus, experts say, potentially harming brain development, cognition and birth weight. THC can also be present in breast milk. “There is an increased perception of the safety of cannabis use, even in pregnancy, without data to say it’s actually safe,” said Dr. Torri Metz, an obstetrician at Denver Health Medical Center who specializes in high-risk pregnancies. Ten percent of her patients acknowledge recent marijuana use. © 2017 The New York Times Company
Keyword: Development of the Brain; Drug Abuse
Link ID: 23182 - Posted: 02.03.2017
By Tiffany O'Callaghan Imagine feeling angry or upset whenever you hear a certain everyday sound. It’s a condition called misophonia, and we know little about its causes. Now there’s evidence that misophonics show distinctive brain activity whenever they hear their trigger sounds, a finding that could help devise coping strategies and treatments. Olana Tansley-Hancock knows misophonia’s symptoms only too well. From the age of about 7 or 8, she experienced feelings of rage and discomfort whenever she heard the sound of other people eating. By adolescence, she was eating many of her meals alone. As time wore on, many more sounds would trigger her misophonia. Rustling papers and tapping toes on train journeys constantly forced her to change seats and carriages. Clacking keyboards in the office meant she was always making excuses to leave the room. Finally, she went to a doctor for help. “I got laughed at,” she says. “People who suffer from misophonia often have to make adjustments to their lives, just to function,” says Miren Edelstein at the University of California, San Diego. “Misophonia seems so odd that it’s difficult to appreciate how disabling it can be,” says her colleague, V. S. Ramachandran. The condition was first given the name misophonia in 2000, but until 2013, there had only been two case studies published. More recently, clear evidence has emerged that misophonia isn’t a symptom of other conditions, such as obsessive compulsive disorder, nor is it a matter of being oversensitive to other people’s bad manners. Some studies, including work by Ramachandran and Edelstein, have found that trigger sounds spur a full fight-or-flight response in people with misophonia. © Copyright Reed Business Information Ltd.
Keyword: Hearing; Attention
Link ID: 23181 - Posted: 02.03.2017
Elizabeth Eaton Electronic cigarettes may increase the risk of heart disease, researchers at UCLA report. The team found that two risk factors for heart disease were elevated in 16 e-cigarette users compared with 18 nonsmokers. “The pattern was spot-on” for what has been seen in heart attack patients and those with heart disease and diabetes, says cardiologist Holly Middlekauff, a coauthor of the study published online February 1 in JAMA Cardiology. But because the study only looked at a small number of people, the results are not definitive — just two or three patients can skew results, John Ambrose, a cardiologist with the University of California, San Francisco cautions. Plus, he says, some of the e-cigarette users in the study used to smoke tobacco, which may have influenced the data. Even so, Ambrose called the study interesting, noting that “the medical community just doesn’t have enough information” to figure out if e-cigarettes are dangerous. E-cigarette smokers in the study had heartbeat patterns that indicated high levels of adrenaline — also known as epinephrine — in the heart, a sign of heart disease risk. Researchers also found signs of increased oxidative stress, an imbalance of certain protective molecules that can cause the hardening and narrowing of arteries. © Society for Science & the Public 2000 - 2017.
Keyword: Drug Abuse
Link ID: 23180 - Posted: 02.02.2017
Jessica Boddy Heading a soccer ball is both a fundamental skill and a dynamic way to score a goal, but research says it could be causing concussions along with player collisions. Players who headed a lot of balls, an average of 125 over two weeks, were three times more vulnerable to concussion than those who headed less than four in that time period, according to a study published Wednesday in the journal Neurology. These header-happy players reported having concussion symptoms like headache, confusion and even unconsciousness. This adds more cause for concern regarding traumatic brain injury in soccer, a sport already notorious for high concussion rates. The cause of these concussions, though, has been disputed. One study showed player-player contact was to blame for 69 percent of concussions in boys and 51 percent in girls. So some argue that changing the rules to limit heading would only reduce concussion by a small amount. "Before banning heading, the focus should be to enforce existing rules prohibiting athlete-athlete contact," says Dawn Comstock, an injury epidemiologist at the University of Colorado's School of Public Health who was not involved in the study. "That's the main risk for head injury in soccer." Still, others say that the risk that comes with headers is worth limiting as well—especially when the effects of repeated, low-level head impacts aren't exactly crystal clear. "Over a quarter of a billion people play soccer all across the world," says Michael Lipton, a professor of radiology and psychiatry/behavioral sciences at Albert Einstein College of Medicine in New York and lead author on the study. "So it's key to understand the long term effects of headers, a skill unique to the sport." © 2017 npr
Keyword: Brain Injury/Concussion
Link ID: 23179 - Posted: 02.02.2017
By Emma Hiolski Imagine cells that can move through your brain, hunting down cancer and destroying it before they themselves disappear without a trace. Scientists have just achieved that in mice, creating personalized tumor-homing cells from adult skin cells that can shrink brain tumors to 2% to 5% of their original size. Although the strategy has yet to be fully tested in people, the new method could one day give doctors a quick way to develop a custom treatment for aggressive cancers like glioblastoma, which kills most human patients in 12–15 months. It only took 4 days to create the tumor-homing cells for the mice. Glioblastomas are nasty: They spread roots and tendrils of cancerous cells through the brain, making them impossible to remove surgically. They, and other cancers, also exude a chemical signal that attracts stem cells—specialized cells that can produce multiple cell types in the body. Scientists think stem cells might detect tumors as a wound that needs healing and migrate to help fix the damage. But that gives scientists a secret weapon—if they can harness stem cells’ natural ability to “home” toward tumor cells, the stem cells could be manipulated to deliver cancer-killing drugs precisely where they are needed. Other research has already exploited this method using neural stem cells—which give rise to neurons and other brain cells—to hunt down brain cancer in mice and deliver tumor-eradicating drugs. But few have tried this in people, in part because getting those neural stem cells is hard, says Shawn Hingtgen, a stem cell biologist at the University of North Carolina in Chapel Hill. © 2017 American Association for the Advancement of Science.
Keyword: Stem Cells; Neuroimmunology
Link ID: 23178 - Posted: 02.02.2017
New clinical trial results provide evidence that high-dose immunosuppressive therapy followed by transplantation of a person's own blood-forming stem cells can induce sustained remission of relapsing-remitting multiple sclerosis (MS), an autoimmune disease in which the immune system attacks the central nervous system. Five years after receiving the treatment, called high-dose immunosuppressive therapy and autologous hematopoietic cell transplant (HDIT/HCT), 69 percent of trial participants had survived without experiencing progression of disability, relapse of MS symptoms or new brain lesions. Notably, participants did not take any MS medications after receiving HDIT/HCT. Other studies have indicated that currently available MS drugs have lower success rates. The trial, called HALT-MS, was sponsored by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and conducted by the NIAID-funded Immune Tolerance Network (link is external) (ITN). The researchers published three-year results from the study in December 2014, and the final five-year results appear online Feb. 1 in Neurology, the medical journal of the American Academy of Neurology. “These extended findings suggest that one-time treatment with HDIT/HCT may be substantially more effective than long-term treatment with the best available medications for people with a certain type of MS,” said NIAID Director Anthony S. Fauci, M.D. “These encouraging results support the development of a large, randomized trial to directly compare HDIT/HCT to standard of care for this often-debilitating disease.”
Keyword: Multiple Sclerosis; Stem Cells
Link ID: 23177 - Posted: 02.02.2017
Ian Sample Science editor Doctors have used a brain-reading device to hold simple conversations with “locked-in” patients in work that promises to transform the lives of people who are too disabled to communicate. The groundbreaking technology allows the paralysed patients – who have not been able to speak for years – to answer “yes” or “no” to questions by detecting telltale patterns in their brain activity. Three women and one man, aged 24 to 76, were trained to use the system more than a year after they were diagnosed with completely locked-in syndrome, or CLIS. The condition was brought on by amyotrophic lateral sclerosis, or ALS, a progressive neurodegenerative disease which leaves people totally paralysed but still aware and able to think. “It’s the first sign that completely locked-in syndrome may be abolished forever, because with all of these patients, we can now ask them the most critical questions in life,” said Niels Birbaumer, a neuroscientist who led the research at the University of Tübingen. “This is the first time we’ve been able to establish reliable communication with these patients and I think that is important for them and their families,” he added. “I can say that after 30 years of trying to achieve this, it was one of the most satisfying moments of my life when it worked.” © 2017 Guardian News and Media Limited
Keyword: Consciousness; Brain imaging
Link ID: 23176 - Posted: 02.01.2017
Meghan Rosen New X-ray crystallography images reveal how an LSD molecule gets trapped within a protein that senses serotonin, a key chemical messenger in the brain. The protein, called a serotonin receptor, belongs to a family of proteins involved in everything from perception to mood. The work is the first to decipher the structure of such a receptor bound to LSD, which gets snared in the protein for hours. That could explain why “acid trips” last so long, study coauthor Bryan Roth and colleagues report January 26 in Cell. It’s “the first snapshot of LSD in action,” he says. “Until now, we had no idea how it worked at the molecular level.” But the results might not be that relevant to people, warns Cornell University biophysicist Harel Weinstein. Roth’s group didn’t capture the main target of LSD, a serotonin receptor called 5-HT2A, instead imaging the related receptor 5-HT2B. That receptor is “important in rodents, but not that important in humans,” Weinstein says. Roth’s team has devoted decades to working on 5-HT2A, but the receptor has “thus far been impossible to crystallize,” he says. Predictions of 5-HT2A’s structure, though, are very similar to that of 5-HT2B, he says. LSD, or lysergic acid diethylamide, was first cooked up in a chemist’s lab in 1938. It was popular (and legal) for recreational use in the early 1960s, but the United States later banned the drug (also known as blotter, boomer, Purple Haze and electric Kool-Aid). |© Society for Science & the Public 2000 - 201
Keyword: Drug Abuse
Link ID: 23175 - Posted: 02.01.2017
By Chelsea Whyte It was a gruesome scene. The body had severe wounds and was still bleeding despite having been lying for a few hours in the hot Senegalese savanna. The murder victim, a West African chimpanzee called Foudouko, had been beaten with rocks and sticks, stomped on and then cannibalised by his own community. This is one of just nine known cases where a group of chimpanzees has killed one of their own adult males, as opposed to killing a member of a neighbouring tribe. These intragroup killings are rare, but Michael Wilson at the University of Minnesota says they are a valuable insight into chimp behaviour such as male coalition building. “Why do these coalitions sometimes succeed, but not very often? It’s at the heart of this tension between conflict and cooperation, which is central to the lives of chimpanzees and even to our own,” he says. Chimps usually live in groups with more adult females than males, but in the group with the murder it was the other way round. “When you reverse that and have almost two males per every female — that really intensifies the competition for reproduction. That seems to be a key factor here,” says Wilson. Jill Pruetz at Iowa State University, who has been studying this group of chimpanzees in south-eastern Senegal since 2001, agrees. She suggests that human influence may have caused this skewed gender ratio that is likely to have been behind this attack. In Senegal, female chimpanzees are poached to provide infants for the pet trade. Fall from power Thirteen years ago, Foudouko reigned over one of the chimp clans at the Fongoli study site, part of the Fongoli Savanna Chimpanzee Project. As alpha male, he was “somewhat of a tyrant”, Pruetz says. © Copyright Reed Business Information Ltd.
Keyword: Aggression; Sexual Behavior
Link ID: 23174 - Posted: 02.01.2017
Homa Khaleeli The old saying, “If at first you don’t succeed: try, try again”, might need rewriting. Because, according to new research, even if you do succeed, you should still try, try again. “Overlearning”, scientists say, could be the key to remembering what you have learned. In a study of 183 volunteers, participants were asked to spot the orientation of a pattern in an image. It is a task that took eight 20-minute rounds of training to master. Some volunteers, however, were asked to carry on for a further 16 20-minute blocks to “overlearn” before being moved on to another task. When tested the next day, they had retained the ability better than those who had mastered it and then stopped learning. Primary school encourages pupils to wear slippers in class Read more The lead author of the paper, Takeo Watanabe, a professor of cognitive linguistic and psychological sciences, pointed out that: “If you do overlearning, you may be able to increase the chance that what you learn will not be gone.” But what other tricks can help us learn better? According to researchers at Bournemouth University, children who don’t wear shoes in the classroom not only learn, but behave better. Pupils feel more relaxed when they can kick their shoes off at the door says lead researcher Stephen Heppell, which means they are more engaged in lessons. © 2017 Guardian News and Media Limited
Keyword: Learning & Memory
Link ID: 23173 - Posted: 02.01.2017
By Simon Oxenham Ever felt hungry and angry at the same time? There’s evidence that “hanger” is a real phenomenon, one that can affect your work and relationships. The main reason we become more irritable when hungry is because our blood glucose level drops. This can make it difficult for us to concentrate, and more likely to snap at those around us. Low blood sugar also triggers the release of stress-related hormones like cortisol and adrenaline, as well as a chemical called neuropeptide Y, which has been found to make people behave more aggressively towards those around them. This can all have an alarming effect on how you feel about other people – even those you love. A classic study of married couples asked them to stick pins into “voodoo dolls” that represented their loved ones, to reflect how angry they felt towards them. The volunteers then competed against their spouse in a game, in which the winner could blast loud noise through the loser’s headphones. The researchers tracked the participants’ blood glucose levels throughout. They found that when people had lower sugar levels, the longer the blasts of unpleasant noise they subjected their spouse to, and the more pins they stuck into their dolls. But while being hungry really does change your behaviour, the effects of hanger have sometimes been overstated. One study that attracted attention a few years ago found that judges are less likely to set lenient sentences the closer it gets to lunch. © Copyright Reed Business Information Ltd.
Keyword: Emotions
Link ID: 23172 - Posted: 02.01.2017
By SHERI FINK, STEVE EDER and MATTHEW GOLDSTEIN A group of brain performance centers backed by Betsy DeVos, the nominee for education secretary, promotes results that are nothing short of stunning: improvements reported by 91 percent of patients with depression, 90 percent with attention deficit disorder, 90 percent with anxiety. The treatment offered by Neurocore, a business in which Ms. DeVos and her husband, Dick, are the chief investors, consists of showing movies to patients and interrupting them when the viewers become distracted, in an effort to retrain their brains. With eight centers in Michigan and Florida and plans to expand, Neurocore says it has assessed about 10,000 people for health problems that often require medication. “Is it time for a mind makeover?” the company asks in its advertising. “All it takes is science.” But a review of Neurocore’s claims and interviews with medical experts suggest its conclusions are unproven and its methods questionable. Neurocore has not published its results in peer-reviewed medical literature. Its techniques — including mapping brain waves to diagnose problems and using neurofeedback, a form of biofeedback, to treat them — are not considered standards of care for the majority of the disorders it treats, including autism. Social workers, not doctors, perform assessments, and low-paid technicians with little training apply the methods to patients, including children with complex problems. In interviews, nearly a dozen child psychiatrists and psychologists with expertise in autism and attention deficit hyperactivity disorder, or A.D.H.D., expressed caution regarding some of Neurocore’s assertions, advertising and methods. “This causes real harm to children because it diverts attention, hope and resources,” said Dr. Matthew Siegel, a child psychiatrist at Maine Behavioral Healthcare and associate professor at Tufts School of Medicine, who co-wrote autism practice standards for the American Academy of Child and Adolescent Psychiatry. “If there were something out there that was uniquely powerful and wonderful, we’d all be using it.” © 2017 The New York Times Company
Keyword: Learning & Memory
Link ID: 23171 - Posted: 01.31.2017
By Roni Jacobson The psychedelic drug ibogaine is known for two things: its reputation in some circles as a panacea for addiction and the visceral hallucinations it induces. Positive anecdotes abound from people who have sought out the illegal drug at underground clinics. Just one dose, they say, brings near-instant relief from cravings and withdrawal symptoms, a veritable miracle for seemingly intractable addictions. But the side effects of this plant-derived substance can be dangerous or even deadly. Now, with encouraging evidence from animal studies, drugs are being developed to replicate ibogaine's impact on addiction without the side effects. A drug that is chemically related to ibogaine but lacks its hallucinogenic properties is set to begin phase II clinical trials in California early this year. If the results continue to be promising, addiction treatment as we know it could change radically. For decades research on ibogaine has been stymied by its classification as a Schedule I drug, the most tightly regulated category. Yet the results of animal studies have been intriguing. In May 2016 a meta-analysis examining 32 such studies, mostly in mice and rats, found that ibogaine reduced self-administration of cocaine, opioids and alcohol. An earlier study from 2015 found that noribogaine, the substance that ibogaine breaks down to when ingested, reduced self-administration of nicotine in addicted rats by 64 percent. Now Savant HWP, a pharmaceutical company in California, has developed a drug called 18-MC, a compound chemically related to ibogaine, which it hopes will produce the antiaddictive properties without triggering hallucinations. They are betting that the “trip” is not a necessary component of the therapy—an idea shared by some academics. © 2017 Scientific American,
Keyword: Drug Abuse
Link ID: 23170 - Posted: 01.31.2017
James Gorman What fly is famous on TV? Think corpses and detectives wanting to know how long that body has been in a storage locker or suitcase. It’s the blowfly, of course. Its larvae, a.k.a. maggots, feed on rotting flesh, which could be that spouse or business partner who got in the way. Or, in a good police procedural, both the spouse and the business partner, sent to the great beyond together for their transgressions. By seeing whether the eggs have hatched and how big the larvae are, forensic scientists can get an idea of how much time has passed since the victims met their end and began the final chapter in the way of all flesh. By the way, if you have a problem with a spouse or business partner, it’s worth keeping in mind that the flies can indeed get into a suitcase. They stick their ovipositor through the gaps in the zipper. Or the newly hatched larvae themselves can sneak through. But there are aspects of the maggot’s life that have remained somewhat obscure. Martin Hall, a forensic entomologist at the Natural History Museum in London, thought that one part of the fly’s development in particular needed further study. The maggots are a bit like caterpillars in that at a certain point in their development they wrap themselves up in a case and go through one of the most astonishing events in the natural world: metamorphosis. In 10 days, the maggot, which has no legs or eyes and is something like “an animated sock,” Dr. Hall said, turns into the extraordinarily complex blowfly. No doubt blowflies are not as appealing as butterflies to most people, but chalk that up to a human bias for pretty fluttery things that land on flowers. It’s certainly not the fly’s fault. Any close-up image of its multifaceted, jewel-like eye shows that it is marvelous in its own way, even if it does feed on the dead. Science Times © 2017 The New York Times Company
Keyword: Development of the Brain
Link ID: 23169 - Posted: 01.31.2017
Sara Constantino Certain multisensory conditions can alter the experience of bodily ownership. For instance, in the rubber hand illusion, simultaneous visual and haptic inputs lead to the adoption of sensations applied to an artificial limb as one's own. Understanding body ownership, and its malleability, has implications for the development of prosthetics. In a recent paper, Kelly Collins and colleagues at the University of Washington and Karolinska Institute elicited the illusion of ownership of an artificial hand in two epilepsy patients with embedded electrodes through the direct electrical stimulation of the hand area in somatosensory cortex (SI) applied in synchrony with visible touches to a rubber hand. When stimulation was asynchronous or administered to a different SI area, feelings of ownership were no longer induced, stressing the importance of temporal and spatial congruence. They also found that the details of the visual signal (for example, type of touch) affected the sensation. This method extends previous studies by eliciting ownership without stimulation of the peripheral nervous system, which is damaged in patients with spinal cord or nerve lesions. Human–technology mixtures have a long history, with the first known prosthesis, a wooden toe, dating as far back as 950 bc. Today, recent materials, electronics and neuroscience advances are enabling the development of prosthetic limbs that both look and feel real. © 2017 Macmillan Publishers Limited,
Keyword: Pain & Touch
Link ID: 23168 - Posted: 01.31.2017
By JAMES HAMBLIN In 1997, a few hundred people who responded to a job posting in a Pittsburgh newspaper agreed to let researchers spray their nostrils with a rhinovirus known to cause the common cold. The people would then be quarantined in hotel rooms for five days and monitored for symptoms. In return they’d get $800. “Hey, it’s a job,” some presumably said. Compensation may also have come from the knowledge that, as they sat alone piling up tissues, they were contributing to scientific understanding of our social-microbial ecosystem. The researchers wanted to investigate a seemingly basic question: Why do some people get more colds than others? To Gene Brody, a professor at the University of Georgia, the answer was “absolutely wild.” (Dr. Brody is a public-health researcher, so “wild” must be taken in that context.) He and colleagues recently analyzed the socio-economic backgrounds and personalities of the people in the Pittsburgh study and found that those who were “more diligent and tended to strive for success” were more likely than the others to get sick. To Dr. Brody, the implication was that something suffers in the immune systems of people who persevere in the face of adversity. Over the past two years, Dr. Brody and colleagues have amassed more evidence supporting this theory. In 2015, they found that white blood cells among strivers were prematurely aged relative to those of their peers. Ominous correlations have also been found in cardiovascular and metabolic health. In December, Dr. Brody and colleagues published a study in the journal Pediatrics that said that among black adolescents from disadvantaged backgrounds, “unrelenting determination to succeed” predicted an elevated risk of developing diabetes. The focus on black adolescents is significant. In much of this research, white Americans appeared somehow to be immune to the negative health effects that accompany relentless striving. As Dr. Brody put it when telling me about the Pittsburgh study, “We found this for black persons from disadvantaged backgrounds, but not white persons.” © 2017 The New York Times Company
Keyword: Neuroimmunology; Stress
Link ID: 23167 - Posted: 01.30.2017


.gif)

