Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
Davide Castelvecchi Pigeons can sense Earth’s magnetic field by detecting tiny electrical currents in their inner ears, researchers suggest. Such an inner compass could help to explain how certain animals can achieve astonishing feats of long-distance navigation. The team performed advanced brain mapping as well single-cell RNA sequencing of pigeon inner-ear cells. Both lines of evidence point to the inner ear as the birds’ ‘magnetoreception’ organ. The results appeared in the Science on 20 November 1. “This is probably the clearest demonstration of the neural pathways responsible for magnetic processing in any animal,” says Eric Warrant, a sensory biology researcher at the University of Lund in Sweden. Studies have suggested that various animals, including turtles, trout and robins, can sense the direction and strength of magnetic fields, although the evidence has sometimes been contested — and the mechanisms have remained controversial. Bird-brained navigation Two leading hypotheses have led the research into how birds sense magnetic fields. One is a quantum-physics effect in retina cells where birds ‘see’ magnetic fields. Another is that microscopic iron oxide particles in the beak could act as tiny compass needles. However, it’s largely unknown where magnetic information is sensed in animals’ brains and how sensory neurons confer sensitivity to electromagnetic changes. In 2011, researchers found hints that magnetic fields triggered pigeons’ vestibular system, the organ that enables vertebrates to sense accelerations (including gravity) and helps them to stay balanced2. The structure is made of three fluid-filled loops which are mutually perpendicular, so they can communicate to the brain the direction of an acceleration by breaking it down into three ‘x, y, z’ components. © 2025 Springer Nature Limited
Keyword: Animal Migration; Hearing
Link ID: 30024 - Posted: 11.22.2025
Mark Brown Sophisticated and deadly “brain weapons” that can attack or alter human consciousness, perception, memory or behaviour are no longer the stuff of science fiction, two British academics argue. Michael Crowley and Malcolm Dando, of Bradford University, are about to publish a book that they believe should be a wake-up call to the world. They are this weekend travelling to The Hague for a key meeting of states, arguing that the human mind is a new frontier in warfare and there needs to be urgent global action to prevent the weaponisation of neuroscience. “It does sound like science fiction,” said Crowley. “The danger is that it becomes science fact.” The book, published by the Royal Society of Chemistry, explores how advances in neuroscience, pharmacology and artificial intelligence are coming together to create a new threat. “We are entering an era where the brain itself could become a battlefield,” said Crowley. “The tools to manipulate the central nervous system – to sedate, confuse or even coerce – are becoming more precise, more accessible and more attractive to states.” The book traces the fascinating, if appalling, history of state-sponsored research into central nervous system (CNS)-acting chemicals. During the cold war and after, the US, Soviet Union and China all “actively sought” to develop CNS-acting weapons, said Crowley. Their purpose was to cause prolonged incapacitation to people, including “loss of consciousness or sedation or hallucination or incoherence or paralysis and disorientation”. © 2025 Guardian News & Media Limited
Keyword: Drug Abuse; Aggression
Link ID: 30023 - Posted: 11.22.2025
By Ali Watkins The act has been called many things: Centrifugal motion. Perpetual bliss. The thrill of the moment. Unstoppable. In technical terms, it is “non-agonistic interaction involving directed, intraspecific, oral-oral contact with some movement of the lips/mouthparts and no food transfer.” Or, as her majesty Faith Hill might say, “This kiss.” And, it turns out, it’s also really old. British scientists say they’ve traced the age of the kiss, to anywhere from 16 million to 21 million years ago, and have found that it was far more common among other species than previously understood. Ants? They smooch. Fish? Kissers. Neanderthals? Yep, they puckered up, too — sometimes even with us. But kissing, the researchers said, has always been something of a so-called evolutionary mystery. It doesn’t present much benefit for survival, it has minimal reproductive benefits, and it’s mostly symbolic. “Kissing is a really interesting behavior,” said Matilda Brindle, an evolutionary biologist at Oxford University who led the study. Dozens of societies and cultures use it, it’s common, and it has weighted symbolism. But, she said, “we’ve not really tested it from an evolutionary perspective.” In prehistoric kissing, it seems, could be the primitive origins of our search for intimate connection. The act inherently requires vulnerability, and trust. It’s not always sexual and is often used among and between genders simply to show affection, and often between parents and offspring. Though researchers found evidence of kissing in several species, they narrowed the focus of the study mostly to the behavior of large apes, like gorillas, orangutans and baboons. © 2025 The New York Times Company
Keyword: Sexual Behavior; Evolution
Link ID: 30022 - Posted: 11.22.2025
By Laura Sanders SAN DIEGO — A diet low in the amino acid glutamate may ease migraines, a small study suggests. A month of staying away from high-glutamate foods led to fewer migraines in a group of 25 people with Gulf War Illness. The specifics of these veterans’ migraines, part of a collection of symptoms resulting from the Gulf War, may differ from those of other people who suffer from migraines. But if the underlying relationship between glutamate and migraines is similar, the diet could help the estimated 1 billion people worldwide who have migraines. Current drugs for treating migraines, including a new class of compounds that block a chemical messenger called CGRP, can help. But existing drugs don’t work for everyone, says neuroscientist Ian Meng of the University of New England in Biddeford, Maine. A dietary change could be a low-risk and accessible way to bring relief. Glutamate is both a signal that excites nerve signals in the brain and an amino acid found in tomatoes, processed meats, aged cheese, mushrooms and, of course, monosodium glutamate, or MSG. For a month, 25 veterans of the Gulf War ate a low-glutamate diet full of whole fruits and veggies and avoided high-glutamate foods including soy sauce, mushrooms and ultraprocessed foods. Before this diet, 64 percent of these people reported having a migraine in the previous week. After a month of a low-glutamate diet, that number dropped to about 12 percent, neuroscientist Ashley VanMeter said November 16 in a news briefing at the annual meeting of the Society for Neuroscience. After the one-month diet ended, 88 percent of the people in the study chose to remain on the diet. “They feel that [the diet] is definitely benefiting them,” said VanMeter, of Georgetown University in Washington, D.C. © Society for Science & the Public 2000–2025.
Keyword: Pain & Touch
Link ID: 30021 - Posted: 11.22.2025
On 19 November 2025, the U.S. Centers for Disease Control and Prevention changed language on a “vaccine safety” page on its website to assert that the statement “vaccines do not cause autism” is not evidence based. The updated CDC page now incorrectly suggests that a link between infant vaccination and autism exists, and it casts doubt on a wealth of research that has produced evidence to the contrary. The updated language contradicts decades of research findings that show vaccines do not cause autism. The move has also prompted backlash from multiple groups, including the Coalition of Autism Scientists and the Autism Science Foundation. “These sort of claims have been repeatedly debunked by good science and multiple independent replications of negative studies, and for years no scientist has opined that more research is needed,” Eric Fombonne, professor emeritus of psychiatry at Oregon Health & Science University, told The Transmitter. He noted several problems with the arguments presented on the CDC website, including the citation of “fringe studies executed by uncredentialed authors with poor methodologies and published in low-quality journals.” Fombonne described the authors of the page as having “cherry pick[ed data] … in support of their preconceived beliefs” and mischaracterizing well-conducted and replicated research. Experts The Transmitter spoke with raised many concerns about the agency’s statements, including how those statements could confuse families and whether they indicate shifts in priorities that threaten solid scientific research. “Families deserve honest answers,” says David Mandell, professor of psychiatry at the University of Pennsylvania and director of the Penn Center for Mental Health. © 2025 Simons Foundation
Keyword: Autism; Neuroimmunology
Link ID: 30020 - Posted: 11.22.2025
Liam Drew Paradromics, a neurotechnology developer, announced today that the US Food and Drug Administration (FDA) has approved a first long-term clinical trial of its brain–computer interface (BCI). Early next year, the company — one of the closet rivals to Elon Musk’s neurotechnology firm Neuralink — will implant its device in two volunteers who were left unable to speak owing to neurological diseases and injuries. It has two goals: to ensure the device is safe; and to restore a person’s ability to communicate with real-time speech. “We’re very excited about bringing this new hardware into a trial,” says Matt Angle, chief executive of Paradromics, which is based in Austin, Texas. Paradromics’ BCI has an active area of roughly 7.5 millimetres in diameter of thin, stiff, platinum-iridium electrodes that penetrate the surface of the cerebral cortex to record from individual neurons around 1.5 mm deep. This is then connected by wire to a power source and wireless transceiver implanted in an individual’s chest. Initially, the two volunteers will each have one electrode array implanted in the area of the motor cortex that controls the lips, tongue and larynx, Angle says. Neural activity will then be recorded from this region as the study participants imagine speaking sentences that are presented to them. Following previous work by researchers who are now collaborating with Paradromics1, the system learns what patterns of neural activity correspond to each intended speech sound. When participants imagine speaking these neural patterns will be converted into text on a screen for participants to approve, or into a real-time voice output based on old recordings of participants’ own voices. This is the first BCI clinical trial to formally target synthetic-voice generation. “Arguably, the greatest quality of life change you can deliver right now with BCI is communication,” Angle says. © 2025 Springer Nature Limited
Keyword: Robotics
Link ID: 30019 - Posted: 11.22.2025
By Oliver Whang Owen Collumb was paralyzed in 1993, when he was 21 years old. A tire on his motorbike blew out and he fell into a ravine, breaking a single bone in his spine. When he recovered, he couldn’t move his legs and could control only the biceps in his arms, meaning that he could lift his hands but, to put them down, he had to twist his shoulders and let gravity unbend his elbows. He spent years in an assisted living home before petitioning to move to his own place in Dublin, with the help of home aides. Living alone was liberating; he could choose what he ate and when he woke in the morning. He began working multiple jobs for foundations and advocating for people with disabilities. One of his assistants, Sylwia Filipiek, a Polish immigrant to Ireland, had been employed at a printing factory. She had no experience with home care and struggled to help Mr. Collumb into his wheelchair at first. But, over the years, they learned how to work together, and grew close. In the summer of 2024, Mr. Collumb and Ms. Filipiek flew to Bath, England, to train for the Cybathlon, an international competition run every four years to encourage the development of assistive technologies. The competition, hosted in Switzerland by the university ETH Zurich, consists of eight races for teams and their pilots (which is what the primary competitors, with varying disabilities, are called), each targeting different innovations, such as arm prostheses, leg prostheses and vision assistance. Each race consists of remote tasks that are supposed to simulate everyday life for the pilots: walking across a room, picking up a grocery bag, throwing a ball. One of Cybathlon’s founders, Roland Sigrist, compared it to Formula 1. Teams are encouraged to develop prototypes toward the ultimate goal of “the independence of people with disabilities,” but the competition is straightforward and real, with all its accompaniments: nerves, heartbreak, glory. The pilots are the ones that put themselves on the line. “They’re the masters of the technology, and not the other way around,” Mr. Sigrist said. © 2025 The New York Times Company
Keyword: Robotics
Link ID: 30018 - Posted: 11.19.2025
By Kate Graham-Shaw A long time ago in a galaxy far, far away, R2-D2 beeped and booped—and now birds that copy the Star Wars character are giving scientists fresh insight into how different species imitate complex sounds. A study, published recently in Scientific Reports, analyzed the sounds of nine species of parrots, including Budgies, as well as European Starlings to see how accurately each bird mimicked R2-D2’s robotic whirring. Researchers did acoustic analyses on samples of birds imitating the plucky droid that were already available online to compare how statistically similar each bird’s noises were to a model of R2-D2’s sounds. The starlings, a type of songbird, emerged as star vocalists: their ability to produce “multiphonic” noises—in their case, two different notes or tones expressed simultaneously—allowed them to replicate R2-D2’s complex chirps more accurately. Parrots and budgies, which only produce “monophonic” (or single-tone) noises, imitated the droid’s sounds with less accuracy and musicality. The differing abilities stem from physical variations in the birds’ “syrinx”—a unique vocal organ that sits at the base of the avian windpipe. “Starlings can produce two sounds at once because they control both sides of the syrinx independently,” says study co-author Nick Dam, an evolutionary biologist at Leiden University in the Netherlands. “Parrots are physically incapable of producing two tones simultaneously.” It isn’t exactly known why different species developed differing control over their syrinx. “Likely, some ancestor of songbirds happened to evolve the ability to control the muscles on both sides of the syrinx, and this helped them in some way,” says University of Northern Colorado biologist Lauryn Benedict, who wasn’t involved in the study but sometimes works with its authors. One of the leading explanations involves mating; the better at singing a male songbird is, the more females he attracts. © 2025 SCIENTIFIC AMERICAN,
Keyword: Animal Communication; Language
Link ID: 30017 - Posted: 11.19.2025
Mariana Lenharo The obesity drug tirzepatide, sold as Mounjaro or Zepbound, can suppress patterns of brain activity associated with food cravings, a study suggests. Researchers measured the changing electrical signals in the brain of a person with severe obesity who had experienced persistent ‘food noise’ — intrusive, compulsive thoughts about eating — shortly after the individual began taking the medication. The study is the first to use electrodes to directly measure how blockbuster obesity drugs that mimic the hormone GLP-1 affect brain activity in people, and to hint at how they curb extreme food cravings. “It’s a great strategy to try and find a neural signature of food noise, and then try to understand how drugs can manipulate it,” says Amber Alhadeff, a neuroscientist at the Monell Chemical Senses Center in Philadelphia, Pennsylvania. The findings were published today in Nature Medicine1. Casey Halpern, a neurosurgeon-scientist at the University of Pennsylvania in Philadelphia, and his colleagues did not set out to investigate the effects of obesity drugs on the brain. The team’s goal was to test whether a type of deep brain stimulation — a therapy that involves delivering a weak electrical current directly into the brain — can help to reduce compulsive eating in people with obesity for whom treatments such as bariatric surgery haven’t worked. The scientists set up a study in which participants had an electrode implanted into their nucleus accumbens, a region of the brain that is involved in feelings of reward. It also expresses the GLP-1 receptor, notes Christian Hölscher, a neuroscientist at the Henan Academy of Innovations in Medical Science in Zhengzhou, China, “so we know that GLP-1 plays a role in modulating reward here”. This type of electrode, which can both record electrical activity and deliver an electrical current when needed, is already used in people to treat some forms of epilepsy. © 2025 Springer Nature Limited
Keyword: Obesity; Attention
Link ID: 30016 - Posted: 11.19.2025
By Lauren Schenkman The purported autism-microbiome connection is having a moment. It’s the focus of a new $50-million call for proposals from Wellcome Leap—a research initiative of the Wellcome Trust—and a 2024 Netflix documentary portrays fecal microbiota transplants as a promising treatment for autism-related traits. “It seems to have captured the public’s imagination,” says Kevin Mitchell, associate professor of genetics and neuroscience at Trinity College in Dublin. But Mitchell says he has long been skeptical. Eventually, he and some colleagues “collectively got exasperated enough by this that we felt that we had to say something about it,” Mitchell says. Today, they published a comprehensive review in Neuron of more than 30 studies on the autism-microbiome connection, including preclinical experiments in mice, human observational studies and clinical trials. After accounting for statistical, technical and conceptual flaws, the team reached a clear conclusion: “There’s nothing there,” Mitchell says. Research projects that include the keywords “autism” and “microbiome” have netted about $20 million to $25 million in U.S. federal funding annually since 2018, Mitchell’s team found using the funding database NIH RePORTER. It’s worrying that funders assume “there’s a solid foundation of work,” Mitchell says. “It’s just this huge amount of scientific effort and funding going into exploring these ideas.” Mitchell spoke with The Transmitter about the problems he sees with studies that claim to show a microbiome-autism link, and how neuroscientists can read them with an analytical eye. © 2025 Simons Foundation
Keyword: Autism
Link ID: 30015 - Posted: 11.19.2025
By Alex Marshall When a Swiss theater invited people with eating disorders to be involved in a play about Joan of Arc this fall, it caused a furor. Some therapists and parents of girls with anorexia criticized the move as “ethnically reprehensible” and said it could jeopardize performers’ health. So when Janine Rickenbach, who has had anorexia for decades, took the Theater Basel stage last week in the premiere, she knew that some audience members were judging her appearance as much as her performance. Yet during the two-hour show, Rickenbach, 44, appeared unfazed. At one point, wearing a camisole top that revealed her arms and neck, she stared impassively at the audience while delivering a monologue that seemed to address the outcry. “What are you thinking right now?” she said: “Are you thinking, ‘Oh my God…’” Was that “because I look the way I look?” she asked, “Or because I’m standing here on this stage? Because my struggle is visible?” Theater makers have long depicted health struggles onstage, including the realities of living with H.I.V. and cancer, but the debate around this production, titled “Jeanne Dark” and running through May 22, has shown that ethical questions remain about how various conditions are portrayed theatrically — and who gets to shape those depictions. Ulrike Schmidt, a specialist in eating disorders at King’s College, London, said in an email that anybody depicting mental health onstage needed to consider the potential for stigmatization, perpetuating stereotypes or “inappropriate glamorization” © 2025 The New York Times Company
Keyword: Anorexia & Bulimia
Link ID: 30014 - Posted: 11.19.2025
By Kathryn Hulick Dolphins whistle, humpback whales sing and sperm whales click. Now, a new analysis of sperm whale codas — a unique series of clicks — suggests a previously unrecognized acoustic pattern. The finding, reported November 12 in Open Mind, implies that the whales’ clicking communications might be more complex — and meaningful — than previously realized. But the study faces sharp criticism from marine biologists who argue that these patterns are more likely to be recording artifacts or by-products of alertness rather than language-like signals. For decades, biologists have known that both the number and timing of clicks in a coda matter and can even identify the clan of a sperm whale (Physeter macrocephalus). Sperm whales in the eastern Caribbean Sea off the coast of Dominica, for example, often use a series of two slow and three quick sounds: “click…click… click-click-click.” Relying on artificial intelligence and linguistics analysis, the new study finds that sometimes this series sounds more like “clack…clack… clack-clack-clack,” says Shane Gero, a marine biologist at Project CETI, a Dominica-based nonprofit studying sperm whale communication. Project CETI linguist Gašper Beguš wonders about the meanings a coda might convey. “It sounds really alien,” almost like Morse code, says Beguš, of the University of California, Berkeley. Based on his team’s result, he now speculates that sperm whales might use clicks or clacks “in a similar way as we use our vowels to transmit meaning.” Not everyone agrees with that assessment. The comparison to vowels is “completely nonsense,” says Luke Rendell, a marine biologist at the University of St. Andrews in Scotland who has studied sperm whales for more than 30 years. “There’s no evidence that the animals are responding in any way to this [new pattern].” © Society for Science & the Public 2000–2025
Keyword: Language; Animal Communication
Link ID: 30013 - Posted: 11.15.2025
By Dana Rubi Levy, Kevin Mastro, Michael Ryan Any seasoned baker knows the importance of being flexible. If you are missing an ingredient or hosting a guest with dietary restrictions, you might need to swap yogurt for eggs or oil for butter. The final product may differ, but it can still be rich and satisfying. In much the same way, our brain constantly makes substitutions and adjustments in response to the inevitable changes in our internal and external environments. To understand these changes, scientists often compare the brain and behavior of older people, aged 60 and up, with those of younger people, aged 20 to 30. Despite considerable individual variability, older people—on average—have slower processing speeds, rely more on past experience to solve problems, and have less behavioral flexibility. These findings have shaped our theories about how age-related changes in the brain drive behavior. In recent years, however, a conceptual shift has emerged, raising questions about whether some age-related changes are not solely the result of cognitive decline. Instead, some may be adaptive and address age-related constraints, such as changes in metabolism and increased inflammation. Moreover, scientists have begun to question whether young adulthood, characterized by a period of highly flexible decision-making, is the right benchmark to assess cognition across the lifespan. Given the evolving landscape of the aging brain, change is necessary, and not all deviations from the young-adult “benchmark” should be seen as decline. The main challenge for neuroscientists is to determine which of these age-related adaptations are beneficial and which are detrimental. In other words, which substitutions retain the original flavors, and which result in a dish that falls flat? © 2025 Simons Foundation
Keyword: Development of the Brain; Learning & Memory
Link ID: 30012 - Posted: 11.15.2025
Jon Hamilton A decades-long boom in brain science in the United States may be heading for a bust. Ongoing disruptions in federal funding are causing many young brain scientists to reconsider their career choice, according to leaders of the Society for Neuroscience (SfN), which represents more than 37,000 researchers and clinicians. If those scientists change fields or leave the country, SfN officials say, it could hobble the nation's efforts to understand and treat brain disorders including Alzheimer's, autism, Parkinson's and schizophrenia. "The U.S. has been a world leader in research for decades, and that leadership position is now at risk," says John Morrison, a professor at the University of California, Davis and president of SfN. Morrison expects that discussions about federal funding are likely to have a prominent place in the group's annual five-day meeting, which begins Saturday in San Diego and is expected to attract about 20,000 brain scientists. "It's hard to escape, because we're all being directly affected by it," Morrison says. In the months since President Trump took office, the National Institutes of Health and National Science Foundation have been buffeted by cuts, grant terminations, and abrupt policy changes. Federal health officials have said those measures reflect an effort to reduce fraud and waste, end support of 'woke' science, and align research with the administration's priorities. But the process has been unsettling for young scientists like Clara Zundel, a postdoctoral researcher at Wayne State University in Detroit. © 2025 npr
Keyword: Miscellaneous
Link ID: 30011 - Posted: 11.15.2025
David Adam In a town on the shores of Lake Geneva sit clumps of living human brain cells for hire. These blobs, about the size of a grain of sand, can receive electrical signals and respond to them — much as computers do. Research teams from around the world can send the blobs tasks, in the hope that they will process the information and send a signal back. Welcome to the world of wetware, or biocomputers. In a handful of academic laboratories and companies, researchers are growing human neurons and trying to turn them into functional systems equivalent to biological transistors. These networks of neurons, they argue, could one day offer the power of a supercomputer without the outsized power consumption. The results so far are limited. But keen scientists are already buying or borrowing online access to these brain-cell processors — or even investing tens of thousands of dollars to secure their own models. Some want to use these biocomputers as straightforward replacements for ordinary computers, whereas others want to use them to study how brains work. “Trying to understand biological intelligence is a very interesting scientific problem,” says Benjamin Ward-Cherrier, a robotics researcher at the University of Bristol, UK, who rents time on the Swiss brain blobs. “And looking at it from the bottom up — with simple small versions of our brain and building those up — I think is a better way of doing it than top down.” Biocomputing advocates claim that these systems could one day rival the capability of artificial intelligence and the potential of quantum computers. Other researchers who work with human neurons are more sceptical of what’s possible. And they warn that hype — and the science-fictional allure of what are sometimes labelled brain-in-a-jar systems — could even be counterproductive. If the idea that these systems possess sentience and consciousness takes hold, there could be repercussions for the research community. © 2025 Springer Nature Limited
Keyword: Learning & Memory; Robotics
Link ID: 30010 - Posted: 11.12.2025
By Roni Caryn Rabin The most stressful part of the trip for Sunny Brous came when she had to part with her wheelchair so that the flight crew could put it in the luggage hold. You just never know what shape it will be in when you get it back, she said. “I tell them, ‘Take the best care of it you can,’” she said. “Those wheels are my legs! Those wheels are my life.” Ms. Brous, 38, who lives in Hico, Texas, was one of dozens of women who converged on the Sea Crest Beach Resort on Cape Cod toward the end of summer for the gathering of a club no one really wanted to be a member of: women diagnosed in their 20s and early 30s with amyotrophic lateral sclerosis, or A.L.S. The terminal neurodegenerative disorder robs them of the ability to talk, walk, use their hands or even breathe. It has long been seen as a disease of older men, who make up a majority of patients. There is no cure. The women traveled with husbands, mothers, sisters and aides, and they did not travel light. Their packing lists included heavy BiPAP machines to help them breathe, formula for their feeding tubes, commodes, portable bidets, myriad chargers, leg braces and canes, pills and pill crushers and bottles of a medication with gold nanoparticles that was still being tested in clinical trials. Half of Ms. Brous’s suitcase was filled with party gifts for the friends she texts with throughout the year on an endless WhatsApp chat, including bags of popcorn with Texan flavors like Locked and Loaded, a Cheddar, bacon, sour cream and chives combo that you can only get in Hico. Desiree Galvez Kessler’s sister drove her, her mother and an aide up from Long Island in a van with a clunky Hoyer transfer lift in the back. Ms. Kessler — Desi to her friends — was diagnosed at 29, and has not been able to walk or speak for 10 years; the large computer tablet that she communicates with using eye-gaze technology is mounted on her wheelchair. © 2025 The New York Times Company
Keyword: ALS-Lou Gehrig's Disease
; Sexual Behavior
Link ID: 30009 - Posted: 11.12.2025
Steven Morris Some people respond to the unwanted attentions of a gull eyeing up a bag of chips or a Cornish pasty by frantically flapping their hands at the hungry bird while others beat a rapid retreat into the nearest seaside shelter. But researchers have found that a no-nonsense yell – even a relatively quiet one – may be the best way to get rid of a pesky herring gull. Animal behaviourists from the University of Exeter tried to establish the most effective method of countering a feathery threat by placing a portion of chips in a place where gulls were bound to find them. Once a gull approached, they played three recordings. First, a male voice shouting: “No, stay away, that’s my food, that’s my pasty!” Then, the same voice speaking the same words was played, followed by the “neutral” birdsong of a robin. Study finds shouting is best way to get rid of pesky seagulls – video They tested 61 gulls across nine seaside towns in Cornwall and found nearly half of the birds exposed to the shouting voice flapped away within a minute. Only 15% of the gulls exposed to the speaking male voice flew off, though the rest walked away from the food, still apparently sensing danger. In contrast, 70% of gulls exposed to the robin song stayed put. The volume of the “shouting” and “speaking” voices was the same, meaning the gulls seemed to be responding to the acoustic properties of the message rather than the loudness. © 2025 Guardian News & Media Limited
Keyword: Aggression
Link ID: 30008 - Posted: 11.12.2025
By Kevin Berger Steve Ramirez was feeling on top of the world in 2015. His father, Pedro Ramirez, had snuck into the United States in the 1980s to escape the civil war in El Salvador. Pedro Ramirez held jobs as a door-to-door salesman for tombstones, a janitor in a diner, and a technician in an animal lab. After years of ’round-the-clock work, Pedro Ramirez became a U.S. citizen. And here was his son, born in America, with a Ph.D. from the Massachusetts Institute of Technology, still in his 20s, being celebrated as one of the most exciting and promising neuroscientists in the country. Steve Ramirez had published research papers with his MIT mentor Xu Liu that reported how they used lasers to erase fear memories, spur positive memories, and even fabricate new memories in the brain. The experiments were only in mice. But they were impressive. Memories are made of networks of brain cells called engrams. The lasers targeted specific cells in engrams. Zap those cells and the whole engram was muted. The pair of neuroscientists gave a popular TED Talk on memory manipulation and were featured in international press stories that invariably mentioned the plotlines in the movies Eternal Sunshine of the Spotless Mind and Inception could be real. Bad memories could be deleted. New memories could be implanted. One night in 2013 Ramirez and Liu were celebrating the publication of one of their papers in a jazz lounge at the top of the Prudential Building in Boston. The music was grooving, and the city below glittered like stars. Ramirez thought, I’ve never been so happy and so fully alive. In early 2015, Liu, age 37, died suddenly. There had been no warning signs. Ramirez had never had a friend like Liu. Liu opened his mind to experiences in science he couldn’t have imagined. Their relationship felt organic from Ramirez’s first day in the lab. Liu joked they would always have chemistry doing science together. Grief is when the future your brain plans for is cut off. Ramirez’s thoughts of doing science without Liu became a trapdoor that landed him in a cellar of pain. © 2025 NautilusNext Inc.,
Keyword: Learning & Memory; Drug Abuse
Link ID: 30007 - Posted: 11.12.2025
By Daniel Bergner Marie began taking fluoxetine, the generic form of Prozac, when she was 15. The drug — an S.S.R.I., a selective serotonin reuptake inhibitor — was part of her treatment in an outpatient program for an eating disorder. It took its toll on her sexuality. “I was in touch with initial sparks of sexual energy relatively young,” she said, remembering crushes as far back as the age of 6 or 7. Shortly before starting on the drug, she was dazzled, from a distance, by a blue-eyed hockey player at school, tall and funny and charismatic. She recalled the fluster and fantasies he stirred. But on the medication, she felt the infatuation vanish swiftly. Listen to this article, read by Eric Jason Martin “And then,” Marie said, “I realized, Oh, I’m not developing new crushes.” She had no clue that the drug might be the cause: “I wasn’t informed about sexual side effects.” Even as the worst of the eating disorder abated, psychiatrists and family doctors told Marie and her parents that she should stay on an antidepressant. She complied, while trying and failing to escape the sexual side effects. She traded fluoxetine for other antidepressants, including Wellbutrin, a different class of antidepressant, which is sometimes prescribed to combat low libido. She’s 38 now and has been off psychiatric medication for six years. But sexual desire remains absent. “For me it’s just an empty dark space,” she said. “There’s nothing there.” Marie told me she has PSSD, post-S.S.R.I. sexual dysfunction, a loss of sexuality that persists after the drug is no longer being taken. It’s a controversial designation, because while the sexual side effects of S.S.R.I.s are well established — depleted or deadened desire, erectile dysfunction for men, elusive arousal for women, delayed and dulled orgasms or the inability to reach orgasm at all — the general assumption is that they subside completely when the drug is no longer in your system. Some psychiatrists suspect that PSSD is actually a result not of repercussions from the drugs but of the problem that led the patient to be medicated in the first place. Depression itself can stymie sexuality. So can anxiety, the other leading reason patients are prescribed S.S.R.I.s. © 2025 The New York Times Company
Keyword: Depression; Sexual Behavior
Link ID: 30006 - Posted: 11.12.2025
Katie Kavanagh Speaking multiple languages could slow down brain ageing and help to prevent cognitive decline, a study of more than 80,000 people has found. The work, published in Nature Aging on 10 November1, suggests that people who are multilingual are half as likely to show signs of accelerated biological ageing as are those who speak just one language. “We wanted to address one of the most persistent gaps in ageing research, which is if multilingualism can actually delay ageing,” says study co-author Agustín Ibáñez, a neuroscientist at the Adolfo Ibáñez University in Santiago, Chile. Previous research in this area has suggested that speaking multiple languages can improve cognitive functions such memory and attention2, which boosts brain health as we get older. But many of these studies rely on small sample sizes and use unreliable methods of measuring ageing, which leads to results that are inconsistent and not generalizable. “The effects of multilingualism on ageing have always been controversial, but I don’t think there has been a study of this scale before, which seems to demonstrate them quite decisively,” says Christos Pliatsikas, a cognitive neuroscientist at the University of Reading, UK. The paper’s results could “bring a step change to the field”, he adds. They might also “encourage people to go out and try to learn a second language, or keep that second language active”, says Susan Teubner-Rhodes, a cognitive psychologist at Auburn University in Alabama. © 2025 Springer Nature Limited
Keyword: Language; Alzheimers
Link ID: 30005 - Posted: 11.12.2025


.gif)

