Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By Sofia Quaglia Parenting can be lots of work for a bird: all that flying back and forth transporting grubs and insects to a nest of demanding young. But some birds manage to forgo caring for their chicks — while still ensuring they’re well looked after. These birds lay their eggs in the nests of other birds that unknowingly adopt the hatchlings, nourishing and protecting them as their own. Only about 1 percent of all bird species resort to this sneaky family planning method, called obligate brood parasitism, but it has evolved at least seven separate times in the history of birds and is a way of life for at least 100 species. Since some brood parasites rely on several different bird species as foster parents, more than a sixth of all species in the avian world care for chicks that aren’t their own at some point. Throughout the millennia, these trespassers have evolved ingenious ways to fool the hosts, and the hosts have developed equally clever ways to protect themselves and their own. At each stage of the nesting cycle, it’s a game of subterfuge that plays out in color, sound and behavior. “There’s always something new — it’s like, ‘Oh, man, this group of birds went down a slightly different pathway,’” says behavioral ecologist Bruce Lyon of the University of California, Santa Cruz, who studies the black-headed duck (Heteronetta atricapilla), the sole obligate parasitic duck species. While many mysteries remain, new research is constantly unearthing just how intense this evolutionary tug-of-war can get.
Keyword: Sexual Behavior; Evolution
Link ID: 29505 - Posted: 10.05.2024
By Calli McMurray Daniel Heinz clicked through each folder in the file drive, searching for the answers that had evaded him and his lab mates for years. Heinz, a graduate student in Brenda Bloodgood’s lab at the University of California, San Diego (UCSD), was working on a Ph.D. project, part of which built on the work of a postdoctoral researcher who had left the lab and started his own a few years prior. The former postdoc studied how various types of electrical activity in the mouse hippocampus induce a gene called NPAS4 in different ways. One of his discoveries was that, in some situations, NPAS4 was induced in the far-reaching dendrites of neurons. The postdoc’s work resulted in a paper in Cell, landed him more than $1.4 million in grants and an assistant professor position at the University of Utah, and spawned several follow-up projects in the lab. In other words, it was a slam dunk. But no one else in the lab—including Heinz—could replicate the NPAS4 data. Other lab members always had a technical explanation for why the replication experiments failed, so for years the problem was passed from one trainee to another. Which explains why, on this day in early April 2023, Heinz was poking around the postdoc’s raw data. What he eventually found would lead to a retraction, a resignation and a reckoning, but in the moment, Heinz says, he was not thinking about any of those possibilities. In fact, he had told no one he was doing this. He just wanted to figure out why his experiments weren’t working. To visualize the location of NPAS4, the lab used immunohistochemistry, which tags a gene product with a tailored fluorescent antibody. Any part of the cell that expresses the gene should glow. In his replication attempts, Heinz says he struggled to see any expression, and when he saw indications of it, the signal was faint and noisy. So he wanted to compare his own images to the postdoc’s raw results rather than the processed images included in the 2019 Cell paper. © 2024 Simons Foundation
Keyword: Learning & Memory
Link ID: 29504 - Posted: 10.05.2024
By Jennifer Couzin-Frankel Even a mild concussion can cause disconcerting and sometimes lasting symptoms, such as trouble concentrating and dizziness. But can it make someone more likely to commit a crime? After all, a disproportionate number of people in the criminal justice system previously suffered a traumatic brain injury (TBI). But according to new research into the medical and juvenile justice records of Danish teenagers who suffered a blow to head as children, such injuries don’t cause criminal behavior. Although TBI and criminality often travel together, the researchers found in this Danish population it’s a case of correlation, not causation. “I think this study very clearly indicates that you can’t just [say], ‘Hey, my kid has a mild TBI, he or she is screwed,” says Joseph Schwartz, a criminologist at Florida State University who has studied the issue in juveniles and adults. At the same time, he cautions that there are important variables this study wasn’t designed to capture, such as the treatment received, the effect of repeat TBIs, and the circumstances surrounding the injury. All of these, he says, could influence criminal behavior in some people. Beyond showing high rates of past TBI among those charged with or convicted of crimes, research into this topic has been limited. Studies have found that mild TBI is associated with later behavioral problems, including impulsivity and inattentiveness, which are also linked with criminal behavior. At the same time, it’s well known that “the risk factors in the child and the family for TBIs are the same as the risk factors for delinquency,” including poverty and parental substance abuse, says Sheilagh Hodgins, a clinical psychologist at the University of Montreal. She notes, too, that impulsivity and attention and conduct disorders heighten the risk of sustaining a mild TBI in the first place. © 2024 American Association for the Advancement of Science.
Keyword: Brain Injury/Concussion; Aggression
Link ID: 29503 - Posted: 10.02.2024
By Joanna Thompson, Hakai Magazine From January to May each year, Qeqertarsuaq Tunua, a large bay on Greenland’s west coast, teems with plankton. Baleen whales come to feast on the bounty, and in 2010, two bowhead whales entered the bay to gorge. As the pair came within 100 kilometers (about 60 miles) of one another, they were visually out of range, but could likely still hear one another. That’s when something extraordinary happened: They began to synchronize their dives. Researchers had never scientifically documented this behavior before, and the observation offers potential proof for a 53-year-old theory. Baleen whales are often thought of as solitary — islands unto themselves. However, some scientists believe they travel in diffuse herds, communicating over hundreds of kilometers. Legendary biologist Roger Payne and oceanographer Douglas Webb first floated the concept of acoustic herd theory (or should it be heard theory?) in 1971. This story is from Hakai Magazine, an online publication about science and society in coastal ecosystems, and is republished here with permission. Payne, who helped discover and record humpback whale song a few years prior, was struck by the fact that many toothed cetaceans such as killer whales and dolphins are highly social and move together in tight-knit family groups. These bands provide safety from predators and allow the animals to raise their young communally. Payne speculated that the larger baleen whales might travel in groups, too, but on a broader geographic scale. And perhaps the behemoths signaled acoustically to keep in touch across vast distances. Webb and Payne’s original paper on acoustic herd theory demonstrated that fin whale vocalizations — low-frequency sounds that carry long distances — could theoretically travel an astonishing 700 kilometers (over 400 miles) in certain areas of the ocean. However, it’s been easier to show that a whale is making a call than to prove the recipient is a fellow cetacean hundreds of kilometers away, says Susan Parks, a behavioral ecologist at Syracuse University in New York who studies animal acoustics.
Keyword: Animal Communication; Evolution
Link ID: 29502 - Posted: 10.02.2024
By Katarina Zimmer If we could talk with whales, should we? When scientists in Alaska recently used pre-recorded whale sounds to engage in a 20-minute back-and-forth with a local humpback whale, some hailed it as the first “conversation” with the cetaceans. But the interaction between an underwater speaker mounted on the research boat and the whale, which was described last year in the journal PeerJ, also stimulated a broader discussion around the ethics of communicating with other species. After the whale circled the boat for a while, the puffs from her blowhole sounded wheezier than usual, suggesting to the scientists aboard that she was aroused in some way—perhaps curious, frustrated, or bored. Nevertheless, Twain—as scientists had nicknamed her—continued to respond to the speaker’s calls until they stopped. Twain called back three more times, but the speaker on the boat had fallen silent. She swam away. Scientists have used recorded calls to study animal behavior and communication for decades. But new efforts—and technology such as artificial intelligence—are striving not just to deafly mimic animal communication, but also to more deeply understand it. And while the potential extension of this research that has most captured public excitement—producing our own coherent whale sounds and meaningfully communicating with them—is still firmly in the realm of science fiction, this kind of research might just bring us a small step closer. The work to decipher whale vocalizations was inspired by the research on humpback whale calls by the biologist Roger Payne and played an important role in protecting the species. In the 1960s, Payne discovered that male humpbacks sing—songs so intricate and powerful it was hard to imagine they have no deeper meaning. His album of humpback whale songs became an anthem to the “Save the Whales” movement and helped motivate the creation of the Marine Mammal Protection Act in 1972 in the United States. © 2024 NautilusNext Inc.,
Keyword: Animal Communication; Evolution
Link ID: 29501 - Posted: 10.02.2024
By Shaena Montanari Sea robins skitter across the sea floor with six tiny fins-turned-legs. And at least one species of these bottom feeders is exceptionally skilled at digging up food—so good that other fishes follow these sea robins to snatch up leftover snacks. The sea robins owe this talent to their legs, according to a pair of studies published today in Current Biology. The new work shows that the appendages evolved a specialized sensory system to feel and taste hidden prey. The legs of one common species, for example, are innervated by touch-sensitive neurons and dotted with tiny papillae that express taste receptors. “It’s just really neat to see the molecular components that nature is using to spin out not only new structures, but also new behaviors,” says David Kingsley, professor of developmental biology at Stanford University and an investigator on both studies. The results formalize work from the 1960s and ’70s that first indicated the special chemosensory abilities of sea robins, says Tom Finger, professor of cell and developmental biology at the University of Colorado Anschutz Medical Campus, who was not involved in the new studies. This is “a major, important contribution to show that taste receptors have become expressed in the specialized sensory organ.” This finding “demonstrates, I think, an evolutionary principle, which is that evolution uses the tool kit that’s in place and then just slightly changes it,” says Nicholas Bellono, professor of molecular and cellular biology at Harvard University, who is an investigator on both new studies and also researches unique senses in cephalopods. Last year, he and his colleagues described a similar adaptation in octopuses: “They took this receptor that was for neurotransmission and then just repurposed it with a slight tinkering to now be a sensory receptor. So it’s sort of a theme we keep seeing repeat across the diversity of life.” © 2024 Simons Foundation
Keyword: Chemical Senses (Smell & Taste); Evolution
Link ID: 29500 - Posted: 10.02.2024
Pien Huang More than half of all U.S. states have legalized cannabis, be it for medical purposes, recreational use, or both. The shelves of cannabis dispensaries offer an ever-widening array of gummies, drinks and joints. Meanwhile, the federal government still considers most types of cannabis illegal. A new report from the National Academies of Sciences, Engineering and Medicine, released this week, finds this disconnect between the states and the federal government is leading to fragmented policies, and risks to the public. As states built new commercial markets for cannabis, they initially focused on regulating sales and revenue. “The consequence of that is the public health aspects were often given a backseat and we're now playing catch up for that,” says Dr. Steven Teutsch, chair of the National Academies committee that wrote the report on how cannabis impacts public health. The report calls for federal leadership and national standards on cannabis quality and potency, to safeguard public health. Here are five takeaways: 1. People consume cannabis more regularly than alcohol in the U.S. In 2022, more U.S. adults reported using cannabis than alcohol on a near-daily basis, according to the National Survey on Drug Use and Health. It was the first time that regular marijuana use surpassed regular alcohol use. © 2024 npr
Keyword: Drug Abuse
Link ID: 29499 - Posted: 10.02.2024
By Elie Dolgin The first schizophrenia medication in decades with a new mechanism of action won US regulatory approval today. The approval offers the hope of an antipsychotic that would be more effective and better tolerated than current therapies. The drug, known as KarXT, targets proteins in the brain known as muscarinic receptors, which relay neurotransmitter signals between neurons and other cells. Activating these receptors dampens the release of the chemical dopamine, a nervous-system messenger that is central to the hallmark symptoms of schizophrenia, such as hallucinations and delusions. But muscarinic signalling also modulates other brain circuits involved in cognition and emotional processing. This mode of action provides KarXT with a more comprehensive therapeutic effect than other schizophrenia treatments, which mainly blunt dopamine activity alone. In clinical trials, KarXT not only alleviated core symptoms of schizophrenia, but also showed signs of improving cognitive function, all while avoiding many of the burdensome side effects commonly associated with older antipsychotics. “This will be a revolution of the treatment of psychosis, and I’m not saying this lightly,” says Christoph Correll, a psychiatrist at the Zucker School of Medicine at Hofstra/Northwell in Hempstead, New York, who helped to analyse data from the trials. “Now we will now be able to treat people who haven’t been helped with traditional antipsychotics. That’s highly exciting.” KarXT is just the first of many next-generation drug candidates designed to engage muscarinic receptors in the brain. Several follow-on schizophrenia therapies are already in or nearing clinical trials, showing promise for improved tolerability and more convenient dosing schedules. This progress is leading clinicians and drug developers to imagine a future in which schizophrenia treatment becomes more tailored to individual needs — providing an alternative for the many people who don’t benefit from current therapies or abandon them owing to intolerable side effects. © 2024 Springer Nature Limited
Keyword: Schizophrenia
Link ID: 29498 - Posted: 09.28.2024
By Miryam Naddaf Neurons in the hippocampus help to pick out patterns in the flood of information pouring through the brain.Credit: Arthur Chien/Science Photo Library The human brain is constantly picking up patterns in everyday experiences — and can do so without conscious thought, finds a study1 of neuronal activity in people who had electrodes implanted in their brain tissue for medical reasons. The study shows that neurons in key brain regions combine information on what occurs and when, allowing the brain to pick out the patterns in events as they unfold over time. That helps the brain to predict coming events, the authors say. The work was published today in Nature. “The brain does a lot of things that we are not consciously aware of,” says Edvard Moser, a neuroscientist at the Norwegian University of Science and Technology in Trondheim. “This is no exception.” To make sense of the world around us, the brain must process an onslaught of information on what happens, where it happens and when it happens. The study’s authors wanted to explore how the brain organizes this information over time — a crucial step in learning and memory. The team studied 17 people who had epilepsy and had electrodes implanted in their brains in preparation for surgical treatment. These electrodes allowed the authors to directly capture the activity of individual neurons in multiple brain regions. Among those regions were the hippocampus and entorhinal cortex, which are involved in memory and navigation. These areas contain time and place cells that act as the body’s internal clock and GPS system, encoding time and locations. “All the external world coming into our brain has to be filtered through that system,” says study co-author Itzhak Fried, a neurosurgeon and neuroscientist at the University of California, Los Angeles. © 2024 Springer Nature Limited
Keyword: Attention; Learning & Memory
Link ID: 29497 - Posted: 09.28.2024
By Maia Szalavitz Last year over 70,000 Americans died from taking drug mixtures that contained fentanyl or other synthetic opioids. The good news is that recent data suggests a decline in overdose deaths, the first significant drop in decades. But this is not a uniform trend across the nation. To understand this disparity, it’s important to examine how we got here. Today’s crisis is often described as a series of waves. But if you look at the data, it was more like a couple of breakers followed by a tsunami. First, prescription opioid fatalities rose. Then heroin deaths surged. And finally, illicitly manufactured fentanyl overtook all that preceded it. Once fentanyl and other synthetic opioids dominate a market, whether a state is red or blue doesn't matter. Skyrocketing overdose deaths are nearly unavoidable, regardless of whether a state enforces tough penalties for drug possession or decriminalizes it. Understanding how fentanyl saturated the drug supply, moving from the East Coast of the United States to the West, is critical to ending the worst drug crisis in American history. In 2000, America was in its first wave of the opioid crisis. This was dominated by deaths from prescription painkillers like OxyContin. As you can see in the first map, though not entirely new to the country, illicitly manufactured fentanyl made up a tiny percentage of total drug seizures nationwide. Because escalations in opioid prescribing to treat pain were seen as the cause of the overdose problem, doctors began cutting off patients and law enforcement shuttered so-called pill mills. The number of opioid prescriptions began plummeting. © 2024 The New York Times Company
Keyword: Drug Abuse
Link ID: 29496 - Posted: 09.28.2024
By Amber Dance Billions of cells die in your body every day. Some go out with a bang, others with a whimper. They can die by accident if they’re injured or infected. Alternatively, should they outlive their natural lifespan or start to fail, they can carefully arrange for a desirable demise, with their remains neatly tidied away. Originally, scientists thought those were the only two ways an animal cell could die, by accident or by that neat-and-tidy version. But over the past couple of decades, researchers have racked up many more novel cellular death scenarios, some specific to certain cell types or situations. Understanding this panoply of death modes could help scientists save good cells and kill bad ones, leading to treatments for infections, autoimmune diseases and cancer. “There’s lots and lots of different flavors here,” says Michael Overholtzer, a cell biologist at Memorial Sloan Kettering Cancer Center in New York. He estimates that there are now more than 20 different names to describe cell death varieties. The identification of new forms of cell death has sped up in recent years. Lots of bad things can happen to cells: They get injured or burned, poisoned or starved of oxygen, infected by microbes or otherwise diseased. When a cell dies by accident, it’s called necrosis. There are several necrosis types, none of them pretty: In the case of gangrene, when cells are starved for blood, cells rot away. In other instances, dying cells liquefy, sometimes turning into yellow goop. Lung cells damaged by tuberculosis turn smushy and white — the technical name for this type, “caseous” necrosis, literally means “cheese-like.” Any form of death other than necrosis is considered “programmed,” meaning it’s carried out intentionally by the cell because it’s damaged or has outlived its usefulness.
Keyword: Development of the Brain; Apoptosis
Link ID: 29495 - Posted: 09.28.2024
By Mariana Lenharo There’s a bar in Baltimore, Maryland, that very few people get to enter. It has a cocktail station, beer taps and shelves stacked with spirits. But only scientists or drug-trial volunteers ever visit, because this bar is actually a research laboratory. Here, in a small room at the US National Institutes of Health (NIH), scientists are harnessing the taproom ambience to study whether blockbuster anti-obesity drugs might also curb alcohol cravings. Evidence is mounting that they could. Animal studies and analyses of electronic health records suggest that the latest wave of weight-loss drugs — known as glucagon-like peptide 1 (GLP-1) receptor agonists — cut many kinds of craving or addiction, from alcohol to tobacco use. “We need randomized clinical trials as the next step,” says Lorenzo Leggio, an addiction researcher at the NIH in Baltimore. In the trial he is leading, volunteers sit at the bar and get to see, smell and hold their favourite drinks, while going through tests such as questions about their cravings; separately, participants will have their brains scanned while looking at pictures of alcohol. Some will be given the weight-loss drug semaglutide (marketed as Wegovy) and others will get a placebo. George Koob and Lorenzo Leggio pose for a photograph in a research laboratory designed as a bar inside the National Institutes of Health’s hospital. Curbing addiction isn’t the only potential extra benefit of GLP-1 drugs. Other studies have suggested they can reduce the risk of death, strokes and heart attacks for people with cardiovascular disease1 or chronic kidney ailments2, ease sleep apnoea symptoms3 and even slow the development of Parkinson’s disease4. There are now hundreds of clinical trials testing the drugs for these conditions and others as varied as fatty liver disease, Alzheimer’s disease, cognitive dysfunction and HIV complications (see ‘Diseases that obesity drugs might treat’ at the end of this article). © 2024 Springer Nature Limited
Keyword: Obesity; Drug Abuse
Link ID: 29494 - Posted: 09.25.2024
Ian Sample Science editor Where does our personal politics come from? Does it trace back to our childhood, the views that surround us, the circumstances we are raised in? Is it all about nurture – or does nature have a say through the subtle levers of DNA? And where, in all of this, is the brain? Scientists have delved seriously into the roots of political belief for the past 50 years, prompted by the rise of sociobiology, the study of the biological basis of behaviour, and enabled by modern tools such as brain scanners and genome sequencers. The field is making headway, but teasing out the biology of behaviour is never straightforward. Take a study published last week. Researchers in Greece and the Netherlands examined MRI scans from nearly 1,000 Dutch people who had answered questionnaires on their personal politics. The work was a replication study, designed to see whether the results from a small 2011 study, bizarrely commissioned by the actor Colin Firth, stood up. Firth’s study, conducted at UCL, reported structural differences between conservative and liberal brains. Conservatives, on average, had a larger amygdala, a region linked to threat perception. Liberals, on average, had a larger anterior cingulate cortex, a region involved in decision-making. In the latest study of Dutch people, the researchers found no sign of a larger anterior cingulate cortex in liberals. They did, however, find evidence for a very slightly larger amygdala in conservatives. The MailOnline declared evidence that conservatives were more “compassionate”, but later changed their headline noting that the study said nothing about compassion. © 2024 Guardian News & Media Limited
Keyword: Emotions; Attention
Link ID: 29493 - Posted: 09.25.2024
Jon Hamilton For 22 years, Jason Mazzola’s life was defined by Fragile X, a genetic condition that often causes autism and intellectual disability. Jason, who is 24 now, needed constant supervision. He had disabling anxiety, and struggled to answer even simple questions. All that began to change when he started taking an experimental drug called zatolmilast in May of 2023. “It helps me focus a lot, helps me get more confident, more educated,” Jason says. His mother, Lizzie Mazzola, credits zatolmilast with transforming her son. “I have a different child in my house,” she says. “He gets himself to work, he walks downtown, gets his haircut, gets lunch. He wouldn't have done any of that before.” Other parents of children with Fragile X are also reporting big changes with zatolmilast. Those anecdotes are supported by data. A 2021 study of 30 adult male participants with Fragile X found that taking zatolmilast for 12 weeks improved performance on a range of memory and language measures. Now, two larger studies are underway that will determine whether zatolmilast becomes the first drug approved by the Food and Drug Administration to treat Fragile X. Mazzola realized early on that Jason was falling behind. “He could hardly talk by three,” she says. “At four he started to put some words together, but really wasn’t talking in sentences.” Genetic tests revealed the cause: Fragile X. The inherited condition affects the X chromosome, making one segment appear fragile or broken. This anomaly blocks production of a protein that’s important to brain development. © 2024 npr
Keyword: Development of the Brain; Genes & Behavior
Link ID: 29492 - Posted: 09.25.2024
Natasha May Young people with severe depression experience disruptions in the way regions of their brain communicate with each other which are distinct from those observed in adults, a study has found. The research published on Tuesday in Nature Mental Health could be used to identify potential targets for brain stimulation therapies, extending their existing application from adults to youth. The study analysed the brain scans of 810 young people aged 12-25, of which 440 had major depressive disorder (MDD) and 370 were healthy comparison individuals. The study led by the University of Melbourne found that in those with MDD, some densely connected regions of the brain (known as hubs) showed stronger connectivity and others showed weaker connectivity compared with youth without depression. Young woman running at sunset on Australian beach Nutrition and exercise as good as therapy for mild and moderate depression, study says Prof Andrew Zalesky, the supervising researcher, said they found the connectivity was particularly strong in the part of the brain associated with someone’s internalised thoughts and rumination. “We see that in youth with depression, the default mode is more strongly connected, it’s more activated, which suggests that there is a greater focus on self-thought and self-reflection,” Zalesky said. The study, whose first author was third-year PhD student at the University of Melbourne, Nga (Connie) Yan Tse, also found the extent of these differences could reliably predict how severe a person’s depressive symptoms were. © 2024 Guardian News & Media Limited
Keyword: Depression; Brain imaging
Link ID: 29491 - Posted: 09.25.2024
By Angie Voyles Askham Most people visit the Minnesota State Fair for a fun-filled day of fried food, farm animals and carnival rides. Not Ka Ip. He saw the annual event as the perfect setting for a new experiment. Ip, assistant professor of child development at the University of Minnesota, is particularly interested in executive function: the set of skills, such as organization and impulse control, people need to plan and achieve goals. Children from lower socioeconomic backgrounds tend to perform worse on tests of these skills than do their more privileged peers, past research shows. But that gap may reflect where those skills are typically tested: a quiet lab, in which some children may feel out of their element, Ip says. “That may not actually mimic their actual day-to-day environment.” Which is why Ip started to devise a series of experiments to conduct at the less-than-serene state fair. “We really want to understand how, for example, unpredictability in the home environment is related to executive function development,” he says. The fair also offered a way to recruit children from a wider swath of society than researchers can often find at a university, he adds. Last month, after a year of planning, Ip and his team lugged a trolley full of equipment to the fairgrounds outside Minneapolis. There, they collected functional near-infrared spectroscopy (fNIRS) data on 75 children aged 3 to 7 as they played a computer game that tests impulse control. The team aims to evaluate whether the bustling surroundings affect participants’ performances and neural activity differently based on their background. © 2024 Simons Foundation
Keyword: Brain imaging; Attention
Link ID: 29490 - Posted: 09.25.2024
By Max Kozlov A build-up of sticky goo that traps neurons in an appetite-control centre in the brain has been implicated in worsening diabetes and obesity, according to research on mice1. The goo also prevents insulin from reaching brain neurons that control hunger. Inhibiting production of the goo led mice to lose weight, experiments found. These findings points to a new driver of metabolic disorders and could help scientists to identify targets for drugs to treat these conditions. These results were published today in Nature. Metabolic diseases such as type 2 diabetes and obesity can develop when the body’s cells become insensitive to insulin, a hormone that regulates blood-sugar levels. Scientists searching for the mechanism that causes this insulin resistance have homed in on a part of the brain called the arcuate nucleus of the hypothalamus, which senses insulin levels and, in response, adjusts energy expenditure and sensations of hunger. As the animals develop insulin resistance, a type of cellular scaffolding, called the extracellular matrix, that holds the hunger neurons in place becomes a disorganized goo. Previously, researchers had noticed that this scaffolding changes when mice are fed a high-fat diet2. The researchers wanted to see whether these brain changes might drive insulin resistance rather than merely developing alongside it. The authors fed mice a high-fat, high-sugar diet for 12 weeks and monitored the scaffolding around the hunger neurons by taking tissue samples and monitoring gene activity. © 2024 Springer Nature Limited
Keyword: Obesity
Link ID: 29489 - Posted: 09.21.2024
By Gina Kolata and Stephanie Nolen The Lasker Awards, a prestigious set of prizes given for advances in medicine and public health research, were given on Thursday to scientists whose research helped lead to the discovery of a new class of obesity drugs, infectious disease specialists who worked on the drivers of H.I.V. infection and how to stop it, and a scientist who discovered a way the body protects itself from infectious diseases and cancer. The Laskers are highly regarded in the fields of biomedicine and are sometimes seen as foretelling recipients of the Nobel Prizes in the sciences. This year’s Lasker-DeBakey Clinical Medical Research Award went to three scientists for their work on GLP-1, the hormone that led to drugs like Wegovy (the same compound is the basis for Ozempic), which have transformed the treatment of obesity. They are Dr. Joel Habener, Svetlana Mojsov and Lotte Bjerre Knudsen. Each of the three honorees played a role at a key moment: finding the new hormone; finding the biologically active shorter form of GLP-1; and, finally, showing that the shorter form elicits weight loss. Of course, as almost always happens in science, many others also played key roles, and the Lasker Foundation mentioned some as part of its citation. And one of the honorees, Dr. Mojsov, is receiving what many deem a long overdue recognition. The story of GLP-1 begins with Dr. Habener, an endocrinologist who arrived in the mid-1970s at Massachusetts General Hospital, where he decided to work on diabetes. Most of the focus had been on insulin, which lowers blood sugar levels. But there is another hormone, glucagon, that raises it. Dr. Habener decided to try to find the gene for glucagon, hoping it would lead to a way to squelch the hormone and so lower blood sugar. Working with anglerfish, he discovered a gene for another mysterious protein that resembles glucagon. © 2024 The New York Times Company
Keyword: Obesity; Neuroimmunology
Link ID: 29488 - Posted: 09.21.2024
By Daniela J. Lamas In the near future, the story of drugs like Ozempic may no longer be primarily about weight loss and diabetes. We now know that these drugs can reduce heart and kidney disease. They could very well slow the progression of dementia. They might help women struggling with infertility to get pregnant. They are even tied to lower mortality from Covid. It’s easy to attribute this to the dramatic weight loss provided by Ozempic and other drugs in its class, known as GLP-1 receptor agonists. But that isn’t the whole story. Rather, the drugs’ numerous benefits are pointing to an emerging cause of so much human disease: inflammation. As a critical care doctor, I have long considered inflammation a necessary evil, the mechanism through which our bodies sound an alarm and protect us from threat. But a growing body of research complicates that understanding. Inflammation is not just a marker of underlying disease but also a driver of it. The more medicine learns about inflammation, the more we are learning about heart disease and memory loss. This should serve as a reminder of the delicate balance that exists in our bodies, of the fact that the same system that protects us can also cause harm. Inflammation is the body’s response to infection or injury. Our innate immune system — the body’s first line of defense against bacterial or viral intruders — protects us by triggering an inflammatory response, a surge of proteins and hormones that fight infection and promote healing. Without that response, we would die of infectious disease in childhood. But by the time we make it to our 50s and beyond, our innate immune system can become more of a hindrance as inflammation begins to take a toll on the body. Acute inflammation, which happens in response to an illness, for instance, is often something we can see — an infected joint is swollen and red. But chronic inflammation is usually silent. Like high blood pressure, it’s an invisible foe. Sign up for the Opinion Today newsletter Get expert analysis of the news and a guide to the big ideas shaping the world every weekday morning. Get it sent to your inbox. © 2024 The New York Times Company
Keyword: Obesity
Link ID: 29487 - Posted: 09.21.2024
Brian Mann For the first time in decades, public health data shows a sudden and hopeful drop in drug overdose deaths across the U.S. "This is exciting," said Dr. Nora Volkow, head of the National Institute On Drug Abuse [NIDA], the federal laboratory charged with studying addiction. "This looks real. This looks very, very real." National surveys compiled by the Centers for Disease Control and Prevention already show an unprecedented decline in drug deaths of roughly 10.6 percent. That's a huge reversal from recent years when fatal overdoses regularly increased by double-digit percentages. Some researchers believe the data will show an even larger decline in drug deaths when federal surveys are updated to reflect improvements being seen at the state level, especially in the eastern U.S. "In the states that have the most rapid data collection systems, we’re seeing declines of twenty percent, thirty percent," said Dr. Nabarun Dasgupta, an expert on street drugs at the University of North Carolina. According to Dasgupta's analysis, which has sparked discussion among addiction and drug policy experts, the drop in state-level mortality numbers corresponds with similar steep declines in emergency room visits linked to overdoses. Dr. Nabarun Dasgupta, a researcher at the University of North Carolina, is an expert on the U.S. street drug supply. He believes data shows a sudden drop in drug overdose deaths nationwide that could already by saving Dr. Nabarun Dasgupta, a researcher at the University of North Carolina, is an expert on the U.S. street drug supply. He believes data shows a sudden drop in drug overdose deaths nationwide that could already by saving "roughly 20,000 lives" per year. © 2024 npr
Keyword: Drug Abuse
Link ID: 29486 - Posted: 09.21.2024