Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 6121 - 6140 of 29484

An experimental drug appears to slow the progression of Niemann-Pick disease type C1 (NPC1), a fatal neurological disease, according to results of a clinical study led by researchers at the National Institutes of Health. The study appears in The Lancet. NPC1 is a rare genetic disorder that primarily affects children and adolescents, causing a progressive decline in neurological and cognitive functions. The U.S. Food and Drug Administration has not approved any treatments for the condition. The drug, 2-hydroxypropyl-beta-cyclodextrin (VTS-270), is being tested under a cooperative research and development agreement, or CRADA, between NIH and Sucampo Pharmaceuticals, Inc. In April 2017, Sucampo acquired Vtesse Inc., which previously had been developing VTS-270. “The results are very encouraging and support continued development of VTS-270 for treating NPC1,” said Forbes D. Porter, M.D., Ph.D., clinical director at NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the study’s senior author. “Compared to untreated patients we followed in an earlier study, participants who received VTS-270 scored better on a scale used to evaluate disease severity and progression, including elements such as speech, cognition and mobility.” The study was a phase 1/2a clinical trial designed to test the drug’s safety and effectiveness. A group of 14 participants, ranging from ages 4 to 23 years, received the experimental drug once a month at NIH for 12 to 18 months. Another group of three participants received the drug every two weeks for 18 months at Rush University Medical Center in Chicago.

Keyword: Development of the Brain; Genes & Behavior
Link ID: 23952 - Posted: 08.12.2017

By MALIA WOLLAN ‘‘Don’t startle the person,’’ says Charlene Gamaldo, the medical director at the Johns Hopkins Center for Sleep. Sleepwalkers exist in a semiwakeful state and can become testy and disoriented when forced to come to full consciousness. Instead, speak to them in a quiet voice and lead them gently back to their bed. In most cases, they’ll settle easily and in the morning remember nothing of their nighttime ambulations. To determine whether you’re dealing with a sleepwalker, as opposed to, say, a night owl (or someone with another, more worrisome form of parasomnia), watch for open eyes, a blank expression, physical clumsiness and a lack of reactivity. ‘‘They look zoned out,’’ Gamaldo says. Sleepwalkers tend to perform tasks from memory, including texting, shopping online, cooking and even driving and having sex, all with a noticeably odd flair. ‘‘They may get up and eat a raw TV dinner,’’ Gamaldo says. Researchers attribute a surge in sleepwalking in the 21st century to a rise in the use of hypnosedative sleeping medications. A popular hotel chain in the United Kingdom even issued sleepwalker-care guidelines to staff members after noting a sevenfold increase in sleepwalking patrons over one year, 95 percent of whom were men wandering out of their rooms naked. Other triggers include stress, genetics, fatigue, heat and what Gamaldo calls ‘‘poor sleep hygiene,’’ or loud, overly bright bedrooms filled with TVs and digital devices. To protect a sleepwalker in your home, make it as safe and soporific as possible. Keep him or her away from stairs and sharp objects. ‘‘The bedroom should be uncluttered,’’ Gamaldo says. © 2017 The New York Times Company

Keyword: Sleep
Link ID: 23951 - Posted: 08.12.2017

By Knvul Sheikh At his psychiatric clinic in the Connecticut Mental Health Center, Albert Powers sees people every day who experience hallucinations. The condition is often a hallmark of psychosis, occurring in an estimated 60 to 70 percent of people with schizophrenia, and in a subset of those diagnosed with bipolar disorder, dementia and major depression. Auditory hallucinations are the most common type experienced. Some patients report hearing voices; others hear phantom melodies. But increasing evidence over the past two decades suggests hearing imaginary sounds is not always a sign of mental illness. Healthy people also experience hallucinations. Drugs, sleep deprivation and migraines can often trigger the illusion of sounds or sights that are not there. Even in the absence of these predisposing factors, approximately one in 20 people hear voices or see visual hallucinations at least once in their lifetimes, according to mental health surveys conducted by the World Health Organization. Whereas most researchers have focused on the brain abnormalities that occur in people suffering at an extreme end of this spectrum, Powers and his colleagues have turned their attention to milder cases in a new study. “We wanted to understand what’s common and what’s protecting people who hallucinate but who don’t require psychological intervention,” he says. Normally when the brain receives sensory information, such as sound, it actively works to fill in information to make sense of what it hears—its location, volume and other details. “The brain is a predictive machine,” explains Anissa Abi-Dargham, a psychiatrist at Stony Brook University School of Medicine, who was not involved in the new work. “It is constantly scanning the environment and relying on previous knowledge to fill in the gaps [in] what we perceive.” Because our expectations are usually accurate, the system generally works well. For example, we are able to hear the sound of running water or the murmur of a friend talking across the room and then react in an instant, Abi-Dargham says. © 2017 Scientific American,

Keyword: Schizophrenia; Hearing
Link ID: 23950 - Posted: 08.11.2017

By Aylin Woodward Two newly identified brain areas in rhesus monkeys seem to help the animals recognise familiar faces. Primates, Homo sapiens included, must be able to differentiate between faces and recognise friend from foe because social hierarchies play a large role in daily life. But exactly how primate brains deal with faces is not completely clear. One idea is that the same parts of the brain are involved in recognising both familiar and unfamiliar faces, just with varying efficiency. But Sofia Landi and Winrich Freiwald at Rockefeller University in New York have now cast doubt on that thinking. Their work shows that distinct brain areas are responsible for recognising the primates you know. Many researchers have already shown that certain areas of the temporal and prefrontal cortex are involved in unfamiliar face perception in rhesus monkey brains. Using whole-brain fMRI scans of four monkeys, Landi and Freiwald have now identified two additional brain areas that play a role not only in unfamiliar face perception but also in recognising familiar faces. The two new areas are in the anterior temporal lobe – the part of our brains above and in front of our ears. One is in the perirhinal cortex and one is in the temporal pole. These regions lit up far more when the monkeys recognised a familiar face in a photograph, as opposed to when they were presented with images of a stranger. © Copyright New Scientist Ltd.

Keyword: Attention
Link ID: 23949 - Posted: 08.11.2017

By NIRAJ CHOKSHI The photos you share online speak volumes. They can serve as a form of self-expression or a record of travel. They can reflect your style and your quirks. But they might convey even more than you realize: The photos you share may hold clues to your mental health, new research suggests. From the colors and faces in their photos to the enhancements they make before posting them, Instagram users with a history of depression seem to present the world differently from their peers, according to the study, published this week in the journal EPJ Data Science. “People in our sample who were depressed tended to post photos that, on a pixel-by-pixel basis, were bluer, darker and grayer on average than healthy people,” said Andrew Reece, a postdoctoral researcher at Harvard University and co-author of the study with Christopher Danforth, a professor at the University of Vermont. The pair identified participants as “depressed” or “healthy” based on whether they reported having received a clinical diagnosis of depression in the past. They then used machine-learning tools to find patterns in the photos and to create a model predicting depression by the posts. They found that depressed participants used fewer Instagram filters, those which allow users to digitally alter a photo’s brightness and coloring before it is posted. When these users did add a filter, they tended to choose “Inkwell,” which drains a photo of its color, making it black-and-white. The healthier users tended to prefer “Valencia,” which lightens a photo’s tint. Depressed participants were more likely to post photos containing a face. But when healthier participants did post photos with faces, theirs tended to feature more of them, on average. © 2017 The New York Times Company

Keyword: Depression
Link ID: 23948 - Posted: 08.11.2017

Thomas Cronin We humans are uncommonly visual creatures. And those of us endowed with normal sight are used to thinking of our eyes as vital to how we experience the world. Vision is an advanced form of photoreception – that is, light sensing. But we also experience other more rudimentary forms of photoreception in our daily lives. We all know, for instance, the delight of perceiving the warm sun on our skin, in this case using heat as a substitute for light. No eyes or even special photoreceptor cells are necessary. But scientists have discovered in recent decades that many animals – including human beings – do have specialized light-detecting molecules in unexpected places, outside of the eyes. These “extraocular photoreceptors” are usually found in the central nervous system or in the skin, but also frequently in internal organs. What are light-sensing molecules doing in places beyond the eyes? Vision depends on detecting light All the visual cells identified in animals detect light using a single family of proteins, called the opsins. These proteins grab a light-sensitive molecule – derived from vitamin A – that changes its structure when exposed to light. The opsin in turn changes its own shape and turns on signaling pathways in photoreceptor cells that ultimately send a message to the brain that light has been detected. © 2010–2017, The Conversation US, Inc.

Keyword: Biological Rhythms; Vision
Link ID: 23947 - Posted: 08.11.2017

by Anika Burgess Art and science are often treated as distinct realms, but sometimes they overlap in unexpected ways. A neuroscientist, for example, creates a chart based on how an animal’s brain responds to rewards. The chart is informative to scientists who can interpret it—but it is also a compelling, monochrome image reminiscent of an iconic album cover. That neuroscientist is named Sean Cavanagh, of University College London, and his artwork based on the neural responses of rhesus macaques, called Unknown Variability, won the 2017 Art of Neuroscience competition. This competition has been held each year since 2011 by the Netherlands Institute for Neuroscience (NIN). NIN has existed in one form or another since the early 1900s and carries out research into brain function. Recently, the competition has opened up to include artists and their own interpretations of the brain. We know a great deal more about how the mind works than we did when NIN was founded, but there are still gaps in our understanding. Artificial intelligence is being taught to appreciate, and even create, art, for example, but the biological nature of creativity remains at the edge of our knowledge. This competition both provides scientists with the opportunity to tap into their inner Dalí, Miró, or Pollock, and offers a visual representation of research into the mysteries of thought and behavior. For the nonscientist, it might be difficult to understand “somato-dendritic morphology,” but it’s easy to appreciate its beauty when it is represented as a multicolored mosaic. © 2017 Atlas Obscura.

Keyword: Brain imaging
Link ID: 23946 - Posted: 08.11.2017

By Kai Sinclair It’s hard to see underwater, and not just because of the chlorine. The image-producing light rays that enter our eyes have trouble bending and focusing when the water’s density is almost same as that of eye fluid. Sea creatures experience the same problem, but squid use a type of lens notorious for blurry images to correct that, researchers report today in Science. Spherical lenses, like the squids’, usually can’t focus the incoming light to one point as it passes through the curved surface, which causes an unclear image. The only way to correct this is by bending each ray of light differently as it falls on each location of the lens’s surface. S-crystallin, the main protein in squid lenses, evolved the ability to do this by behaving as patchy colloids—small molecules that have spots of molecular glue that they use to stick together in clusters. The S-crystallins feature a pair of loops that act as the proteins’ sticky patches and attract the loops of other S-crystallins. Globs of six proteins link together during the squid’s larval stage and form a gel that eventually becomes the center of the lens. As the gel becomes too dense with protein clumps, smaller particles struggle to diffuse through, and a new layer of protein packages forms with just under six S-crystallins in each clump. The process continues until the outer edge of the lens is formed with pairs of S-crystallins. This allows light rays to bend a little differently in each region of the lens, which yields a clearer image. Some fish eyes are nearly identical to squids’, but it’s unknown whether their eye proteins exhibit patchy colloidlike behavior. Other cephalopods, like octopuses and nautiluses, lack S-crystallin lens proteins. So they, unlike squid, likely have blurry vision. © 2017 American Association for the Advancement of Science

Keyword: Vision; Evolution
Link ID: 23945 - Posted: 08.11.2017

Kerri Smith Marta Zlatic owns what could be the most tedious film collection ever. In her laboratory at the Janelia Research Campus in Ashburn, Virginia, the neuroscientist has stored more than 20,000 hours of black-and-white video featuring fruit-fly (Drosophila) larvae. The stars of these films are doing mundane maggoty things, such as wriggling and crawling about, but the footage is helping to answer one of the biggest questions in modern neuroscience: how the circuitry of the brain creates behaviour. It's a major goal across the field: to work out how neurons wire up, how signals move through the networks and how these signals work together to pilot an animal around, to make decisions or — in humans — to express emotions and create consciousness. Even under the most humdrum conditions — “normal lighting; no sensory cues; they're not hungry”, says Zlatic — her fly larvae can be made to perform 30 different actions, including retracting or turning their heads, or rolling. The actions are generated by a brain comprising just 15,000 neurons. That is nothing compared with the 86 billion in a human brain, which is one of the reasons Zlatic and her teammates like the maggots so much. “At the moment, really, the Drosophila larva is the sweet spot,” says Albert Cardona, Zlatic's collaborator and husband, who is also at Janelia. “If you can get the wiring diagram, you have an excellent starting point for seeing how the central nervous system works.” © 2017 Macmillan Publishers Limited

Keyword: Brain imaging
Link ID: 23944 - Posted: 08.10.2017

By Michael Price Anthropologists have waited decades to find the complete cranium of a Miocene ape from Africa—one that lived in the hazy period before the human lineage split off from the common ancestors we share with chimpanzees some 7 million years ago. Now, scientists in Kenya have found their prize at last: an almost perfectly preserved skull roughly the size of a baseball. The catch? It’s from an infant. That means that although it can give scientists a rough idea of what the common ancestor to all living apes and humans would have looked like, drawing other meaningful conclusions could be challenging. “This is the sort of thing that the fossil record loves to do to us,” says James Rossie, a biological anthropologist at the State University of New York in Stony Brook who wasn’t involved with the study. “The problem is that we learn from fossils by comparing them to others. When there are no other infant Miocene ape skulls to which to make those comparisons, your hands are tied.” The remarkably complete skull was discovered in the Turkana Basin of northern Kenya 3 years ago. As the sun sank behind the Napudet Hills west of Lake Turkana, primate paleontologist Isaiah Nengo of De Anza College in Cupertino, California, and his team started walking back to their jeep. Kenyan fossil hunter John Ekusi raced ahead to smoke a cigarette. Suddenly he began circling in place. When Nengo caught up, he saw a dirt-clogged eye socket staring up at him. “There was this skull just sticking out of the ground,” Nengo recalls. “It was incredible because we had been going up and down that path for weeks and never noticed it.” © 2017 American Association for the Advancement of Science.

Keyword: Evolution
Link ID: 23943 - Posted: 08.10.2017

By Aggie Mika Individuals who possess an innate resilience to age-related brain pathologies may offer molecular clues to unexplored therapeutics for neurodegenerative disease. After having accidentally discovered rapid aging and disease in mice with mutations in the gene that encodes the protein klotho—named after the Greek Fate Clotho, daughter of Zeus and spinner of the thread of life—independent researchers have shown that some people with genetic variants that promote elevated klotho levels live longer and tend to stave off age-related cognitive decline. In a paper published today (August 8) in Cell Reports, scientists report that a fragment of klotho, similar to what winds up in circulation after cleavage from the cell membrane, boosted spatial and short-term memory in young and aging mice and improved both memory and mobility in a transgenic mouse model of neurodegenerative disease. Notably, in each type of mouse, the protein fragment was injected into the animals’ bodies either a day or a few hours before cognitive testing took place. Previously, neurologist and researcher Dena Dubal of the University of California, San Francisco, and others have demonstrated that transgenic overexpression of klotho throughout an organism’s lifespan produces similar cognitive improvements. Dubal’s current work, she says, provides a promising answer to a “big, burning question” of klotho’s therapeutic utility: “could you give it acutely, and would it increase cognition in a rapid way?” © 1986-2017 The Scientist

Keyword: Alzheimers
Link ID: 23942 - Posted: 08.10.2017

Conor Friedersdorf This week, headlines across a diverse array of media outlets proclaimed that at least one Google employee was so antagonistic to women that he circulated a 10-page “anti-diversity screed.” That is how Gizmodo characterized the now infamous internal memo when publishing it Saturday. Similar language was used in headlines at Fox News, CNN, ABC News, the BBC, NBC News, Time, Slate, Engadget, The Huffington Post, PBS, Fast Company, and beyond (including a fleeting appearance in a headline here at The Atlantic). But love or hate the memo, which makes a number of substantive claims, some of which I regard as wrongheaded (and which would’ve benefitted greatly from an editor with more emotional intelligence than the author to help him avoid alienating his audience, even if he was determined to raise all of the same arguments), the many characterizations of the memo as “anti-diversity” are inaccurate. Using that shorthand is highly misleading. As many who read past the headlines would later observe, its author, who was later fired, began, “I value diversity and inclusion, am not denying that sexism exists, and don’t endorse using stereotypes. When addressing the gap in representation in the population, we need to look at population level differences in distributions. If we can’t have an honest discussion about this, then we can never truly solve the problem.” The balance of his memo argues that he is not against pursuing greater gender diversity at Google; he says it is against the current means Google is using to pursue that end and the way the company conceives of tradeoffs between the good of diversity and other goods. (c) 2017 by The Atlantic Monthly Group.

Keyword: Sexual Behavior
Link ID: 23941 - Posted: 08.10.2017

By Philip Jaekl In 1959, two French scientists, Michel Jouvet and François Michel, recorded strange patterns of neural activity in the brainstem of sleeping cats. The brain waves seemed remarkably synced to rapid eye movement (REM) sleep, which University of Chicago researchers had connected with dreaming six years earlier. These new brain activity patterns seemed as though they might also correspond with dreaming. In the 1960s, Jouvet and collaborators showed that cats with a lesion introduced into that same brainstem area—the pons—exhibited odd behavior. Cats displayed REMs as though they were asleep, while reacting to nonexistent prey or predators, pouncing, or hiding. Humans can also experience REMs while dreaming, hallucinating, or even recalling deeply emotional memories while awake. But do humans also exhibit the same patterns of neural activity—dubbed PGO waves? The waves are so named because they are generated in a part of the brain stem called the pons, and propagate to the lateral geniculate nuclei of the brain—relay stations in the thalamus for incoming visual information—and then to the occipital lobe, where most visual processing takes place. Studies have suggested that this neural pathway is crucial for functions ranging from basic ones such as the control of eye muscle movements to more-complex phenomena, including visual experiences during dreams and in hallucinations, memory consolidation, and even psychotic behavior. Researchers have recently proposed that a common thread shared by these phenomena is the overriding of retinal visual input by internally created visual experiences (Front Hum Neuro, doi.org/10.3389/fnhum.2017.00089, 2017). © 1986-2017 The Scientist

Keyword: Sleep; Vision
Link ID: 23940 - Posted: 08.10.2017

By NICHOLAS BAKALAR The incidence of stroke has declined in recent years, but only in men. Researchers studied stroke incidence in four periods from 1993 to 2010 in five counties in Ohio and Kentucky. There were 7,710 strokes all together, 57.2 percent of them in women. After adjusting for age and race, they found that stroke incidence in men had decreased to 192 per hundred thousand men in 2010, down from 263 in 1993–94. But for women the incidence was 198 per hundred thousand in 2010, down from 217 in 1993–94, a statistically insignificant change. The study is in Neurology. Most of the difference was in ischemic stroke, the most common cause, resulting from a blocked blood vessel supplying blood to the brain. No one knows why there has been no improvement in women, but the lead author, Dr. Tracy E. Madsen, an assistant professor of emergency medicine at Brown, said that some risk factors have a stronger effect in women than in men. Risk factors for stroke include high blood pressure, heart disease, diabetes and smoking. “Maybe we’re not controlling risk factors to the same extent in women. Or maybe there’s a biological difference in the way these risk factors cause strokes in men versus women.” In any case, Dr. Madsen said, “It’s important for women to know they are at risk. Stroke has been considered a male disease, but we know that it is very prevalent in women and has a high risk of disability and death.” © 2017 The New York Times Company

Keyword: Stroke; Sexual Behavior
Link ID: 23939 - Posted: 08.10.2017

By Stephen Smith, Playing first-person shooter video games causes some users to lose grey matter in a part of their brain associated with the memory of past events and experiences, a new study by two Montreal researchers concludes. Gregory West, an associate professor of psychology at the Université de Montréal, says the neuroimaging study, published Tuesday in the journal Molecular Psychiatry, is the first to find conclusive evidence of grey matter loss in a key part of the brain as a direct result of computer interaction. "A few studies have been published that show video games could have a positive impact on the brain, namely positive associations between action video games, first-person shooter games, and visual attention and motor control skills," West told CBC News. "To date, no one has shown that human-computer interactions could have negative impacts on the brain — in this case the hippocampal memory system." The four-year study by West and Véronique Bohbot, an associate professor of psychiatry at McGill University, looked at the impact of action video games on the hippocampus, the part of the brain that plays a critical role in spatial memory and the ability to recollect past events and experiences. The neuroimaging study's participants were all healthy 18- to 30-year-olds with no history of playing video games. Brain scans conducted on the participants before and after the experiment looked for differences in the hippocampus between players who favour spatial memory strategies and so-called response learners — that is, players whose way of navigating a game favours a part of the brain called the caudate nucleus, which helps us to form habits. ©2017 CBC/Radio-Canada.

Keyword: Learning & Memory
Link ID: 23938 - Posted: 08.09.2017

Amy Maxmen Despite strides in maternal medicine, premature birth remains a vexing problem for obstetricians worldwide. But an analysis of medical records from almost 3 million pregnant women in California1 suggests that a surprisingly simple intervention — better sleep — might help to address the issue. Researchers found that women who had been diagnosed with insomnia or sleep apnea were about twice as likely as women without sleep disorders to deliver their babies more than six weeks early. “It seems obvious, but strangely this study has not been done before,” says Laura Jelliffe-Pawlowski, an epidemiologist at the University of California, San Francisco (UCSF), and an author of the research, which was published on 8 August in the journal Obstetrics and Gynecology1. “Seeing this relationship is important because we are just starved for interventions that can make a difference.” Public-health experts say that better treatment for pregnant women with serious sleep disorders could save babies' lives, and do so with approaches that avoid the use of medication. Every year, 15 million babies worldwide are born prematurely — more than three weeks before the typical full-term pregnancy of 40 weeks. These children have less time to develop in the womb, and 1.1 million will die from birth-related complications. Many others are left with hearing impairment, learning disabilities, cerebral palsy and other health issues. © 2017 Macmillan Publishers Limited,

Keyword: Sleep; Development of the Brain
Link ID: 23937 - Posted: 08.09.2017

By Ben Guarino A sleeping brain can form fresh memories, according to a team of neuroscientists. The researchers played complex sounds to people while they were sleeping, and afterward the sleepers could recognize those sounds when they were awake. The idea that humans can learn while asleep, a concept sometimes called hypnopedia, has a long and odd history. It hit a particularly strange note in 1927, when New York inventor A. B. Saliger debuted the Psycho-phone. He billed the device as an “automatic suggestion machine.” The Psycho-phone was a phonograph connected to a clock. It played wax cylinder records, which Saliger made and sold. The records had names like “Life Extension,” “Normal Weight” or “Mating.” That last one went: “I desire a mate. I radiate love … My conversation is interesting. My company is delightful. I have a strong sex appeal.” Thousands of sleepers bought the devices, Saliger told the New Yorker in 1933. (Those included Hollywood actors, he said, though he declined to name names.) Despite his enthusiasm for the machine — Saliger himself dozed off to “Inspiration” and “Health” — the device was a bust. But the idea that we can learn while unconscious holds more merit than gizmos named Psycho-phone suggest. In the new study, published Tuesday in the journal Nature Communications, neuroscientists demonstrated that it is possible to teach acoustic lessons to sleeping people. © 1996-2017 The Washington Post

Keyword: Sleep; Learning & Memory
Link ID: 23936 - Posted: 08.09.2017

(By Ashley Juavinett) We love talking about cortex. It’s bumpy, it’s got layers, and it’s probably the brain structure that makes us the very verbal, skilled primates that we are. We also love all of the different areas of cortex—there’s one for face recognition, another for motion detection, and many for decision-making. Often, labs stake claims on their cortical area of interest, diving deep into how that particular patch gets its job done. But how well can we really divvy up that important sheet of tissue that makes us human? Can we confidently say we’ve left one area, and moved into the next? And how well can we translate these borders to smaller animal models, such as mice? Tiny brains with big aspirations Mice are super important to neuroscientists. Sure, they’re quite small and not exactly the most brilliant animals, but we’ve been able to engineer them to mark specific cell types, express glowing proteins, and more. As a result of this powerful murine toolbox, mice have gained a lot of attention from scientists who want to understand circuits and cell types in the brain. In particular, the visual cortex of the mouse has been the site of a lot of discussion, with many researchers hoping that we could use our extensive knowledge about the coarse organization of the primate visual system to ask detailed questions in the mouse brain. However, if we want to use powerful genetic and recording tools in mice, we first need to understand how their cortex is organized. So, many neuroscientists have been working to combine textbook knowledge about primate brain organization with novel techniques designed for the tiny mouse brain.

Keyword: Brain imaging
Link ID: 23935 - Posted: 08.09.2017

By GRETCHEN REYNOLDS Some types of exercise may be better than others at blunting appetite and potentially aiding in weight management, according to an interesting new study of workouts and hunger. It finds that pushing yourself during exercise affects appetite, sometimes in surprising ways. As anyone who has begun an exercise program knows, the relationships between exercise, appetite, weight control and hunger are complex and often counterintuitive. The arithmetic involved seems straightforward. You burn calories during exercise and, over time, should drop pounds. But the reality is more vexing. In both scientific studies and the world inhabited by the rest of us, most people who start exercising lose fewer pounds than would be expected, given the number of calories they are burning during workouts. Many people even gain weight. The problem with exercise as a weight-loss strategy seems to be in large part that it can make you hungry, and many of us wind up consuming more calories after a workout than we torched during it, a biological response that has led some experts and frustrated exercisers to conclude that exercise by itself — without strict calorie reduction — is useless for shedding pounds. But much of the past research into exercise and appetite has concentrated on walking or other types of relatively short or light activities. Some scientists have begun to wonder whether exercise that was physically taxing, either because it was prolonged or intense, might affect appetite differently than more easeful exercise. So for the new study, which was published recently in the Journal of Endocrinology, scientists from Loughborough University in Britain and other institutions who have been studying exercise and appetite for years recruited 16 healthy, fit young men. (They did not include women because this was a small, pilot study, the authors say, and controlling for the effects of women’s menstrual cycles would have been difficult.) © 2017 The New York Times Company

Keyword: Obesity
Link ID: 23934 - Posted: 08.09.2017

By Jamie Strashin, The look on Melissa Bishop's face said it all. The Canadian 800-metre star had just run the race of her life, at the best possible moment, on the world's biggest stage. "I have never run faster in my life. It's the smartest race I have ever put down on a track," Bishop said of her performance in the final at the Rio Olympics last summer. But it still wasn't enough. Despite setting a new Canadian record (which she has since broken by running a 1:57.01), Bishop finished fourth in the Rio final, missing a bronze medal by 13 hundredths of a second. Perhaps more distressingly, she crossed the line close to two seconds slower than gold medallist Caster Semenya. "I remember seeing my agent and just falling into his arms, thinking, I can't believe this just happened. What just happened?" Bishop recalled. "And then I saw my dad, and my dad is a very emotional man and he was livid. Not because of how I raced, but because of the scenario we were in. And he just kept telling me, 'You have nothing to be ashamed of.'" The "scenario" of finishing well behind Semenya is a familiar one for competitors since the South African burst onto the scene at the 2009 world track and field championships. As an 18-year-old in Berlin, Semenya blasted away her competition, winning by almost two and a half seconds and clocking the fastest time of the year. Caster Semenya dominates 800m at 2009 world championships ©2017 CBC/Radio-Canada.

Keyword: Sexual Behavior
Link ID: 23933 - Posted: 08.09.2017