Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 481 - 500 of 29319

By Sara Talpos Nervous system disorders are among the leading causes of death and disability globally. Conditions such as paralysis and aphasia, which affects the ability to understand and produce language, can be devastating to patients and families. Significant investment has been put toward brain research, including the development of new technologies to treat some conditions, said Saskia Hendriks, a bioethicist at the U.S. National Institutes of Health. These technologies may very well improve lives, but they also raise a host of ethical issues. That’s in part because of the unique nature of the brain, said Hendriks. It’s “the seat of many functions that we think are really important to ourselves, like consciousness, thoughts, memories, emotions, perceptions, actions, perhaps identity.” Saskia Hendriks, a bioethicist at the U.S. National Institutes of Health, recently co-authored an essay on the emerging ethical questions in highly innovative brain research. In a June essay in The New England Journal of Medicine, Hendriks and a co-author, Christine Grady, outlined some of the thorny ethical questions related to brain research: What is the best way to protect the long-term interests of people who receive brain implants as part of a clinical trial? As technology gets better at decoding thoughts, how can researchers guard against violations of mental privacy? And what best way to prepare for the far-off possibility that consciousness may one day arise from work derived from human stem cells? Hendriks spoke about the essay in a Zoom interview. Our conversation has been edited for length and clarity.

Keyword: Robotics
Link ID: 29441 - Posted: 08.19.2024

By Charles Q. Choi Tangles of tau protein track with cognitive impairments in Alzheimer’s disease. But even though tau is expressed throughout the brain, it clumps mainly in specific regions, such as the cortex and hippocampus. Other areas, such as the cerebellum and brainstem, are largely spared. Why tau aggregates this way has remained a mystery, but the answer may have to do with a previously overlooked, oversized and naturally occurring variant of the protein called “big tau,” according to a preprint posted 31 July on bioRxiv. Most tau isoforms range from 352 to 441 amino acids in size, but big tau comprises 758 amino acids. This supersized version is significantly more abundant in the cerebellum and brainstem than in the cortex and hippocampus of mice—and it is much less likely to form abnormal clumps than its smaller counterparts, the preprint shows. “Big tau can resist several key pathological changes related to [Alzheimer’s disease],” wrote study investigator Dah-eun Chloe Chung, a postdoctoral researcher in Huda Zoghbi’s lab at Baylor College of Medicine, in a post on X about the work. (Zoghbi declined to comment for this article because she says the study is currently under review for potential publication, and Chung did not respond to email requests for comment.) Scientists identified big tau in the peripheral nervous system in the 1990s, and it is the predominant tau isoform there. But most research on tau since then “ignores the existence of big tau,” according to a 2020 review. “No one has bothered to study this protein in the context of neurodegeneration,” says Veera Rajagopal, a research scientist at Regeneron, who did not take part in the new work. “All tau-related research has been focused on the shorter isoforms that play a key role in the tauopathies like Alzheimer’s disease, frontotemporal dementia and so on. Now many will go after this big guy.” © 2024 Simons Foundation

Keyword: Alzheimers
Link ID: 29440 - Posted: 08.19.2024

Linda Geddes Imagine a world in which you could solve problems, create art or music or even improve your tennis serve in your sleep. If scientists working in the field of lucid dreams succeed, that world could become a reality sooner than we realise. Researchers are developing techniques that could enable more people to experience lucid dreams – a state of consciousness where a person is aware they are dreaming and can recognise their thoughts and emotions while doing so – and transfer the content of these dreams into their waking lives. They have shown in recent months that it is possible to transfer the rhythm of dream music, switch on a real-life kettle and control a virtual car on a computer screen from inside a lucid dream. “Sooner or later there will be methods or tools that will allow anybody to experience lucid dreams easily or relatively easily, we are searching for ways to connect these two worlds together,” said Michael Raduga, the founder and CEO of REMspace Inc, a sleep research company in Redwood City, California who led the studies. “Even for people who don’t think they are smart, their subconscious is enormous, and we hope to be able to transfer all of this information into reality.” The video player is currently playing an ad. Although not everyone can do it, roughly half of the population have experienced at least one lucid dream in their lifetimes and around a fifth experience them once a month or more. An international group of researchers published a paper in Current Biology several years ago that suggested it was possible to ask people questions, either vocally or using morse code delivered via flashing lights, while they were in a lucid dream – including basic mathematical calculations – and for the dreamers to answer using eye movements or by contracting facial muscles to convey yes/no or numerical answers. © 2024 Guardian News & Media Limited

Keyword: Sleep
Link ID: 29439 - Posted: 08.19.2024

By Paula Span Mary Peart, 67, a retired nurse in Manchester-by-the-Sea, Mass., began taking gabapentin a year and a half ago to reduce the pain and fatigue of fibromyalgia. The drug helps her climb stairs, walk her dog and take art lessons, she said. With it, “I have a life,” she said. “If I forget to take a dose, my pain comes right back.” Jane Dausch has a neurological condition called transverse myelitis and uses gabapentin as needed when her legs and feet ache. “It seems to be effective at calming down nerve pain,” said Ms. Dausch, 67, a retired physical therapist in North Kingstown, R.I. Amy Thomas, who owns three bookstores in the San Francisco Bay Area, takes gabapentin for rheumatoid arthritis. Along with yoga and physical therapy, “it’s probably contributing to it being easier for me to move around,” Ms. Thomas, 67, said. All three are taking the non-opioid pain drug for off-label uses. The only conditions for which gabapentin has been approved for adult use by the Food and Drug Administration are epileptic seizures, in 1993, and postherpetic neuralgia, the nerve pain that can linger after a bout of shingles, in 2002. But that has not stopped patients and health care providers from turning to gabapentin (whose brand names include Neurontin) for a startling array of other conditions, including sciatica, neuropathy from diabetes, lower back pain and post-surgery pain. Also: Agitation from dementia. Insomnia. Migraines. Itching. Bipolar disorder. Alcohol dependence. Evidence of effectiveness for these conditions is all over the map. The drug appears to provide relief for some patients with diabetic neuropathy but not with some other kinds of neuropathic pain. Several small studies indicate that gabapentin can reduce the itching associated with kidney failure. But the data for its effectiveness against low back pain or a number of psychiatric disorders are limited and show no meaningful impact. “It’s crazy how many indications it’s used for,” said Dr. Michael Steinman, a geriatrician at the University of California, San Francisco, and a co-director of the U.S. Deprescribing Research Network. “It’s become a we-don’t-know-what-else-to-do drug.” © 2024 The New York Times Company

Keyword: Pain & Touch; Drug Abuse
Link ID: 29438 - Posted: 08.19.2024

By Ashley Andreou “I still don’t trust my parents’ ability to feed me,” confessed Sofia after I asked what she was most anxious about, nearing discharge after two months on an inpatient eating disorders unit where I worked as a psychiatry resident. The 14-year-old girl was brought to the pediatrician by her parents, worried about her eating. They learned that Sofia (whose name has been changed for her privacy) had lost 30 pounds over three months—she was eating only one piece of fruit a day in the weeks leading up to her admission. She could barely walk home from school, her menses ceased, her hair fell out in clumps, and her heart rate dangerously slowed. But Sofia was not the patient that people often envision with an eating disorder. Her family was Spanish-speaking and had emigrated from Peru. Her confession contained both her fears about losing control of her eating as well as real concern for her life after leaving the hospital. Her deeply caring family struggled with family sessions during her inpatient treatment, complicated by the need for interpreters, a prescribed inpatient diet that differed from the meals typically eaten at home, and a hesitancy to ask questions of the health care team. While Sofia was successfully restored to a healthy weight at discharge from the hospital, finding appropriate outpatient treatment presented yet another challenge. Family-based treatment is a standardized outpatient therapy, which aims to restore adolescent patients to a healthy weight with the support of their parents; the therapy consists of three phases where the parents begin with most of the feeding responsibility, and the patient gradually gains more autonomy as they become renourished. It is the gold standard for adolescent outpatient therapy. However, Medicaid did not fully cover most of these programs, and finding one with a Spanish-speaking therapist was even rarer. Despite a social worker’s efforts, Sofia was wait-listed for a family treatment program with a Spanish-speaking provider who offered sliding-scale payment. © 2024 SCIENTIFIC AMERICAN

Keyword: Anorexia & Bulimia
Link ID: 29437 - Posted: 08.19.2024

By Carl Zimmer When people suffer severe brain damage — as a result of car crashes, for example, or falls or aneurysms — they may slip into a coma for weeks, their eyes closed, their bodies unresponsive. Some recover, but others enter a mysterious state: eyes open, yet without clear signs of consciousness. Hundreds of thousands of such patients in the United States alone are diagnosed in a vegetative state or as minimally conscious. They may survive for decades without regaining a connection to the outside world. These patients pose an agonizing mystery both for their families and for the medical professionals who care for them. Even if they can’t communicate, might they still be aware? A large study published on Wednesday suggests that a quarter of them are. Teams of neurologists at six research centers asked 241 unresponsive patients to spend several minutes at a time doing complex cognitive tasks, such as imagining themselves playing tennis. Twenty-five percent of them responded with the same patterns of brain activity seen in healthy people, suggesting that they were able to think and were at least somewhat aware. Dr. Nicholas Schiff, a neurologist at Weill Cornell Medicine and an author of the study, said the study shows that up to 100,000 patients in the United States alone might have some level of consciousness despite their devastating injuries. The results should lead to more sophisticated exams of people with so-called disorders of consciousness, and to more research into how these patients might communicate with the outside world, he said: “It’s not OK to know this and to do nothing.” When people lose consciousness after a brain injury, neurologists traditionally diagnose them with a bedside exam. They may ask patients to say something, to look to their left or right, or to give a thumbs-up. © 2024 The New York Times Company

Keyword: Consciousness
Link ID: 29436 - Posted: 08.15.2024

By Erin Garcia de Jesús An appetite-stimulating protein can reverse anorexia in mice. Mice with lack of appetite and weight loss — symptoms similar to people with anorexia — that were genetically tweaked to secrete a protein called ACBP ate more food and weighed more than anorexic animals with an ACBP deficit, researchers report August 14 in Science Translational Medicine. The finding points to a potential treatment target for people with the eating disorder. “Anorexia is a whole brain and body illness” that is difficult to treat, says psychiatrist and neuroscientist Rachel Ross, who wasn’t involved with the new work. “One of the major challenges is that the brain of a person with anorexia is directly fighting against their body.” While the body screams for food, the brain prioritizes the need to restrict weight (SN: 7/26/13). Globally, around 1 percent of women and 0.2 percent of men develop the disorder. Roughly just a third of those people fully recover. Yet, no drugs are available; treatment typically involves medical care to stabilize weight and therapy to mend patients’ relationships with food. Some cancer patients can also develop a similar disorder called cancer cachexia, which comes from an impaired metabolism, that is similarly tough to treat (SN: 7/30/24). “Anything that has the potential to provide some sort of mechanism that would be useful for creating a new therapeutic is huge,” says Ross, of Albert Einstein College of Medicine and Montefiore Health System in New York City. And although there’s no guarantee the results will apply to people, the new findings suggest that ACBP, a protein that helps turn on parts of the brain that arouse appetite, may have that potential. © Society for Science & the Public 2000–2024.

Keyword: Obesity; Hormones & Behavior
Link ID: 29435 - Posted: 08.15.2024

By Greg Donahue In late 2018, after an otherwise-normal Christmas holiday, Laurie Beatty started acting strange. An 81-year-old retired contractor, he grew unnaturally quiet and began poring over old accounting logs from a construction business he sold decades earlier, convinced that he had been bilked in the deal. Listen to this article, read by Robert Petkoff Over the course of several days, Beatty slipped further into unreality. He told his wife the year was 1992 and wondered aloud why his hair had turned white. Then he started having seizures. His arms began to move in uncontrollable jerks and twitches. By the end of May, he was dead. Doctors at the Georges-L.-Dumont University Hospital Center in Moncton, the largest city in the province of New Brunswick, Canada, zeroed in on an exceedingly rare condition — Creutzfeldt-Jakob disease, caused by prions, misfolding proteins in the brain — as the most likely culprit. The doctors explained this to Beatty’s children, Tim and Jill, and said they would run additional tests to confirm the post-mortem diagnosis. Three months later, when the siblings returned to the office of their father’s neurologist, Dr. Alier Marrero, that’s what they were expecting to hear. Instead, Marrero told them that Laurie’s Creutzfeldt-Jakob test had come back negative. “We were all looking at one another,” Tim says, “because we were all very confused.” If Creutzfeldt-Jakob hadn’t killed their father, then what had? What Marrero said next was even more unsettling. “There’s something going on,” they recall him saying. “And I don’t know what it is.” It turned out that Laurie Beatty was just one of many local residents who had gone to Marrero’s office exhibiting similar, inexplicable symptoms of neurological decline — more than 20 in the previous four years. The first signs were often behavioral. One patient fell asleep for nearly 20 hours straight before a friend took her to the hospital; another found himself afraid to disturb the stranger who had sat down in his living room, only to realize hours later that the stranger was his wife. © 2024 The New York Times Company

Keyword: Alzheimers; Learning & Memory
Link ID: 29434 - Posted: 08.15.2024

By Sara Reardon Last week’s decision by the US Food and Drug Administration (FDA) to reject MDMA, also known as ecstasy, as a psychiatric treatment surprised many researchers. Lykos Therapeutics, the company that has been testing MDMA, plans to ask the FDA to reconsider the decision, but scientists are now wondering what the agency’s ruling will mean for other potential psychedelic therapies. In a press release posted on 9 August, Lykos, which is based in San Jose, California, said that the FDA had sent a letter requesting that the company undertake another large-scale trial of the drug in people with post-traumatic stress disorder (PTSD) and resubmit its application. “The FDA request for another study is deeply disappointing,” Lykos chief executive Amy Emerson said in the press release, adding that the company plans to work with the agency to “resolve scientific disagreements”. Conducting another study “would take several years”, she said, adding that Lykos has already addressed many of the FDA’s concerns. In an e-mail to Nature, Lykos declined to provide the complete letter detailing the agency’s specific concerns and directed the news team instead to its press release. Experts say that without access to the letter, it’s hard to determine why the FDA reached the decision it did. “We really are going off incomplete information,” says Mason Marks, who studies drug policy at Florida State University in Tallahassee, adding that he was “a little surprised” by the agency’s decision. Trial concerns But Marks points out that the FDA typically follows the advice of its independent advisory committees — and the one that evaluated MDMA in June overwhelmingly voted against approving the drug, citing problems with clinical trial design that the advisers felt made it difficult to determine the drug’s safety and efficacy. One concern was about the difficulty of conducting a true placebo-controlled study with a hallucinogen: around 90% of the participants in Lykos’s trials guessed correctly whether they had received the drug or a placebo, and the expectation that MDMA should have an effect might have coloured their perception of whether it treated their symptoms. © 2024 Springer Nature Limited

Keyword: Drug Abuse; Depression
Link ID: 29433 - Posted: 08.15.2024

By Sara Reardon Stress can make people feel sick, and bacteria in the gut might be to blame, according to a study1 in mice. The research suggests that a stressed brain directly shuts down specific glands in the gut, affecting gut bacteria and the body’s broader immune system. The study “is a technical tour de force”, says neuroscientist John Cryan at University College Cork in Ireland, who reviewed the study. Most work on the gut–brain connection has focused on how bacteria affect the brain, so Cryan welcomes research into how psychological states can exert ‘top-down’ control of bacteria. “It’s a really cool part of the puzzle”, he says. The research was published on 8 August in Cell. Researchers have long known that the gut and brain ‘talk’ to each other. Under stress, the brain spurs the release of hormones that can trigger gut conditions such as inflammatory bowel disease. And certain bacteria in the gut can release chemical signals that affect the brain and behaviour. Your brain could be controlling how sick you get — and how you recover But the neural communication pathways are less well understood. To find out more, neuroscientist Ivan de Araujo at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany, and his colleagues focused on small organs called Brunner’s glands that are found in the walls of the small intestine. Little is known about these glands, other than that they produce mucus and contain numerous neurons. De Araujo’s team found that removing the Brunner’s glands of mice made the animals more susceptible to infection. It also raised markers of inflammation, a flood of immune chemicals and cells that can damage tissues. The team saw a similar effect in humans: people who’d had tumours removed from the part of the gut containing Brunner’s glands had higher levels of white blood cells — a marker of inflammation — than people who’d had tumours removed from other areas. © 2024 Springer Nature Limited

Keyword: Stress; Neuroimmunology
Link ID: 29432 - Posted: 08.13.2024

By Andrew Jacobs The journal Psychopharmacology has retracted three papers about MDMA-assisted therapy based on what the publication said was unethical conduct at one of the study sites where the research took place. Several of the papers’ authors are affiliated with Lykos Therapeutics, the drug company whose application for MDMA-assisted therapy to treat post-traumatic stress disorder was rejected last week by the Food and Drug Administration. The company said the research in the retracted papers was not part of its application to the F.D.A. In declining to approve Lykos’s application, the agency cited concerns about missing data and problems with the way the company’s study was designed, according to a statement released by Lykos on Friday. The F.D.A. has asked Lykos to conduct an additional clinical trial of its MDMA-assisted therapy, which would have been the first psychedelic medicine to win approval by federal regulators. Lykos has said it would appeal the decision. The journal retraction was first reported by Stat, the health and medical news website. On Sunday, Lykos said that it disagreed with Psychopharmacology’s decision and that it would file an official complaint with the Committee on Publication Ethics, a nonprofit that sets guidelines for academic publications. “The articles remain scientifically sound and present important contributions to the study of potential treatments for PTSD,” the company said in the statement. The incident cited by Psychopharmacology has been well documented. © 2024 The New York Times Company

Keyword: Stress; Drug Abuse
Link ID: 29431 - Posted: 08.13.2024

By Sneha Khedkar About 10 years ago, when Michael Yartsev set up the NeuroBat Lab, he built a new windowless cave of sorts: a fully automated bat flight room. Equipped with cameras and other recording devices, the remote-controlled space has enabled his team to study the neuronal basis of navigation, acoustic and social behavior in Egyptian fruit bats without having any direct interaction with the animals. “In our lab, there’s never a human involved in the experiments,” says Yartsev, associate professor of bioengineering at the University of California, Berkeley. The impetus to create the space was clear. The setup, paired with wireless electrodes inserted in the bats’ hippocampus, has helped the team demonstrate, for example, that place cells encode a flying bat’s current, past and future locations. Also, a mountain of evidence suggests that the identity, sex and stress levels of human experimenters can influence the behavior of and brain circuit activity in other lab animals, such as mice and rats. Now Yartsev and his team have proved that “experimenter effects” hold true for bats, too, according to a new study published last month in Nature Neuroscience. The presence of human experimenters changed hippocampal neuronal activity in bats both at rest and during flight—and exerted an even stronger influence than another fruit bat, the study shows. The team expected that humans would influence neural activity, Yartsev says, “but we did not expect it to be so profound.” © 2024 Simons Foundation

Keyword: Attention; Hearing
Link ID: 29430 - Posted: 08.13.2024

Ari Daniel On a dark night in northern Belize in early May, Gliselle Marin stands in the middle of a patchy forest in the Lamanai Archaeological Reserve, about a two-hour drive from where she grew up. Every few minutes, she and her fellow researchers sweep their headlamps over the nets they’ve strung up to see if they’ve caught anything. Before long, a chirping leaf-nosed bat the color of hot cocoa is entangled. He’s small — about the size of a lemon. Marin works carefully and quickly to free him. “We’re trying to get the net off of him,” she says. “It’s kind of like a puzzle. I like to take the feet out first. And then I do one wing, then the head.” Within a minute, the tiny bat is out. Marin jots down some basic information about the bat and then places him inside a cloth bag for further study that night. All the tools Marin needs for this kind of delicate extraction — including an ordinary crochet hook, for the worst tangles — fit into a fanny pack that’s adorned with little printed bats. The scientist also sports bat earrings, as well as a tattoo of small bats flying up the nape of her neck. Marin is a biology PhD student at York University in Toronto, and she’s here with the “Bat-a-thon,” a group of 80-some bat researchers who converge on this part of Belize each year to study these winged mammals. Growing up, Marin’s family had bats roosting under their house. “But when I actually started working with them and realizing we have close to 80 species of bats,” she says, “I was like, ‘Okay, it’s kind of crazy that I’ve been in science my whole life and was never taught that we have this diversity of bats in Belize.’” Over time, she’s come to admire not just the cornucopia of species, but the spectacular array of abilities and behaviors of these adaptable little animals. Scientists, she says, have only scratched the surface when it comes to understanding these furry, flying mammals. © 2024 npr

Keyword: Hearing
Link ID: 29429 - Posted: 08.13.2024

By Roni Caryn Rabin Even light drinking was associated with an increase in cancer deaths among older adults in Britain, researchers reported on Monday in a large study. But the risk was accentuated primarily in those who had existing health problems or who lived in low-income areas. The study, which tracked 135,103 adults aged 60 and older for 12 years, also punctures the long-held belief that light or moderate alcohol consumption is good for the heart. The researchers found no reduction in heart disease deaths among light or moderate drinkers, regardless of this health or socioeconomic status, when compared with occasional drinkers. The study defined light drinking as a mean alcohol intake of up to 20 grams a day for men and up to 10 grams daily for women. (In the United States, a standard drink is 14 grams of alcohol.) “We did not find evidence of a beneficial association between low drinking and mortality,” said Dr. Rosario Ortolá, an assistant professor of preventive medicine and public health at Universidad Autónoma de Madrid and the lead author of the paper, which was published in JAMA Network Open. On the other hand, she added, alcohol probably raises the risk of cancer “from the first drop.” The findings add to a mounting body of evidence that is shifting the paradigm in alcohol research. Scientists are turning to new methodologies to analyze the risks and benefits of alcohol consumption in an attempt to correct what some believe were serious flaws in earlier research, which appeared to show that there were benefits to drinking. © 2024 The New York Times Company

Keyword: Drug Abuse
Link ID: 29428 - Posted: 08.13.2024

By Hartmut Neven & Christof Koch The brain is a mere piece of furniture in the vastness of the cosmos, subject to the same physical laws as asteroids, electrons or photons. On the surface, its three pounds of neural tissue seem to have little to do with quantum mechanics, the textbook theory that underlies all physical systems, since quantum effects are most pronounced on microscopic scales. Newly proposed experiments, however, promise to bridge this gap between microscopic and macroscopic systems, like the brain, and offer answers to the mystery of consciousness. Quantum mechanics explains a range of phenomena that cannot be understood using the intuitions formed by everyday experience. Recall the Schrödinger’s cat thought experiment, in which a cat exists in a superposition of states, both dead and alive. In our daily lives there seems to be no such uncertainty—a cat is either dead or alive. But the equations of quantum mechanics tell us that at any moment the world is composed of many such coexisting states, a tension that has long troubled physicists. Taking the bull by its horns, the cosmologist Roger Penrose in 1989 made the radical suggestion that a conscious moment occurs whenever a superimposed quantum state collapses. The idea that two fundamental scientific mysteries—the origin of consciousness and the collapse of what is called the wave function in quantum mechanics—are related, triggered enormous excitement. Penrose’s theory can be grounded in the intricacies of quantum computation. Consider a quantum bit, a qubit, the unit of information in quantum information theory that exists in a superposition of a logical 0 with a logical 1. According to Penrose, when this system collapses into either 0 or 1, a flicker of conscious experience is created, described by a single classical bit. © 2024 SCIENTIFIC AMERICAN,

Keyword: Consciousness
Link ID: 29427 - Posted: 08.11.2024

Joe Hernandez If a human or another animal close to them dies, does a cat grieve the loss? That was the question a team of researchers from Oakland University in Michigan set out to answer when they surveyed hundreds of cat owners about their cat’s behavior after another cat or dog in the household passed away. The data showed that cats exhibited behaviors associated with grief — such as eating and playing less — more often after the death of a fellow pet, suggesting they may in fact have been in mourning. “It made me a little more optimistic that they are forming attachments with each other,” said Jennifer Vonk, a professor of psychology at Oakland University, who co-authored the study, published in the journal Applied Animal Behaviour Science. “It’s not that I want the cats to be sad,” Vonk went on, “[but] there is a part of us, I think, as humans that wants to think that if something happens to us our pets would miss us.” Though animals from elephants to horses to dogs have been shown to express signs of grief, less is known about the emotional life of the domesticated house cat. Vonk said she knew of only one other study on grief in domestic cats. For their research, Vonk and her coauthor, Brittany Greene, surveyed 412 cat caregivers about how their feline companion acted after another pet in the house died. They found that, after the death of a fellow pet, cats on average sought more attention from their owners, spent more time alone, appeared to look for the deceased animal, ate less and slept more. © 2024 npr

Keyword: Emotions; Evolution
Link ID: 29426 - Posted: 08.11.2024

By Michael S. Rosenwald Dr. J. Robin Warren, an Australian pathologist who shared a Nobel Prize for discovering that most stomach ulcers were caused by the bacterium Helicobacter pylori — and not, as had been widely believed, stress, alcohol or spicy foods — died on July 23 in Inglewood, Australia. He was 87. His death, at a care home, was announced by the University of Western Australia in Perth, where he was an emeritus professor for many years. His daughter-in-law Gigi Warren said the cause was complications after a recent fall. In 1984, Dr. Warren and his collaborator, the gastroenterologist Barry Marshall, published a paper in the British medical journal The Lancet describing their finding that the spiral-shaped bacterium now commonly called H. pylori festered in the stomachs of patients with ulcers and gastritis. Dr. Warren had first noticed the bacterium on a gastric biopsy sample in 1979. The paper’s conclusion upended centuries of conventional wisdom about the cause of ulcers. (Psychoanalysts had even written of the “peptic ulcer personality.”) Doctors typically prescribed stress reduction, a bland diet and, starting in 1977, drugs like Tagamet and Zantac to tame the burning acids. Severe cases were sometimes treated with surgery. When the study was published, gastroenterologists were skeptical. They expressed concern about whether to trust potentially paradigm-shifting findings made by two unknown researchers in Australia. And the idea that bacteria could even grow in the stomach was considered blasphemy. “For about 100 years, or 1,000 years, the standard teaching in medicine was that the stomach was sterile and nothing grew there because of corrosive gastric juices,” Dr. Warren told The New York Times in 2005 after he and Dr. Marshall won the Nobel Prize in Physiology or Medicine. “So everybody believed there were no bacteria in the stomach. When I said they were there, no one believed it.” © 2024 The New York Times Company

Keyword: Stress
Link ID: 29425 - Posted: 08.11.2024

Ross Ellenhorn and Dimitri Mugiani Earlier this month, an advisory panel rejected MDMA-assisted therapy for PTSD, possibly dooming US Food and Drug Administration (FDA) approval of the drug commonly called ecstasy. In a public meeting alongside FDA staff, panel members said that the research neither adequately accounted for abuse risks nor proved the drug’s efficacy in combination with psychotherapy. This decision dealt a major blow to Lykos Therapeutics, the for-profit public benefit corporation of the non-profit Multidisciplinary Association for Psychedelic Studies (Maps), which sponsored the trials. More broadly, the rejection has been described as a drastic setback for the psychedelic movement as a whole. For several years now, it seemed that greater acceptance and new legal spaces for psychedelics were a certainty. Then, scientists appeared at the FDA hearing and everything went dark. As practitioners and leaders in the realm of human transformation, and in creating and running organizations that serve individuals experiencing complex psychiatric symptoms, we believe in psychedelics as a force for good. Yet, to us, this FDA decision is the natural and expected outcome of a basic and fatal conceptual error that our brothers and sisters in the movement have adopted. By joining larger trends within the behavioral health milieu that focus on the elimination of distinct symptoms by drugs and by expert-driven techniques, today’s psychedelic movement is teetering on the edge of becoming unpsychedelic. What do we mean by this? Psychedelics free our minds to novelty, liberating us from habitual patterns. The common term for this property is “brain plasticity”, and it may be the core reason these substances can also affect areas of psychological suffering related to habits of the mind – those that experienced psychiatrists label as depression, anxiety, addiction and, yes, PTSD. Psychedelics are pro-imagination, pro-creativity, pro-innovation – qualities that research shows are at the very root of personal growth. © 2024 Guardian News & Media Limited

Keyword: Stress; Drug Abuse
Link ID: 29424 - Posted: 08.11.2024

By Maya L. Kapoor Six years ago, while shopping at a supermarket, Sadie Dingfelder spied her husband selecting a store-branded peanut butter jar. “Since when do you buy generic?” she asked, grabbing the jar from the cart. To her surprise, the frightened man turned out to be a total stranger. As usual, Dingfelder quickly began rewriting the unsettling interaction in her mind as a funny story, but a stark thought struck her this time: “Other people do not make this kind of mistake.” Dingfelder, a freelance science journalist, has prosopagnosia, or face blindness. It’s extremely difficult for her to recognize faces: She has gotten into cars with the wrong people; she has made plans with friends and then been surprised by who came. She once had to ask filmmaker John Waters, who met her at a museum for an interview, to help identify the museum staffer who had just introduced them — she couldn’t pick her out from a crowd of his fans. In “Do I Know You? A Faceblind Reporter’s Journey Into the Science of Sight, Memory, and Imagination,” Dingfelder begins coming to terms with her neurodivergence, weaving together science reporting — including brain scans, computerized tests, and assessments by medical researchers — and personal memoir in order to understand herself better. Ultimately, “Do I Know You?” is a question Dingfelder seems to be asking herself. By the end of the book, the answer feels like a firm yes. The term prosopagnosia, a portmanteau of the Greek words for “face” and “not knowing,” was coined by Joachim Bodamer, a psychiatrist and neurologist in Nazi Germany. Bodamer had encountered German soldiers with head traumas who had lost the ability to recognize people, including one soldier who blithely passed by his own mother at a train station.

Keyword: Attention
Link ID: 29423 - Posted: 08.11.2024

By Catherine Offord Lack of sleep wreaks havoc on the brain, making us worse learners and disrupting our memory, among other insults. Now, a study in mice suggests some of these effects could stem from changes in how brain cells are connected to one another. In a paper published today in Current Biology, researchers show that just hours of sleep deprivation reduce how many different types of synapses—the places where neurons meet—there are in brain regions associated with learning and memory. The findings hint at a novel way sleep might help keep us sharp, the team says. The study “is a technical tour de force,” says Marcos Frank, a neuroscientist at Washington State University who was not involved in the work. Still, he and others caution it’s not yet clear whether this result explains sleep deprivation’s unpleasant side effects. Nerve cells meet and communicate via chemicals across synapses, allowing signals to travel through the nervous system. There are trillions such connections in the human brain, forming and rearranging circuits of neurons that capture and store information. Various theories have tried to invoke these connections to explain the relationship between sleep and memory. One well-known idea from the early 2000s holds that the strength of synapses in the brain decreases when we sleep, and that this is important for conserving energy and prepping the brain for encoding new information the following day. But such theories often treat synapses as relatively uniform, says Seth Grant, a neuroscientist at the University of Edinburgh. In the past few years, his team and others have found that synapses are surprisingly diverse. They differ not only in the types of chemical, or neurotransmitter, they use to send signals, but in structure and in the composition of proteins present in the neurons surrounding them.

Keyword: Sleep
Link ID: 29422 - Posted: 08.03.2024