Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By Philip Jaekl In 1959, two French scientists, Michel Jouvet and François Michel, recorded strange patterns of neural activity in the brainstem of sleeping cats. The brain waves seemed remarkably synced to rapid eye movement (REM) sleep, which University of Chicago researchers had connected with dreaming six years earlier. These new brain activity patterns seemed as though they might also correspond with dreaming. In the 1960s, Jouvet and collaborators showed that cats with a lesion introduced into that same brainstem area—the pons—exhibited odd behavior. Cats displayed REMs as though they were asleep, while reacting to nonexistent prey or predators, pouncing, or hiding. Humans can also experience REMs while dreaming, hallucinating, or even recalling deeply emotional memories while awake. But do humans also exhibit the same patterns of neural activity—dubbed PGO waves? The waves are so named because they are generated in a part of the brain stem called the pons, and propagate to the lateral geniculate nuclei of the brain—relay stations in the thalamus for incoming visual information—and then to the occipital lobe, where most visual processing takes place. Studies have suggested that this neural pathway is crucial for functions ranging from basic ones such as the control of eye muscle movements to more-complex phenomena, including visual experiences during dreams and in hallucinations, memory consolidation, and even psychotic behavior. Researchers have recently proposed that a common thread shared by these phenomena is the overriding of retinal visual input by internally created visual experiences (Front Hum Neuro, doi.org/10.3389/fnhum.2017.00089, 2017). © 1986-2017 The Scientist
By NICHOLAS BAKALAR The incidence of stroke has declined in recent years, but only in men. Researchers studied stroke incidence in four periods from 1993 to 2010 in five counties in Ohio and Kentucky. There were 7,710 strokes all together, 57.2 percent of them in women. After adjusting for age and race, they found that stroke incidence in men had decreased to 192 per hundred thousand men in 2010, down from 263 in 1993–94. But for women the incidence was 198 per hundred thousand in 2010, down from 217 in 1993–94, a statistically insignificant change. The study is in Neurology. Most of the difference was in ischemic stroke, the most common cause, resulting from a blocked blood vessel supplying blood to the brain. No one knows why there has been no improvement in women, but the lead author, Dr. Tracy E. Madsen, an assistant professor of emergency medicine at Brown, said that some risk factors have a stronger effect in women than in men. Risk factors for stroke include high blood pressure, heart disease, diabetes and smoking. “Maybe we’re not controlling risk factors to the same extent in women. Or maybe there’s a biological difference in the way these risk factors cause strokes in men versus women.” In any case, Dr. Madsen said, “It’s important for women to know they are at risk. Stroke has been considered a male disease, but we know that it is very prevalent in women and has a high risk of disability and death.” © 2017 The New York Times Company
Keyword: Stroke; Sexual Behavior
Link ID: 23939 - Posted: 08.10.2017
By Stephen Smith, Playing first-person shooter video games causes some users to lose grey matter in a part of their brain associated with the memory of past events and experiences, a new study by two Montreal researchers concludes. Gregory West, an associate professor of psychology at the Université de Montréal, says the neuroimaging study, published Tuesday in the journal Molecular Psychiatry, is the first to find conclusive evidence of grey matter loss in a key part of the brain as a direct result of computer interaction. "A few studies have been published that show video games could have a positive impact on the brain, namely positive associations between action video games, first-person shooter games, and visual attention and motor control skills," West told CBC News. "To date, no one has shown that human-computer interactions could have negative impacts on the brain — in this case the hippocampal memory system." The four-year study by West and Véronique Bohbot, an associate professor of psychiatry at McGill University, looked at the impact of action video games on the hippocampus, the part of the brain that plays a critical role in spatial memory and the ability to recollect past events and experiences. The neuroimaging study's participants were all healthy 18- to 30-year-olds with no history of playing video games. Brain scans conducted on the participants before and after the experiment looked for differences in the hippocampus between players who favour spatial memory strategies and so-called response learners — that is, players whose way of navigating a game favours a part of the brain called the caudate nucleus, which helps us to form habits. ©2017 CBC/Radio-Canada.
Keyword: Learning & Memory
Link ID: 23938 - Posted: 08.09.2017
Amy Maxmen Despite strides in maternal medicine, premature birth remains a vexing problem for obstetricians worldwide. But an analysis of medical records from almost 3 million pregnant women in California1 suggests that a surprisingly simple intervention — better sleep — might help to address the issue. Researchers found that women who had been diagnosed with insomnia or sleep apnea were about twice as likely as women without sleep disorders to deliver their babies more than six weeks early. “It seems obvious, but strangely this study has not been done before,” says Laura Jelliffe-Pawlowski, an epidemiologist at the University of California, San Francisco (UCSF), and an author of the research, which was published on 8 August in the journal Obstetrics and Gynecology1. “Seeing this relationship is important because we are just starved for interventions that can make a difference.” Public-health experts say that better treatment for pregnant women with serious sleep disorders could save babies' lives, and do so with approaches that avoid the use of medication. Every year, 15 million babies worldwide are born prematurely — more than three weeks before the typical full-term pregnancy of 40 weeks. These children have less time to develop in the womb, and 1.1 million will die from birth-related complications. Many others are left with hearing impairment, learning disabilities, cerebral palsy and other health issues. © 2017 Macmillan Publishers Limited,
Keyword: Sleep; Development of the Brain
Link ID: 23937 - Posted: 08.09.2017
By Ben Guarino A sleeping brain can form fresh memories, according to a team of neuroscientists. The researchers played complex sounds to people while they were sleeping, and afterward the sleepers could recognize those sounds when they were awake. The idea that humans can learn while asleep, a concept sometimes called hypnopedia, has a long and odd history. It hit a particularly strange note in 1927, when New York inventor A. B. Saliger debuted the Psycho-phone. He billed the device as an “automatic suggestion machine.” The Psycho-phone was a phonograph connected to a clock. It played wax cylinder records, which Saliger made and sold. The records had names like “Life Extension,” “Normal Weight” or “Mating.” That last one went: “I desire a mate. I radiate love … My conversation is interesting. My company is delightful. I have a strong sex appeal.” Thousands of sleepers bought the devices, Saliger told the New Yorker in 1933. (Those included Hollywood actors, he said, though he declined to name names.) Despite his enthusiasm for the machine — Saliger himself dozed off to “Inspiration” and “Health” — the device was a bust. But the idea that we can learn while unconscious holds more merit than gizmos named Psycho-phone suggest. In the new study, published Tuesday in the journal Nature Communications, neuroscientists demonstrated that it is possible to teach acoustic lessons to sleeping people. © 1996-2017 The Washington Post
Keyword: Sleep; Learning & Memory
Link ID: 23936 - Posted: 08.09.2017
(By Ashley Juavinett) We love talking about cortex. It’s bumpy, it’s got layers, and it’s probably the brain structure that makes us the very verbal, skilled primates that we are. We also love all of the different areas of cortex—there’s one for face recognition, another for motion detection, and many for decision-making. Often, labs stake claims on their cortical area of interest, diving deep into how that particular patch gets its job done. But how well can we really divvy up that important sheet of tissue that makes us human? Can we confidently say we’ve left one area, and moved into the next? And how well can we translate these borders to smaller animal models, such as mice? Tiny brains with big aspirations Mice are super important to neuroscientists. Sure, they’re quite small and not exactly the most brilliant animals, but we’ve been able to engineer them to mark specific cell types, express glowing proteins, and more. As a result of this powerful murine toolbox, mice have gained a lot of attention from scientists who want to understand circuits and cell types in the brain. In particular, the visual cortex of the mouse has been the site of a lot of discussion, with many researchers hoping that we could use our extensive knowledge about the coarse organization of the primate visual system to ask detailed questions in the mouse brain. However, if we want to use powerful genetic and recording tools in mice, we first need to understand how their cortex is organized. So, many neuroscientists have been working to combine textbook knowledge about primate brain organization with novel techniques designed for the tiny mouse brain.
Keyword: Brain imaging
Link ID: 23935 - Posted: 08.09.2017
By GRETCHEN REYNOLDS Some types of exercise may be better than others at blunting appetite and potentially aiding in weight management, according to an interesting new study of workouts and hunger. It finds that pushing yourself during exercise affects appetite, sometimes in surprising ways. As anyone who has begun an exercise program knows, the relationships between exercise, appetite, weight control and hunger are complex and often counterintuitive. The arithmetic involved seems straightforward. You burn calories during exercise and, over time, should drop pounds. But the reality is more vexing. In both scientific studies and the world inhabited by the rest of us, most people who start exercising lose fewer pounds than would be expected, given the number of calories they are burning during workouts. Many people even gain weight. The problem with exercise as a weight-loss strategy seems to be in large part that it can make you hungry, and many of us wind up consuming more calories after a workout than we torched during it, a biological response that has led some experts and frustrated exercisers to conclude that exercise by itself — without strict calorie reduction — is useless for shedding pounds. But much of the past research into exercise and appetite has concentrated on walking or other types of relatively short or light activities. Some scientists have begun to wonder whether exercise that was physically taxing, either because it was prolonged or intense, might affect appetite differently than more easeful exercise. So for the new study, which was published recently in the Journal of Endocrinology, scientists from Loughborough University in Britain and other institutions who have been studying exercise and appetite for years recruited 16 healthy, fit young men. (They did not include women because this was a small, pilot study, the authors say, and controlling for the effects of women’s menstrual cycles would have been difficult.) © 2017 The New York Times Company
Keyword: Obesity
Link ID: 23934 - Posted: 08.09.2017
By Jamie Strashin, The look on Melissa Bishop's face said it all. The Canadian 800-metre star had just run the race of her life, at the best possible moment, on the world's biggest stage. "I have never run faster in my life. It's the smartest race I have ever put down on a track," Bishop said of her performance in the final at the Rio Olympics last summer. But it still wasn't enough. Despite setting a new Canadian record (which she has since broken by running a 1:57.01), Bishop finished fourth in the Rio final, missing a bronze medal by 13 hundredths of a second. Perhaps more distressingly, she crossed the line close to two seconds slower than gold medallist Caster Semenya. "I remember seeing my agent and just falling into his arms, thinking, I can't believe this just happened. What just happened?" Bishop recalled. "And then I saw my dad, and my dad is a very emotional man and he was livid. Not because of how I raced, but because of the scenario we were in. And he just kept telling me, 'You have nothing to be ashamed of.'" The "scenario" of finishing well behind Semenya is a familiar one for competitors since the South African burst onto the scene at the 2009 world track and field championships. As an 18-year-old in Berlin, Semenya blasted away her competition, winning by almost two and a half seconds and clocking the fastest time of the year. Caster Semenya dominates 800m at 2009 world championships ©2017 CBC/Radio-Canada.
Keyword: Sexual Behavior
Link ID: 23933 - Posted: 08.09.2017
By Matthew Hutson Every year, tens of millions of Americans toss and turn with chronic sleep disorders. But diagnosis isn’t easy: It usually means sleeping in a lab entangled in gadgets that track breathing, heart rate, movement, and brain activity, followed by expert analysis of the data. Now, a new technique that uses machine learning and radio signals can get rid of the sleep lab—and the expert. First, an in-home device bounces radio waves—similar to those in cellphones and Wi-Fi routers—off the sleeper, measuring the returning signal. Then, the system builds on previous radio-frequency sleep monitoring by using three machine-learning algorithms to analyze breathing and pulse and identify the stage of sleep: light, deep, REM, or wakefulness. One algorithm uses a type of neural network common in image recognition to parse the spectrograms, or snapshots, of the data; another uses a type of neural net typically employed in tracking temporal patterns to look at the dynamics of sleep stages; a third refines the analysis to make it more generalizable across people and environments. Researchers trained the tool on about 70,000 30-second sleep intervals and tested it on about 20,000. Measured against an electroencephalogram system that was about as proficient as humans, the system identified sleep stages with 80% accuracy, versus 64% for the previous best radio frequency method, the researchers will report tomorrow at the International Conference on Machine Learning in Sydney, Australia. If the system makes it to market, doctors might soon be able to diagnose you in their sleep. © 2017 American Association for the Advancement of Science.
Keyword: Sleep
Link ID: 23932 - Posted: 08.09.2017
By Kerry Grens The popular chemogenetic technique for controlling cells does not operate in vivo in the way scientists had assumed. Reporting in Science yesterday (August 3), researchers show that CNO, a drug used in the DREADDs method (designer receptors exclusively activated by designer drugs), is not actually responsible for the effects scientists observe. Rather, it’s clozapine, a metabolite of CNO with numerous cellular targets, that binds the receptors. These results make it imperative for researchers to do proper controls with clozapine, and indicate that they should change their protocols altogether. “I’m glad I don’t own stock in CNO,” says Scott Sternson, a neuroscientist at the Janelia Research Campus. “There’s no reason to use CNO anymore.” Although it may be the end of CNO in these studies, coauthor Mike Michaelides of the National Institute on Drug Abuse tells The Scientist the results don’t necessarily mean the end of DREADDs. In fact, his findings might simplify things. Rather than using CNO, researchers can just administer clozapine instead because it’s the real actuator of the technique. “If they use proper controls, then hopefully it should be fine,” he says. The idea behind DREADDs is that a receptor is introduced into cells that will only respond to a particular drug, in this case CNO. Likewise, the drug will only target that receptor. The technique allows researchers to control neural activity. Michaelides says that although it’s a commonly used method, no one had done the critical experiments to observe CNO interacting directly with DREADDs in vivo. © 1986-2017 The Scientist
Keyword: Miscellaneous
Link ID: 23931 - Posted: 08.08.2017
By TAFFY BRODESSER-AKNER James Chambers was watching membership sign-ups on Jan. 4, 2015, like a stock ticker — it was that first Sunday of the year, the day we all decide that this is it, we’re not going to stay fat for one more day. At the time, he was Weight Watchers’ chief executive, and he sat watching, waiting for the line on the graph to begin its skyward trajectory. Chambers knew consumer sentiment had been changing — the company was in its fourth year of member-recruitment decline. But they also had a new marketing campaign to help reverse the generally dismal trend. But the weekend came and went, and the people never showed up. More than two-thirds of Americans were what public-health officials called overweight or obese, and this was the oldest and most trusted diet company in the world. Where were the people? Weight Watchers was at a loss. Chambers called Deb Benovitz, the company’s senior vice president and global head of consumer insights. ‘‘We’re having one of the worst Januaries that anyone could have imagined,’’ she remembers him telling her. In the dieting business, January will tell you everything you need to know about the rest of the year. ‘‘Nothing like we had anticipated.’’ Chambers and Benovitz knew that people had developed a kind of diet fatigue. Weight Watchers had recently tried the new marketing campaign, called ‘‘Help With the Hard Part,’’ an attempt at radical honesty. No one wanted radical honesty. Chambers told Benovitz that they needed to figure out what was going on and how to fix it before the February board meeting. Benovitz got to work. She traveled the country, interviewing members, former members and people they thought should be members about their attitudes toward dieting. She heard that they no longer wanted to talk about ‘‘dieting’’ and ‘‘weight loss.’’ They wanted to become ‘‘healthy’’ so they could be ‘‘fit.’’ They wanted to ‘‘eat clean’’ so they could be ‘‘strong.’’ © 2017 The New York Times Company
Keyword: Obesity
Link ID: 23930 - Posted: 08.08.2017
By GINA KOLATA For middle-aged women struggling with their weight, a recent spate of scientific findings sounds too good to be true. And they may be, researchers caution. Studies in mice indicate that a single hormone whose levels rise at menopause could be responsible for a characteristic redistribution of weight in middle age to the abdomen, turning many women from “pears” to “apples.” At the same time, the hormone may spur the loss of bone. In mouse studies, blocking the hormone solves those problems, increasing the calories burned, reducing abdominal fat, slowing bone loss and even encouraging physical activity. The notion that such a simple intervention could solve two big problems of menopause has received the attention of researchers and has prompted commentaries in prestigious journals like The New England Journal of Medicine and Cell Metabolism. “It’s a super interesting idea,” said Dr. Daniel Bessesen, an obesity expert and professor of medicine at the University of Colorado School of Medicine. With obesity rising, “we definitely need some new ideas.” The work began when Dr. Mone Zaidi, a professor of medicine at the Icahn School of Medicine at Mount Sinai in New York City, became curious about whether a reproductive hormone — F.S.H., or follicle-stimulating hormone — affects bone density. It had long been assumed that the hormone’s role was limited to reproduction. F.S.H. stimulates the production of eggs in women and sperm in men. Researchers knew that blood levels of F.S.H. soar as women’s ovaries start to fail before menopause. At the same time, women rapidly lose bone — even when blood levels of estrogen, which can preserve bone, remain steady. © 2017 The New York Times Company
Keyword: Obesity; Hormones & Behavior
Link ID: 23929 - Posted: 08.08.2017
/ By Robin Lloyd While broadly welcomed by public health advocates as an important step to further curb tobacco use, many of the commitments in a new plan to tackle the problem, announced last Friday by Food and Drug Administration Commissioner Scott Gottlieb, actually involve gathering more input for future policies, rather than taking action now. “We expect to take meaningful steps in 2017 to advance important regulatory components that address the key aspects of this new policy,” FDA spokesman Michael Felberbaum said in an email message to Undark. “We do not have any additional details to share at this time.” That strikes some public health advocates as a bit of foot-dragging. “A lot of these issues they’re raising that they say they have to consider have been considered, have been researched, have been studied,” says Eric Lindblom, director for tobacco control and food and drug law at the O’Neill Institute for National and Global Health Law at Georgetown University. Lindblom has a long resume for developing tobacco control policies to improve public health, including a 2011-2014 stint at the FDA’s Center for Tobacco Products. “FDA saying that ‘We’re going to look into nicotine reduction,’ without also saying, ‘We’re going to issue a proposed rule before the end of this year, or before June of next year,’ just opens the door to continued discussion and talking and all the rest, without actually ever getting anything done,” Lindblom said. Copyright 2017 Undark
Keyword: Drug Abuse
Link ID: 23928 - Posted: 08.08.2017
By Helen Thomson People with obsessive-compulsive disorder (OCD) may get relief simply from watching someone else perform their compulsive actions. If the finding holds up, we may be able to develop apps that help people with OCD stop needing to repeatedly wash their hands or pull their hair. When we watch someone else perform an action, the same parts of our brains become active as when we do the action ourselves. This is called the mirror neuron system, and it is thought to help us understand the actions and feelings of others. Baland Jalal at the University of Cambridge wondered whether this system could be used to help people with OCD. Working with his colleague Vilayanur Ramachandran, at the University of California, San Diego, he studied 10 people with OCD symptoms, who experience disgust when touching things they consider even mildly contaminated. The anxiety this causes forces them to wash their hands compulsively. First, Jalal and Ramachandran showed each participant something to make them feel disgusted – either an open bag of vomit, a bowl containing blood-soaked bandages or a bedpan of faeces and toilet paper. The participants were unaware that each stimulus was in fact fake. In a variety of conditions, either the participant or a researcher touched the bag, bowl or bedpan for 15 seconds while wearing latex gloves. The participants were then asked to rate how disgusted they felt, before being allowed to wash their hands, or watch the researcher do the same. They then rated how relieved they now felt. © Copyright New Scientist Ltd.
Keyword: OCD - Obsessive Compulsive Disorder
Link ID: 23927 - Posted: 08.08.2017
By Daniel Barron Conrad was 17 months old when Dave, his grandfather, was babysitting him at their home in Temple, Texas. The two had been playing in the pool and went inside for a break. Dave set to unloading dishes in the dishwasher, unaware that Conrad had snuck back outside. As he finished the dishes, Dave looked out the window and noticed something odd. There was what looked like a floating bundle of clothes in the swimming pool. It was his grandson. Fortunately, Conrad responded to cardiopulmonary resuscitation (CPR), but it’s unclear how long his lungs—and his brain—went without oxygen. Drowning is the second most common cause of accidental death in children to age four. As in Conrad’s case, CPR is fortunately very successful, with 66 percent of nearly drowned children surviving. But even when resuscitated, the seconds and minutes that the brain is deprived of oxygen come at a great cost. This type of damage is known as anoxic brain injury. Anoxic brain injury is a clinical term that indicates damage to the brain that occurs due to lack of oxygen. There is a spectrum of injury ranging from complete recovery to minor to widespread brain damage. Within this spectrum lies what is known as the disorders of consciousness, with the extent of damage being proportional to the loss of consciousness. In the case of nearly drowned children, the injury is frequently thought to be widespread. Nearly drowned children are labeled “minimally conscious” or even in a “persistent vegetative state” (with no consciousness) and the prevailing medical prognosis is grim: treatment and recovery is difficult if not impossible. © 2017 Scientific American,
Keyword: Development of the Brain; Brain Injury/Concussion
Link ID: 23926 - Posted: 08.08.2017
Jean M. Twenge One day last summer, around noon, I called Athena, a 13-year-old who lives in Houston, Texas. She answered her phone—she’s had an iPhone since she was 11—sounding as if she’d just woken up. We chatted about her favorite songs and TV shows, and I asked her what she likes to do with her friends. “We go to the mall,” she said. “Do your parents drop you off?,” I asked, recalling my own middle-school days, in the 1980s, when I’d enjoy a few parent-free hours shopping with my friends. “No—I go with my family,” she replied. “We’ll go with my mom and brothers and walk a little behind them. I just have to tell my mom where we’re going. I have to check in every hour or every 30 minutes.” Those mall trips are infrequent—about once a month. More often, Athena and her friends spend time together on their phones, unchaperoned. Unlike the teens of my generation, who might have spent an evening tying up the family landline with gossip, they talk on Snapchat, the smartphone app that allows users to send pictures and videos that quickly disappear. They make sure to keep up their Snapstreaks, which show how many days in a row they have Snapchatted with each other. Sometimes they save screenshots of particularly ridiculous pictures of friends. “It’s good blackmail,” Athena said. (Because she’s a minor, I’m not using her real name.) She told me she’d spent most of the summer hanging out alone in her room with her phone. That’s just the way her generation is, she said. “We didn’t have a choice to know any life without iPads or iPhones. I think we like our phones more than we like actual people.” Copyright (c) 2017 by The Atlantic Monthly Group.
Keyword: Depression
Link ID: 23925 - Posted: 08.08.2017
By Erin Blakemore Do you talk to yourself? Don’t sweat it: Scientists say you’re not alone. And the ways in which you chatter to yourself, both in your head and out loud, are changing what neuroscientists know about the human brain. Writing in Scientific American, psychologist Charles Fernyhough reveals why we’re our best conversational partners. Scientists have only recently learned how to study self-talk — and it’s opening up exciting new avenues of research. It turns out there are two ways of chatting yourself up. In “inner speech,” you speak to yourself without making sound. With “private speech,” you do the same thing, just out loud. This chatter serves varied purposes: It can help people control themselves and relate to others. But it’s notoriously hard to study. So Fernyhough and colleagues figured out some inventive ways to prompt people to talk to themselves as they lay inside a functional magnetic resonance imaging, or fMRI, scanner. When they studied the brains of people who talked to themselves internally, the team noticed that spontaneous inner speech activates a different part of the brain than words that the participants were asked to say aloud. And people whose self-talk takes the form of a monologue seem to activate different brain areas than those who carry on a dialogue in their heads. © 1996-2017 The Washington Post
Keyword: Consciousness; Language
Link ID: 23924 - Posted: 08.07.2017
Michael Viney I first saw them by night, or rather by flashlight aimed beside the dinghy as we fished a mile beyond Brighton’s pier. A whole shoal of them appeared beneath the boat, waving their arms, their button eyes glistening. We were not fishing for squid – too foreign a taste for England in those days. But this early glimpse left me fascinated with their kind, not least their giant, still greatly mysterious relative with eyes the size of hubcaps. The Brighton squids were the regular, long-fin Doryteuthis of inshore waters, not the huge, deep-water Architeuthis dux, snared this summer as trawler by-catch on the Porcupine Bank. The Cú na Mara (a nice echo) landed two separate specimens at Dingle a few weeks apart. Expiring on they way up, each was around 6m long, counting in the tentacles. They brought to seven the number landed in 350 years, including a remarkable three in 1995 alone. Two of those were trawled from the Porcupine Bank by a Marine Institute survey vessel. Dr Kevin Flannery, the Dingle marine biologist, would now like the institute to send its remote cameras for a proper look around. Meanwhile, the second squid, as dead as the first but in better shape, will soon be on display in the Dingle Oceanworld aquarium. What could seem strangest is that giant squid are soft-bodied molluscs, like limpets or winkles. Abandoning external shells to work on jet propulsion, they have developed genes and nerves of special interest to science. © 2017 THE IRISH TIMES
Keyword: Miscellaneous
Link ID: 23923 - Posted: 08.07.2017
By Amanda Onion, While driving and accelerating in his car, a patient in France suddenly had a bizarre sensation. He felt like he was outside his car, looking in at his physical self, which was still at the wheel. The patient was part of a new study that links problems of the inner ear with eerie "out-of-body" experiences. These experiences arecurious, usually brief sensations in which a person's consciousness seems to exitthe body and then view the body from the outside. The study analyzed 210 patients who had visited their doctors with so-called vestibular disorders. The vestibular system, which is made up of several structures in the inner ear, provides the body with a sense of balance and spatial orientation. Problems with this system can cause dizziness or a floating sensation, among other symptoms. [7 Weird Facts About Balance] Maya Elzière, an ear, nose and throat specialist at Hôpital Européen in Marseille, France, and co-author of the study, enlisted patients who had experienced a range of issues, from recurrent vertigo and tinnitus to infections in the ear. Among these patients, 14 percent reported out-of-body experiences, compared with only 5 percent of healthy people without vestibular disorders who said the same. "Out-of-body experiences were about three times more frequent" in patients with vestibular disorders, versus those without these disorders, said Christophe Lopez, lead author of the study and a neuroscientist at Aix-Marseille Université in France. © 2017 Scientific American,
Keyword: Attention
Link ID: 23922 - Posted: 08.07.2017
/ By Florence Williams The 17th century ushered in an astonishing age of scientific discovery, from Galileo’s positioning of the sun in the heavens to Newton’s Laws of Motion to Francis Bacon’s empiricism. Armed with new swagger and understanding, the scientific rationalists of the day figured the pivot from astronomy and physics to biology would be a piece of cake. The workings of the universe had been proved to adhere to laws and formulas. All would be properly unveiled in due time. “The bold men of science,” Edward Dolnick writes, “raced off to take on the mystery of life and promptly face-planted.” How mistaken they were. As Edward Dolnick writes in his amusing and informative “The Seeds of Life,” “The bold men of science raced off to take on the mystery of life and promptly face-planted.” In fact, they were fairly undone, partly by their own pigheaded biases and partly by the truly mystifying matters of genes and heredity, for which they were woefully ill prepared. It was not until 1875 that a German scientist finally put the sperm and the egg together conceptually. The journey to that insight was sometimes comical, sometimes misguided, and usually revealing of cultural mores, gender politics, and societal blind spots. Consider, for example, the common scientific belief that a woman’s contribution to baby-making must surely be minimal. Copyright 2017 Undark
Keyword: Sexual Behavior; Development of the Brain
Link ID: 23921 - Posted: 08.07.2017


.gif)

