Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By McKenzie Prillaman It was hailed as a potentially transformative technique for measuring brain activity in animals: direct imaging of neuronal activity (DIANA), held the promise of mapping neuronal activity so fast that neurons could be tracked as they fired. But nearly two years on from the 2022 Science paper1, no one outside the original research group and their collaborators have been able to reproduce the results. Now, two teams have published a record of their replication attempts — and failures. The studies, published on 27 March in Science Advances2,3, suggest that the original results were due to experimental error or data cherry-picking, not neuronal activity after all. But the lead researcher behind the original technique stands by the results. “I’m also very curious as to why other groups fail in reproducing DIANA,” says Jang-Yeon Park, a magnetic resonance imaging (MRI) physicist at Sungkyunkwan University in Suwon, South Korea. Science said in an e-mail to Nature that, although it’s important to report the negative results, the Science Advances studies “do not allow a definitive conclusion” to be drawn about the original work, “because there were methodological differences between the papers”. In conventional functional MRI (fMRI), researchers monitor changes in blood flow to different brain regions to estimate activity. But this response lags by at least one second behind the activity of neurons, which send messages in milliseconds. Park and his co-authors said that DIANA could measure neuronal activity directly, which is an “extraordinary claim”, says Ben Inglis, a physicist at the University of California, Berkeley. © 2024 Springer Nature Limited
Keyword: Brain imaging
Link ID: 29253 - Posted: 04.11.2024
By Joanne Silberner A hug, a handshake, a therapeutic massage. A newborn lying on a mother’s bare chest. Physical touch can buoy well-being and lessen pain, depression and anxiety, according to a large new analysis of published research released on Monday in the journal Nature Human Behaviour. Researchers from Germany and the Netherlands systematically reviewed years of research on touch, strokes, hugs and rubs. They also combined data from 137 studies, which included nearly 13,000 adults, children and infants. Each study compared individuals who had been physically touched in some way over the course of an experiment — or had touched an object like a fuzzy stuffed toy — to similar individuals who had not. For example, one study showed that daily 20-minute gentle massages for six weeks in older people with dementia decreased aggressiveness and reduced the levels of a stress marker in the blood. Another found that massages boosted the mood of breast cancer patients. One study even showed that healthy young adults who caressed a robotic baby seal were happier, and felt less pain from a mild heat stimulus, than those who read an article about an astronomer. Positive effects were particularly noticeable in premature babies, who “massively improve” with skin-to-skin contact, said Frédéric Michon, a researcher at the Netherlands Institute for Neuroscience and one of the study’s authors. “There have been a lot of claims that touch is good, touch is healthy, touch is something that we all need,” said Rebecca Boehme, a neuroscientist at Linkoping University in Sweden, who reviewed the study for the journal. “But actually, nobody had looked at it from this broad, bird’s eye perspective.” © 2024 The New York Times Company
Keyword: Pain & Touch; Emotions
Link ID: 29252 - Posted: 04.11.2024
By Nicole Rust We readily (and reasonably) accept that the causes of memory dysfunction, including Alzheimer’s disease, reside in the brain. The same is true for many problems with seeing, hearing and motor control. We acknowledge that understanding how the brain supports these functions is important for developing treatments for their corresponding dysfunctions, including blindness, deafness and Parkinson’s disease. Applying the analogous assertion to mood—that understanding how the brain supports mood is crucial for developing more effective treatments for mood disorders, such as depression—is more controversial. For brain researchers unfamiliar with the controversy, it can be befuddling. You might hear, “Mental disorders are psychological, not biological,” and wonder, what does that mean, exactly? Experts have diverse opinions on the matter, with paper titles ranging from “Brain disorders? Not really,” to “Brain disorders? Precisely.” Even though a remarkable 21 percent of adults in the United States will experience a mood disorder at some point in their lives, we do not fully understand what causes them, and existing treatments do not work for everyone. How can we best move toward an impactful understanding of mood and mood disorders, with the longer-term goal of helping these people? What, if anything, makes mood fundamentally different from, say, memory? The answer turns out to be complex and nuanced—here, I hope to unpack it. I also ask brain and mind researchers with diverse perspectives to chime in. Among contemporary brain and mind researchers, I have yet to find any whose position is driven by the notion that some force in the universe beyond the brain, like a nonmaterial soul, gives rise to mood. Rather, the researchers generally agree that our brains mediate all mental function. If everyone agrees that both memory and mood disorders follow from things that happen in the brain, why would the former but not the latter qualify as “brain disorders”? © 2024 Simons Foundation
Keyword: Depression; Learning & Memory
Link ID: 29251 - Posted: 04.11.2024
Jon Hamilton A sibling can change your life — even before you're born. That's because when males and females share a womb, sex hormones from one fetus can cause lasting changes in the others. It's called the intrauterine position phenomenon, or intrauterine position effects, and different versions of it have been observed in rodents, pigs, sheep — and, probably, humans. "It's really kind of strange to think something so random as who you develop next to in utero can absolutely change the trajectory of your development," says Bryce Ryan, a professor of biology at the University of Redlands. The phenomenon is more than a scientific oddity. It helped establish that even tiny amounts of hormone-like chemicals, like those found in some plastics, could affect a fetus. Cattle breeders in ancient Rome may have been the first people to recognize the importance of a sibling's sex. They realized that when a cow gives birth to male-female twins, the female is usually sterile. These females, known as freemartins, also act more like males when they grow up. Scientists began to understand why in the early 1900s. They found evidence that hormones from the male twin were affecting the female's development. The effect is less obvious in other mammals, Ryan says. Female offspring in rodents, for example, can still reproduce, but they have measurable differences in sexual development and tend to be more aggressive. © 2024 npr
Keyword: Sexual Behavior; Hormones & Behavior
Link ID: 29250 - Posted: 04.11.2024
Matthew Farrer Parkinson’s disease is a neurodegenerative movement disorder that progresses relentlessly. It gradually impairs a person’s ability to function until they ultimately become immobile and often develop dementia. In the U.S. alone, over a million people are afflicted with Parkinson’s, and new cases and overall numbers are steadily increasing. There is currently no treatment to slow or halt Parkinson’s disease. Available drugs don’t slow disease progression and can treat only certain symptoms. Medications that work early in the disease, however, such as Levodopa, generally become ineffective over the years, necessitating increased doses that can lead to disabling side effects. Without understanding the fundamental molecular cause of Parkinson’s, it’s improbable that researchers will be able to develop a medication to stop the disease from steadily worsening in patients. Many factors may contribute to the development of Parkinson’s, both environmental and genetic. Until recently, underlying genetic causes of the disease were unknown. Most cases of Parkinson’s aren’t inherited but sporadic, and early studies suggested a genetic basis was improbable. Nevertheless, everything in biology has a genetic foundation. As a geneticist and molecular neuroscientist, I have devoted my career to predicting and preventing Parkinson’s disease. In our newly published research, my team and I discovered a new genetic variant linked to Parkinson’s that sheds light on the evolutionary origin of multiple forms of familial parkinsonism, opening doors to better understand and treat the disease. In the mid-1990s, researchers started looking into whether genetic differences between people with or without Parkinson’s might identify specific genes or genetic variants that cause the disease. In general, I and other geneticists use two approaches to map the genetic blueprint of Parkinson’s: linkage analysis and association studies. © 2010–2024, The Conversation US, Inc.
Keyword: Parkinsons; Genes & Behavior
Link ID: 29249 - Posted: 04.11.2024
By Helen Bradshaw Walk into a gas station in the United States, and you may see more than just boxes of cigarettes lining the back wall. Colorful containers containing delta-8, a form of the substance THC, are sold in gas stations and shops across the country, and teens are buying them. A recent survey of more than 2,000 U.S. high school seniors found that more than 11 percent of them had used delta-8 in the past year, researchers report March 12 in JAMA. This is the first year the Monitoring the Future study, one of the leading nationally representative surveys of drug use trends among adolescents in the United States, looked at delta-8 use. Because more than 1 in 10 senior students said they used the drug, the survey team plans to monitor delta-8 use every year going forward. “We don’t really want to see any kids being exposed to cannabis, because it potentially increases their risk for developmental harms … and some psychiatric reactions” such as suicidal thoughts, says Alyssa Harlow, a researcher on the survey and an epidemiologist at the University of Southern California Keck School of Medicine in Los Angeles. Despite its prevalence, especially in the South and the Midwest, delta-8 is still new to consumers and research. Science News talked with Harlow and addiction researcher Jessica Kruger of the University of Buffalo in New York to help explain the delta-8 craze and its effects on kids. What is delta-8-THC? Cannabis plants contain over 100 compounds known as cannabinoids. Delta-8 is one of them. The most well-known is delta-9-tetrahydrocannabinol, or delta-9-THC. © Society for Science & the Public 2000–2024.
Keyword: Drug Abuse
Link ID: 29248 - Posted: 04.11.2024
By Christina Caron Anxious ahead of a big job interview? Worried about giving a speech? First date nerves? The solution, some digital start-ups suggest, is a beta blocker, a type of medication that can slow heart rate and lower blood pressure — masking some of the physical symptoms of anxiety. Typically a trip to the doctor’s office would be necessary to get a prescription, but a number of companies are now connecting patients with doctors for quick virtual visits and shipping the medication to people’s homes. “No more ‘Shaky and Sweaty,’” one online ad promised. “Easy fast 15 minute intake.” That worries Dr. Yvette I. Sheline, a professor of psychiatry at the University of Pennsylvania Perelman School of Medicine. “The first question is: What is going on with this person?” Dr. Sheline said. Are they depressed in addition to anxious? Do they have chronic anxiety or is it just a temporary case of stage fright? “You don’t want to end up prescribing the wrong thing,” she added. In addition, although beta blockers are generally considered safe, experts say they can carry unpleasant side effects and should be used with caution. What are beta blockers? Beta blockers such as propranolol hydrochloride have been approved by the Food and Drug Administration for chest pain, migraine prevention, involuntary tremors, abnormal heart rhythms and other uses. Some are still prescribed for hypertension, although they’re no longer considered the preferred treatment, mainly because other medications are more effective in preventing stroke and death. © 2024 The New York Times Company
Keyword: Emotions; Stress
Link ID: 29247 - Posted: 04.06.2024
Kimberly Rosvall Liz Aguilar The total solar eclipse on April 8, 2024, coincides with an exciting time for wild birds. Local birds are singing for mates and fighting for territories as they gear up for their once-a-year chance to breed. Tens of millions of migrating birds will be passing through the path of totality, and they mostly migrate at night. Because birds use light to match their behaviors to their environment, scientists like us have lots of questions about how they will respond to the eclipse. Will they pause their fighting and wooing and shift toward bedtime-like behaviors? How about a nocturnal animal like an owl or those nighttime migrants – will they start to rustle from their roosts before they realize it’s not night? As behavioral biologists at Indiana University, we research wild breeding birds, with a goal of understanding why animals behave the way that they do in response to environmental challenges and opportunities. For the 2024 eclipse, our team is launching a new project and developing an app. If everything goes as planned, we should end up with a large dataset after the eclipse, collected by community scientist volunteers across the country. On average, a total solar eclipse occurs in the same place only once every 375 years. Most wild animals, like most people, have never seen the sky quickly switch to night in the middle of the day. These rare events are a natural experiment that can help scientists like us understand how animals respond to an unusual sudden change in light. Most past research on animal behavior during total solar eclipses is anecdotal. Observers have reported that zoo animals acted distressed or went into their enclosures. Scientists have spotted spiders starting the nightly deconstruction of their webs in the middle of the day, and farmers have heard their roosters start to crow after totality, as if it’s once again dawn. Other reports suggest more subtle effects on animal behavior. © 2010–2024, The Conversation US, Inc.
Keyword: Biological Rhythms; Vision
Link ID: 29246 - Posted: 04.06.2024
By Saima May Sidik In 2010, Theresa Chaklos was diagnosed with chronic lymphocytic leukaemia — the first in a series of ailments that she has had to deal with since. She’d always been an independent person, living alone and supporting herself as a family-law facilitator in the Washington DC court system. But after illness hit, her independence turned into loneliness. Loneliness, in turn, exacerbated Chaklos’s physical condition. “I dropped 15 pounds in less than a week because I wasn’t eating,” she says. “I was so miserable, I just would not get up.” Fortunately a co-worker convinced her to ask her friends to help out, and her mood began to lift. “It’s a great feeling” to know that other people are willing to show up, she says. Many people can’t break out of a bout of loneliness so easily. And when acute loneliness becomes chronic, the health effects can be far-reaching. Chronic loneliness can be as detrimental as obesity, physical inactivity and smoking according to a report by Vivek Murthy, the US surgeon general. Depression, dementia, cardiovascular disease1 and even early death2 have all been linked to the condition. Worldwide, around one-quarter of adults feel very or fairly lonely, according to a 2023 poll conducted by the social-media firm Meta, the polling company Gallup and a group of academic advisers (see go.nature.com/48xhu3p). That same year, the World Health Organization launched a campaign to address loneliness, which it called a “pressing health threat”. But why does feeling alone lead to poor health? Over the past few years, scientists have begun to reveal the neural mechanisms that cause the human body to unravel when social needs go unmet. The field “seems to be expanding quite significantly”, says cognitive neuroscientist Nathan Spreng at McGill University in Montreal, Canada. And although the picture is far from complete, early results suggest that loneliness might alter many aspects of the brain, from its volume to the connections between neurons.
Keyword: Stress
Link ID: 29245 - Posted: 04.06.2024
By Claudia López Lloreda As animals carry out complex behaviors, multiple brain areas turn on and talk to one another. But neuroscientists have had limited means to measure that neuronal dialogue. Electrical recordings, for example, are typically constrained to one brain area at a time, or require that mice have their head fixed in a specific position. A new technology overcomes those restrictions. The device, called E-Scope, reported in a peer-reviewed preprint in eLife, effectively measures the activity of neurons in two different areas at the same time, even as rodents move freely. The headset captures images of calcium currents, made using a microscope, and recordings of neurons’ electrical activity through electrodes to show how the cerebellum communicates with other brain regions during social interaction in mice. “Everything [is] synchronized together that way,” says Peyman Golshani, assistant professor of neurology at the University of California, Los Angeles and a study investigator. This approach holds the potential to illuminate how coordination between brain areas in conditions marked by impaired social interaction, such as attention-deficit/hyperactivity disorder and autism, is disrupted, Golshani says. By combining technologies, researchers who use the E-Scope “don’t need separate electrophysiology and imaging hardware,” he adds. It’s also much more comfortable for the animals, according to Golshani. A single wire conveys all of the small headset’s data, so mice can move more freely than when wearing other devices. © 2024 Simons Foundation
Keyword: Brain imaging
Link ID: 29244 - Posted: 04.06.2024
By Matt Richtel Historically speaking, it’s not a bad time to be the liver of a teenager. Or the lungs. Regular use of alcohol, tobacco and drugs among high school students has been on a long downward trend. In 2023, 46 percent of seniors said that they’d had a drink in the year before being interviewed; that is a precipitous drop from 88 percent in 1979, when the behavior peaked, according to the annual Monitoring the Future survey, a closely watched national poll of youth substance use. A similar downward trend was observed among eighth and 10th graders, and for those three age groups when it came to cigarette smoking. In 2023, just 15 percent of seniors said that they had smoked a cigarette in their life, down from a peak of 76 percent in 1977. Illicit drug use among teens has remained low and fairly steady for the past three decades, with some notable declines during the Covid-19 pandemic. In 2023, 29 percent of high school seniors reported using marijuana in the previous year — down from 37 percent in 2017, and from a peak of 51 percent in 1979. There are some sobering caveats to the good news. One is that teen overdose deaths have sharply risen, with fentanyl-involved deaths among adolescents doubling from 2019 to 2020 and remaining at that level in the subsequent years. Dr. Nora Volkow has devoted her career to studying use of drugs and alcohol. She has been the director of the National Institute on Drug Abuse since 2003. She sat down with The New York Times to discuss changing patterns and the reasons behind shifting drug-use trends. What’s the big picture on teens and drug use? People don’t really realize that among young people, particularly teenagers, the rate of drug use is at the lowest risk that we have seen in decades. And that’s worth saying, too, for legal alcohol and tobacco. © 2024 The New York Times Company
Keyword: Drug Abuse
Link ID: 29243 - Posted: 04.06.2024
By Meghan Willcoxon In the summer of 1991, the neuroscientist Vittorio Gallese was studying how movement is represented in the brain when he noticed something odd. He and his research adviser, Giacomo Rizzolatti, at the University of Parma were tracking which neurons became active when monkeys interacted with certain objects. As the scientists had observed before, the same neurons fired when the monkeys either noticed the objects or picked them up. But then the neurons did something the researchers didn’t expect. Before the formal start of the experiment, Gallese grasped the objects to show them to a monkey. At that moment, the activity spiked in the same neurons that had fired when the monkey grasped the objects. It was the first time anyone had observed neurons encode information for both an action and another individual performing that action. Those neurons reminded the researchers of a mirror: Actions the monkeys observed were reflected in their brains through these peculiar motor cells. In 1992, Gallese and Rizzolatti first described the cells in the journal Experimental Brain Research and then in 1996 named them “mirror neurons” in Brain. The researchers knew they had found something interesting, but nothing could have prepared them for how the rest of the world would respond. Within 10 years of the discovery, the idea of a mirror neuron had become the rare neuroscience concept to capture the public imagination. From 2002 to 2009, scientists across disciplines joined science popularizers in sensationalizing these cells, attributing more properties to them to explain such complex human behaviors as empathy, altruism, learning, imitation, autism and speech. Then, nearly as quickly as mirror neurons caught on, scientific doubts about their explanatory power crept in. Within a few years, these celebrity cells were filed away in the drawer of over-promised, under-delivered discoveries. Vittorio Gallese wears round glasses.
Keyword: Attention; Vision
Link ID: 29242 - Posted: 04.04.2024
By Esther Landhuis When Angela Tang’s teenage son came down with a baffling illness, few households could have been better equipped to deal with it. The family lives in a wealthy Los Angeles suburb. Both parents are doctors — Tang in internal medicine, her husband in infectious disease — and their son, a straight-A student well-liked at school, had been cared for by the family’s pediatrician since birth. Still, the parents worried as their son’s symptoms appeared, seemingly out of the blue, in September 2018: He’d meticulously line up pencils in groups of five, recite prayers unrelentingly, make homework illegible as he had to erase or cross out every C, D, and F. Eating, too, became a chore. If he had a contaminating thought while taking a bite, he’d have to spit out the food, wash his mouth, and try again, but the new bite couldn’t have touched the old one. It got to the point where he could only eat mushy or semi-liquid foods carefully placed “in little aliquots on his plate, so that if one bite got contaminated,” it wouldn’t touch the others, Tang said. Before long, she and her husband were working around the clock just to get him through the day. In a panic, Tang consulted their pediatrician, and recalls the doctor asking an intriguing question: “Has he had any unusual infections recently — because you know about PANDAS, right?” At the time, Tang knew nothing about PANDAS. She had completed her own medical residency two years before the illness — short for pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections — was first outlined in a 1998 paper. That publication detailed how a child’s behavior could change alarmingly after a strep infection, and may include symptoms of obsessive-compulsive behavior and tics. It has also stirred controversy: Many doctors hesitate to diagnose or treat the condition even today.
Keyword: OCD - Obsessive Compulsive Disorder; Neuroimmunology
Link ID: 29241 - Posted: 04.04.2024
By David Adam A diabetes drug related to the latest generation of obesity drugs can slow the development of the symptoms of Parkinson’s disease, a clinical trial suggests1. Participants who took the drug, called lixisenatide, for 12 months showed no worsening of their symptoms — a gain in a condition marked by progressive loss of motor control. Further work is needed to control side effects and determine the best dose, but researchers say that the trial marks another promising step in the decades-long effort to tackle the common and debilitating disorder. “This is the first large-scale, multicentre clinical trial to provide the signs of efficacy that have been sought for so many years,” says Olivier Rascol, a Parkinson’s researcher at Toulouse University Hospital in France, who led the study. The diabetes connection Lixisenatide is a glucagon-like peptide-1 (GLP-1) receptor agonist, making it part of a large family of similar compounds used to treat diabetes and, more recently, obesity. (The weight-loss drug semaglutide, sold under the brand name Wegovy, is a GLP-1 compound.) Many studies have shown a link between diabetes and Parkinson’s2. People with diabetes are around 40% more likely to develop Parkinson’s. And people who have both Parkinson’s and diabetes often see more rapid progression of symptoms than do those who have only Parkinson’s. Animal studies3 have suggested that some GLP-1 drugs, which influence levels of insulin and glucose, can slow the symptoms of Parkinson’s. Smaller trials, published in 20134 and 20175, suggested that the GLP-1 molecule exenatide, another diabetes drug, could do the same in people.
Keyword: Parkinsons
Link ID: 29240 - Posted: 04.04.2024
Jon Hamilton Sam and John Fetters, 19, are identical twins at opposite ends of the autism spectrum. Sam is a sophomore at Amherst College who plans to double major in history and political science. In his free time, he runs marathons. John attends a special school, struggles to form sentences, and likes to watch "Teletubbies" and "Sesame Street." Two brothers. Same genes. Different flavors of autism. To scientists, twins like Sam and John pose an important question: How can a disorder that is known to be highly genetic look so different in siblings who share the same genome? "That is one of the greatest mysteries right now in research on autism," says Dr. Stephanie Morris, a pediatric neurologist at the Kennedy Krieger Institute in Baltimore. Solving that mystery could help explain autism's odd mix of nature and nurture, Morris says. It also might help "modify the trajectory" of autistic children experiencing speech and language delays, or difficulty with social communication. Identical twins on separate paths Sam and John are spending the weekend with their mom, Kim Leaird, at the family's apartment in West Tisbury, a small town on Martha's Vineyard. The twins are crowded together on a couch. Even seated, they look tall. Standing, Sam is 6 feet five inches, his brother just an inch shorter. John lets Sam do most of the talking. He frequently touches his brother, who sometimes takes his hand. John has "a truly tremendous amount of empathy," Sam says. "He's able to be very supportive." © 2024 npr
Keyword: Autism; Genes & Behavior
Link ID: 29239 - Posted: 04.04.2024
By Emily Makowski & I spend my days surrounded by thousands of written words, and sometimes I feel as though there’s no escape. That may not seem particularly unusual. Plenty of people have similar feelings. But no, I’m not just talking about my job as a copy editor here at Scientific American, where I edit and fact-check an endless stream of science writing. This constant flow of text is all in my head. My brain automatically translates spoken words into written ones in my mind’s eye. I “see” subtitles that I can’t turn off whenever I talk or hear someone else talking. This same speech-to-text conversion even happens for the inner dialogue of my thoughts. This mental closed-captioning has accompanied me since late toddlerhood, almost as far back as my earliest childhood memories. And for a long time, I thought that everyone could “read” spoken words in their head the way I do. What I experience goes by the name of ticker-tape synesthesia. It is not a medical condition—it’s just a distinctive way of perceiving the surrounding world that relatively few people share. Not much is known about the neurophysiology or psychology of this phenomenon, sometimes called “ticker taping,” even though a reference to it first appeared in the scientific literature in the late 19th century. Ticker taping is considered a form of synesthesia, an experience in which the brain reroutes one kind of incoming sensory information so that it is processed as another. For example, sounds might be perceived as touch, allowing the affected person to “feel” them as tactile sensations. As synesthesia goes, ticker taping is relatively uncommon. “There are varieties of synesthesia which really have just been completely under the radar..., and ticker tape is really one of those,” says Mark Price, a cognitive psychologist at the University of Bergen in Norway. The name “ticker-tape synesthesia” itself evokes the concept’s late 19th-century origins. At that time stock prices transmitted by telegraph were printed on long paper strips, which would be torn into tiny bits and thrown from building windows during parades. © 2024 SCIENTIFIC AMERICAN,
Keyword: Attention; Language
Link ID: 29238 - Posted: 04.04.2024
By Javier C. Hernández The pianist Alice Sara Ott, barefoot and wearing a silver bracelet, was smiling and singing to herself the other day as she practiced a jazzy passage of Ravel at Steinway Hall in Midtown Manhattan. A Nintendo Switch, which she uses to warm up her hands, was by her side (another favored tool is a Rubik’s Cube). A shot of espresso sat untouched on the floor. “I feel I have finally found my voice,” Ott said during a break. “I feel I can finally be myself.” Ott, 35, who makes her New York Philharmonic debut this week, has built a global career, recording more than a dozen albums and appearing with top ensembles. She has become a force for change in classical music, embracing new approaches (playing Chopin on beat-up pianos in Iceland) and railing against stuffy concert culture (she performs without shoes, finding it more comfortable). And Ott, who lives in Munich and has roots in Germany and Japan, has done so while grappling with illness. In 2019, when she was 30, she was diagnosed with multiple sclerosis. She says she has not shown any symptoms since starting treatment, but the disorder has made her reflect on the music industry’s grueling work culture. “I learned to accept that there is a limit and to not go beyond that,” she said. “Everybody knows how to ignore their body and just go on. But there’s always a payback.” Ott has used her platform to help dispel myths about multiple sclerosis, a disorder of the central nervous system that can cause a wide range of symptoms, including muscle spasms, numbness and vision problems. She has taken to social media to detail her struggles and to challenge those who have suggested that the illness has affected her playing. She said she felt she had no choice but to be transparent, saying it was important to show that people with multiple sclerosis could lead full lives. “I don’t consider it as a weakness,” she said. “It’s a fact. I live with it. And I don’t want to make a big drama out of it.” © 2024 The New York Times Company
Keyword: Multiple Sclerosis
Link ID: 29237 - Posted: 04.04.2024
by Alex Blasdel Patient One was 24 years old and pregnant with her third child when she was taken off life support. It was 2014. A couple of years earlier, she had been diagnosed with a disorder that caused an irregular heartbeat, and during her two previous pregnancies she had suffered seizures and faintings. Four weeks into her third pregnancy, she collapsed on the floor of her home. Her mother, who was with her, called 911. By the time an ambulance arrived, Patient One had been unconscious for more than 10 minutes. Paramedics found that her heart had stopped. After being driven to a hospital where she couldn’t be treated, Patient One was taken to the emergency department at the University of Michigan. There, medical staff had to shock her chest three times with a defibrillator before they could restart her heart. She was placed on an external ventilator and pacemaker, and transferred to the neurointensive care unit, where doctors monitored her brain activity. She was unresponsive to external stimuli, and had a massive swelling in her brain. After she lay in a deep coma for three days, her family decided it was best to take her off life support. It was at that point – after her oxygen was turned off and nurses pulled the breathing tube from her throat – that Patient One became one of the most intriguing scientific subjects in recent history. For several years, Jimo Borjigin, a professor of neurology at the University of Michigan, had been troubled by the question of what happens to us when we die. She had read about the near-death experiences of certain cardiac-arrest survivors who had undergone extraordinary psychic journeys before being resuscitated. Sometimes, these people reported travelling outside of their bodies towards overwhelming sources of light where they were greeted by dead relatives. Others spoke of coming to a new understanding of their lives, or encountering beings of profound goodness. Borjigin didn’t believe the content of those stories was true – she didn’t think the souls of dying people actually travelled to an afterworld – but she suspected something very real was happening in those patients’ brains. In her own laboratory, she had discovered that rats undergo a dramatic storm of many neurotransmitters, including serotonin and dopamine, after their hearts stop and their brains lose oxygen. She wondered if humans’ near-death experiences might spring from a similar phenomenon, and if it was occurring even in people who couldn’t be revived. © 2024 Guardian News & Media Limited
Keyword: Consciousness; Attention
Link ID: 29236 - Posted: 04.02.2024
By Tina Hesman Saey Atoosa Samani started learning about pigeon genetics at a young age. She grew up surrounded by pet pigeons in Isfahan, a city in central Iran famed for its pigeon towers. Her favorite was an all-white bird. But 6- or 7-year-old Samani noticed that this particular pigeon never fathered all-white offspring. She learned that white coloring is a recessive genetic trait — one that shows up only when an individual inherits two broken copies of a gene (SN: 2/7/22). In this case, the pigeon had two broken copies of a gene that normally makes pigment to color feathers, so his feathers were white. But his offspring inherited a normal, pigment-producing version of the gene from their mothers and had colored feathers. That early lesson in pigeon heredity stuck with Samani and fueled her desire to learn more about genetics. When she moved to the United States to study at the University of Utah in Salt Lake City, it seemed only natural to join Michael Shapiro’s lab to investigate why some pigeons (Columba livia) do backward somersaults (SN: 1/31/13). These roller pigeons come in two varieties: Flying rollers such as Birmingham rollers, which fly but do long tumbling runs toward the ground before resuming flight, and parlor rollers, which can’t fly but instead backflip along the ground. Many Persian poems say the pigeons perform the acrobatics because the birds are happy, but Samani says the truth is darker. “This is definitely a movement disorder, and it does not have any good aspects to it,” she says. The disorder is progressive, appearing soon after hatching and gradually getting worse until the birds can’t fly. © Society for Science & the Public 2000–2024.
Keyword: Movement Disorders; Genes & Behavior
Link ID: 29235 - Posted: 04.02.2024
By Paula Span The phone awakened Doug Nordman at 3 a.m. A surgeon was calling from a hospital in Grand Junction, Colo., where Mr. Nordman’s father had arrived at the emergency room, incoherent and in pain, and then lost consciousness. At first, the staff had thought he was suffering a heart attack, but a CT scan found that part of his small intestine had been perforated. A surgical team repaired the hole, saving his life, but the surgeon had some questions. “Was your father an alcoholic?” he asked. The doctors had found Dean Nordman malnourished, his peritoneal cavity “awash with alcohol.” The younger Mr. Nordman, a military personal finance author living in Oahu, Hawaii, explained that his 77-year-old dad had long been a classic social drinker: a Scotch and water with his wife before dinner, which got topped off during dinner, then another after dinner, and perhaps a nightcap. Having three to four drinks daily exceeds current dietary guidelines, which define moderate consumption as two drinks a day for men and one for women, or less. But “that was the normal drinking culture of the time,” said Doug Nordman, now 63. At the time of his 2011 hospitalization, though, Dean Nordman, a retired electrical engineer, was widowed, living alone and developing symptoms of dementia. He got lost while driving, struggled with household chores and complained of a “slipping memory.” He had waved off his two sons’ offers of help, saying he was fine. During that hospitalization, however, Doug Nordman found hardly any food in his father’s apartment. Worse, reviewing his father’s credit card statements, “I saw recurring charges from the Liquor Barn and realized he was drinking a pint of Scotch a day,” he said. Public health officials are increasingly alarmed by older Americans’ drinking. The annual number of alcohol-related deaths from 2020 through 2021 exceeded 178,000, according to recently released data from the Centers for Disease Control and Prevention: more deaths than from all drug overdoses combined. © 2024 The New York Times Company
Keyword: Drug Abuse; Alzheimers
Link ID: 29234 - Posted: 04.02.2024