Links for Keyword: Learning & Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1203

Anil Ananthaswamy In the winter of 2011, Daniel Yamins, a postdoctoral researcher in computational neuroscience at the Massachusetts Institute of Technology, would at times toil past midnight on his machine vision project. He was painstakingly designing a system that could recognize objects in pictures, regardless of variations in size, position and other properties — something that humans do with ease. The system was a deep neural network, a type of computational device inspired by the neurological wiring of living brains. “I remember very distinctly the time when we found a neural network that actually solved the task,” he said. It was 2 a.m., a tad too early to wake up his adviser, James DiCarlo, or other colleagues, so an excited Yamins took a walk in the cold Cambridge air. “I was really pumped,” he said. It would have counted as a noteworthy accomplishment in artificial intelligence alone, one of many that would make neural networks the darlings of AI technology over the next few years. But that wasn’t the main goal for Yamins and his colleagues. To them and other neuroscientists, this was a pivotal moment in the development of computational models for brain functions. DiCarlo and Yamins, who now runs his own lab at Stanford University, are part of a coterie of neuroscientists using deep neural networks to make sense of the brain’s architecture. In particular, scientists have struggled to understand the reasons behind the specializations within the brain for various tasks. They have wondered not just why different parts of the brain do different things, but also why the differences can be so specific: Why, for example, does the brain have an area for recognizing objects in general but also for faces in particular? Deep neural networks are showing that such specializations may be the most efficient way to solve problems. All Rights Reserved © 2020

Related chapters from BN: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 27562 - Posted: 10.31.2020

Jon Hamilton If you fall off a bike, you'll probably end up with a cinematic memory of the experience: the wind in your hair, the pebble on the road, then the pain. That's known as an episodic memory. And now researchers have identified cells in the human brain that make this sort of memory possible, a team reports in the journal Proceedings of the National Academy of Sciences. The cells are called time cells, and they place a sort of time stamp on memories as they are being formed. That allows us to recall sequences of events or experiences in the right order. "By having time cells create this indexing across time, you can put everything together in a way that makes sense," says Dr. Bradley Lega, the study's senior author and a neurosurgeon at the University of Texas Southwestern Medical Center in Dallas. Time cells were discovered in rodents decades ago. But the new study is critical because "the final arbitrator is always the human brain," says Dr. György Buzsáki, Biggs Professor of Neuroscience at New York University. Buzsáki is not an author of the study but did edit the manuscript. Lega and his team found the time cells by studying the brains of 27 people who were awaiting surgery for severe epilepsy. As part of their pre-surgical preparation, these patients had electrodes placed in the hippocampus and another area of the brain involved in navigation, memory and time perception. In the experiment, the patients studied sequences of 12 or 15 words that appeared on a laptop screen during a period of about 30 seconds. Then, after a break, they were asked to recall the words they had seen. © 2020 npr

Related chapters from BN: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 27561 - Posted: 10.31.2020

By Stephani Sutherland Many of the symptoms experienced by people infected with SARS-CoV-2 involve the nervous system. Patients complain of headaches, muscle and joint pain, fatigue and “brain fog,” or loss of taste and smell—all of which can last from weeks to months after infection. In severe cases, COVID-19 can also lead to encephalitis or stroke. The virus has undeniable neurological effects. But the way it actually affects nerve cells still remains a bit of a mystery. Can immune system activation alone produce symptoms? Or does the novel coronavirus directly attack the nervous system? Some studies—including a recent preprint paper examining mouse and human brain tissue—show evidence that SARS-CoV-2 can get into nerve cells and the brain. The question remains as to whether it does so routinely or only in the most severe cases. Once the immune system kicks into overdrive, the effects can be far-ranging, even leading immune cells to invade the brain, where they can wreak havoc. Some neurological symptoms are far less serious yet seem, if anything, more perplexing. One symptom—or set of symptoms—that illustrates this puzzle and has gained increasing attention is an imprecise diagnosis called “brain fog.” Even after their main symptoms have abated, it is not uncommon for COVID-19 patients to experience memory loss, confusion and other mental fuzziness. What underlies these experiences is still unclear, although they may also stem from the body-wide inflammation that can go along with COVID-19. Many people, however, develop fatigue and brain fog that lasts for months even after a mild case that does not spur the immune system to rage out of control. Another widespread symptom called anosmia, or loss of smell, might also originate from changes that happen without nerves themselves getting infected. Olfactory neurons, the cells that transmit odors to the brain, lack the primary docking site, or receptor, for SARS-CoV-2, and they do not seem to get infected. Researchers are still investigating how loss of smell might result from an interaction between the virus and another receptor on the olfactory neurons or from its contact with nonnerve cells that line the nose. © 2020 Scientific American,

Related chapters from BN: Chapter 9: Hearing, Balance, Taste, and Smell; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 13: Memory and Learning
Link ID: 27547 - Posted: 10.24.2020

Keith A. Trujillo1, Alfredo Quiñones-Hinojosa2, Kenira J. Thompson3 Joe Louis Martinez Jr. died on 29 August at the age of 76. In addition to making extraordinary contributions to the fields of neurobiology and Chicano psychology, Joe was a tireless advocate of diversity, equity, and inclusion in the sciences. He established professional development programs for individuals from underrepresented groups and provided lifelong mentoring as they pursued careers in science and academia. Joe was passionately devoted to expanding opportunities in the sciences well before diversity became a visible goal for scientific organizations and academic institutions. Born in Albuquerque, New Mexico, on 1 August 1944, Joe received his bachelor's degree in psychology from the University of San Diego in 1966; his master's in experimental psychology from New Mexico Highlands University in 1968; and his Ph.D. in physiological psychology from the University of Delaware in 1971. His faculty career began in 1972 at California State University, San Bernardino (CSUSB), shortly after the campus was established. He later completed postdocs in the laboratory of neurobiologist James McGaugh at the University of California, Irvine, and with neurobiologist Floyd Bloom at the Salk Institute for Biological Studies in San Diego, California. The University of California, Berkeley, recruited Joe in 1982, and he served as a professor as well as the area head of biopsychology and faculty assistant to the vice chancellor for affirmative action. As the highest-ranking Hispanic faculty member in the University of California system, Joe used his voice to help others from underrepresented groups. However, he felt that he could have a greater impact on diversity in the sciences by helping to build a university with a high concentration of Hispanic students, so in 1995 he moved to the University of Texas, San Antonio (UTSA). He began as a professor of biology and went on to assume a range of leadership roles, including director of the Cajal Neuroscience Institute. At UTSA, he worked with colleagues to obtain nearly $18 million in funding for neuroscience research and education. In 2012, he moved to the University of Illinois at Chicago where he served as professor and psychology department head until his retirement in 2016. At each institution, he embraced the opportunity to provide guidance and mentoring to innumerable students, faculty, and staff. © 2020 American Association for the Advancement of Science.

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System; Chapter 13: Memory and Learning
Link ID: 27523 - Posted: 10.16.2020

By Bret Stetka The human brain is hardwired to map our surroundings. This trait is called spatial memory—our ability to remember certain locations and where objects are in relation to one another. New findings published today in Scientific Reports suggest that one major feature of our spatial recall is efficiently locating high-calorie, energy-rich food. The study’s authors believe human spatial memory ensured that our hunter-gatherer ancestors could prioritize the location of reliable nutrition, giving them an evolutionary leg up. In the study, researchers at Wageningen University & Research in the Netherlands observed 512 participants follow a fixed path through a room where either eight food samples or eight food-scented cotton pads were placed in different locations. When they arrived at a sample, the participants would taste the food or smell the cotton and rate how much they liked it. Four of the food samples were high-calorie, including brownies and potato chips, and the other four, including cherry tomatoes and apples, were low in calories—diet foods, you might call them. After the taste test, the participants were asked to identify the location of each sample on a map of the room. They were nearly 30 percent more accurate at mapping the high-calorie samples versus the low-calorie ones, regardless of how much they liked those foods or odors. They were also 243 percent more accurate when presented with actual foods, as opposed to the food scents. “Our main takeaway message is that human minds seem to be designed for efficiently locating high-calorie foods in our environment,” says Rachelle de Vries, a Ph.D. candidate in human nutrition and health at Wageningen University and lead author of the new paper. De Vries feels her team’s findings support the idea that locating valuable caloric resources was an important and regularly occurring problem for early humans weathering the climate shifts of the Pleistocene epoch. “Those with a better memory for where and when high-calorie food resources would be available were likely to have a survival—or fitness—advantage,” she explains. © 2020 Scientific American

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 27518 - Posted: 10.10.2020

R. Stanley Williams For the first time, my colleagues and I have built a single electronic device that is capable of copying the functions of neuron cells in a brain. We then connected 20 of them together to perform a complicated calculation. This work shows that it is scientifically possible to make an advanced computer that does not rely on transistors to calculate and that uses much less electrical power than today’s data centers. Our research, which I began in 2004, was motivated by two questions. Can we build a single electronic element – the equivalent of a transistor or switch – that performs most of the known functions of neurons in a brain? If so, can we use it as a building block to build useful computers? Neurons are very finely tuned, and so are electronic elements that emulate them. I co-authored a research paper in 2013 that laid out in principle what needed to be done. It took my colleague Suhas Kumar and others five years of careful exploration to get exactly the right material composition and structure to produce the necessary property predicted from theory. Kumar then went a major step further and built a circuit with 20 of these elements connected to one another through a network of devices that can be programmed to have particular capacitances, or abilities to store electric charge. He then mapped a mathematical problem to the capacitances in the network, which allowed him to use the device to find the solution to a small version of a problem that is important in a wide range of modern analytics. © 2010–2020, The Conversation US, Inc.

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 3: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 27512 - Posted: 10.07.2020

Ian Sample Science editor Brain scans of cosmonauts have revealed the first clear evidence of how the organ adapts to the weird and often sickness-inducing challenge of moving around in space. Analysis of scans taken from 11 cosmonauts, who spent about six months each in orbit, found increases in white and grey matter in three brain regions that are intimately involved in physical movement. The changes reflect the “neuroplasticity” of the brain whereby neural tissue, in this case the cells that govern movement or motor activity, reconfigures itself to cope with the fresh demands of life in orbit. “With the techniques we used, we can clearly see there are microstructural changes in three major areas of the brain that are involved in motor processing,” said Steven Jillings, a neuroscientist at the University of Antwerp in Belgium. Visitors to the International Space Station face a dramatic shock to the system for a whole host of reasons, but one of the most striking is weightlessness. While the space station and its occupants are firmly in the grip of gravity – they are constantly falling around the planet – the body must recalibrate its senses to cope with the extreme environment. Images of the cosmonauts’ brains, taken before and after missions lasting on average 171 days, and again seven months later, confirmed that the cerebrospinal fluid that bathes the brain redistributes itself in orbit, pushing the brain up towards the top of the skull. This also expands fluid-filled cavities called ventricles, which may be linked to a loss of sharpness in the cosmonauts’ vision, a condition called spaceflight-associated neuro-ocular syndrome or Sans. © 2020 Guardian News & Media Limited

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 5: The Sensorimotor System
Link ID: 27453 - Posted: 09.05.2020

— Joe Louis Martinez Jr., founder and former director of UTSA’s Neurosciences Institute, passed away on August 29 after a long battle with liver cancer. He was 76. Martinez was born in Albuquerque, New Mexico, on August 1, 1944. He received his B.A. from the University of California, San Diego; graduated with his M.S. in experimental psychology from New Mexico Highlands University in 1968; and earned his Ph.D. in physiological psychology in 1971 from the University of Delaware. He completed his postdoctoral training at the University of California, Irvine, and the Salk Institute in San Diego. Martinez served as a professor in the Department of Psychology at the University of California, Berkeley, from 1982 to 1995. During this time he led an internationally recognized research laboratory and departed as professor emeritus. In 1995 he joined UTSA as the Ewing Halsell Distinguished Chair in psychology. From 1995 to 2012 he was a beloved professor who founded and directed the Cajal Neuroscience Research Center, now known as the UTSA Neurosciences Institute. He oversaw the design and construction of the Biosciences Building, UTSA’s first research building. Each floor in the BSB contains tiles representing the neuroanatomical drawings of Santiago Ramon y Cajal. During his tenure at UTSA, Martinez brought over $15 million in grant funding to the university. In 2013 he moved to the University of Illinois at Chicago to become the chair of the department of psychology. He retired in 2016. © 2020 The University of Texas at San Antonio

Related chapters from BN: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 27450 - Posted: 09.05.2020

By Chimamanda Ngozi Adichie My daughter and I were playing tag, or a kind of tag. Before that, we traced the letter P and we danced to James Brown’s “I feel good,” a song she selected from the iPod. We laughed as we danced, she with a natural rhythm striking for a 4-year-old, and I with my irretrievable gracelessness. Next on our plan was “Sesame Street.” It was about 2 p.m. on May 28. A day complacent with the promise of no surprises, like all the other days of the lockdown, shrunken days with shriveled routines. “When coronavirus is over,” my daughter often said, words filled with yearning for her preschool, her friends, her swimming lessons. And I, amid snatches of joy and discovery, often felt bored, and then guilty for feeling boredom, in this expanded boundless role of parent-playmate. My daughter picked up a green balloon pump, squirted the air at me, and ran off, around the kitchen counter. When I caught her, squealing, it was her turn to chase me. I was wearing white slippers, from some hotel somewhere, back when international travel was normal. They felt soft and thin-soled. I recall all these clearly, because of all the things I will be unable to recall later. I turned away from the kitchen to make the chase longer and something happened. I slipped or I tripped or my destiny thinned and I fell and hit my head on the hardwood floor. At the beginning of the stay-at-home order, plagued by amorphous anxieties, I taught my daughter how to call my doctor husband at work. Just in case. My daughter says that after I fell I told her, “Call Papa.” My husband says I spoke coherently. I told him that I fell and that the pain in my head was “excruciating,” and when I said “excruciating,” I seemed to wince. He says he asked my daughter to get me the ice pack in the freezer and that I said, “Thank you, baby,” when she gave it to me. I do not remember any of this.

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 15: Language and Lateralization
Link ID: 27412 - Posted: 08.11.2020

By Laura Sanders Exercise’s power to boost the brain might require a little help from the liver. A chemical signal from the liver, triggered by exercise, helps elderly mice keep their brains sharp, suggests a study published in the July 10 Science. Understanding this liver-to-brain signal may help scientists develop a drug that benefits the brain the way exercise does. Lots of studies have shown that exercise helps the brain, buffering the memory declines that come with old age, for instance. Scientists have long sought an “exercise pill” that could be useful for elderly people too frail to work out or for whom exercise is otherwise risky. “Can we somehow get people who can’t exercise to have the same benefits?” asks Saul Villeda, a neuroscientist at the University of California, San Francisco. Villeda and colleagues took an approach similar to experiments that revealed the rejuvenating effects of blood from young mice (SN: 5/5/14). But instead of youthfulness, the researchers focused on fitness. The researchers injected sedentary elderly mice with plasma from elderly mice that had voluntarily run on wheels over the course of six weeks. After eight injections over 24 days, the sedentary elderly mice performed better on memory tasks, such as remembering where a hidden platform was in a pool of water, than elderly mice that received injections from sedentary mice. Comparing the plasma of exercised mice with that of sedentary mice showed an abundance of proteins produced by the liver in mice that ran on wheels. The researchers closely studied one of these liver proteins produced in response to exercise, called GPLD1. GPLD1 is an enzyme, a type of molecular scissors. It snips other proteins off the outsides of cells, releasing those proteins to go do other jobs. Targeting these biological jobs with a molecule that behaves like GPLD1 might be a way to mimic the brain benefits of exercise, the researchers suspect. © Society for Science & the Public 2000–2020.

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 5: The Sensorimotor System
Link ID: 27358 - Posted: 07.11.2020

Jason Bruck Human actions have taken a steep toll on whales and dolphins. Some studies estimate that small whale abundance, which includes dolphins, has fallen 87% since 1980 and thousands of whales die from rope entanglement annually. But humans also cause less obvious harm. Researchers have found changes in the stress levels, reproductive health and respiratory health of these animals, but this valuable data is extremely hard to collect. To better understand how people influence the overall health of dolphins, my colleagues and I at Oklahoma State University’s Unmanned Systems Research Institute are developing a drone to collect samples from the spray that comes from their blowholes. Using these samples, we will learn more about these animals’ health, which can aid in their conservation. Today, researchers wanting to measure wild dolphins’ health primarily use remote biopsy darting – where researchers use a small dart to collect a sample of tissue – or handle the animals in order to collect samples. These methods don’t physically harm the animals, but despite precautions, they can be disruptive and stressful for dolphins. Additionally, this process is challenging, time-consuming and expensive. My current research focus is on dolphin perception – how they see, hear and sense the world. Using my experience, I am part of a team building a drone specifically designed to be an improvement over current sampling methods, both for dolphins and the researchers. Our goal is to develop a quiet drone that can fly into a dolphin’s blind spot and collect samples from the mucus that is mixed with water and air sprayed out of a dolphin’s blowhole when they exhale a breath. This is called the blow. Dolphins would experience less stress and teams could collect more samples at less expense. © 2010–2020, The Conversation US, Inc.

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 27342 - Posted: 07.02.2020

By Jack J. Lee For some bottlenose dolphins, finding a meal may be about who you know. Dolphins often learn how to hunt from their mothers. But when it comes to at least one foraging trick, Indo-Pacific bottlenose dolphins in Western Australia’s Shark Bay pick up the behavior from their peers, researchers argue in a report published online June 25 in Current Biology. While previous studies have suggested that dolphins learn from peers, this study is the first to quantify the importance of social networks over other factors, says Sonja Wild, a behavioral ecologist at the University of Konstanz in Germany. Cetaceans — dolphins, whales and porpoises — are known for using clever strategies to round up meals. Humpback whales (Megaptera novaeangliae) off Alaska sometimes use their fins and circular bubble nets to catch fish (SN: 10/15/19). At Shark Bay, Indo-Pacific bottlenose dolphins (Tursiops aduncus) use sea sponges to protect their beaks while rooting for food on the seafloor, a strategy the animals learn from their mothers (SN: 6/8/05). These Shark Bay dolphins also use a more unusual tool-based foraging method called shelling. A dolphin will trap underwater prey in a large sea snail shell, poke its beak into the shell’s opening, lift the shell above the water’s surface and shake the contents into its mouth. © Society for Science & the Public 2000–2020.

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 27328 - Posted: 06.26.2020

Natalie Dombois for Quanta Magazine It’s not surprising that the fruit fly larva in the laboratory of Jimena Berni crawls across its large plate of agar in search of food. “A Drosophila larva is either eating or not eating, and if it’s not eating, it wants to eat,” she said. The surprise is that this larva can search for food at all. Owing to a suite of genetic tricks performed by Berni, it has no functional brain. In fact, the systems that normally relay sensations of touch and feedback from its muscles have also been shut down. Berni, an Argentinian neuroscientist whose investigations of fruit fly nervous systems recently earned her a group leader position at the University of Sussex, is learning what the tiny cluster of neurons that directly controls the larva’s muscles does when it’s allowed to run free, entirely without input from the brain or senses. How does the animal forage when it’s cut off from information about the outside world? The answer is that it moves according to a very particular pattern of random movements, a finding that thrilled Berni and her collaborator David Sims, a professor of marine ecology at the Marine Biological Association in Plymouth, U.K. For in its prowl for food, this insensate maggot behaves exactly like an animal Sims has studied for more than 25 years — a shark. In neuroscience, the usual schema for considering behavior has it that the brain receives inputs, combines them with stored information, then decides what to do next. This corresponds to our own intuitions and experiences, because we humans are almost always responding to what we sense and remember. But for many creatures, useful information isn’t always available, and for them something else may also be going on. When searching their environment, sharks and a diverse array of other species, now including fruit fly larvae, sometimes default to the same pattern of movement, a specific type of random motion called a Lévy walk. All Rights Reserved © 2020

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 27301 - Posted: 06.13.2020

Ruth Williams With their tiny brains and renowned ability to memorize nectar locations, honeybees are a favorite model organism for studying learning and memory. Such research has indicated that to form long-term memories—ones that last a day or more—the insects need to repeat a training experience at least three times. By contrast, short- and mid-term memories that last seconds to minutes and minutes to hours, respectively, need only a single learning experience. Exceptions to this rule have been observed, however. For example, in some studies, bees formed long-lasting memories after a single learning event. Such results are often regarded as circumstantial anomalies, and the memories formed are not thought to require protein synthesis, a molecular feature of long-term memories encoded by repeated training, says Martin Giurfa of the University of Toulouse. But the anomalous findings, together with research showing that fruit flies and ants can form long-term memories after single experiences, piqued Giurfa’s curiosity. Was it possible that honeybees could reliably do the same, and if so, what molecular mechanisms were required? Giurfa reasoned that the ability to form robust memories might depend on the particular type of bee and the experience. Within a honeybee colony, there are nurses, who clean the hive and feed the young; guards, who patrol and protect the hive; and foragers, who search for nectar. Whereas previous studies have tested bees en masse, Giurfa and his colleagues focused on foragers, tasking them with remembering an experience relevant to their role: an odor associated with a sugary reward. © 1986–2020 The Scientist.

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 15: Language and Lateralization
Link ID: 27272 - Posted: 06.01.2020

Diana Kwon What if you could boost your brain’s processing capabilities simply by sticking electrodes onto your head and flipping a switch? Berkeley, California–based neurotechnology company Humm has developed a device that it claims serves that purpose. Their “bioelectric memory patch” is designed to enhance working memory—the type of short-term memory required to temporarily hold and process information—by noninvasively stimulating the brain. In recent years, neurotechnology companies have unveiled direct-to-consumer (DTC) brain stimulation devices that promise a range of benefits, including enhancing athletic performance, increasing concentration, and reducing depression. Humm’s memory patch, which resembles a large, rectangular Band-Aid, is one such product. Users can stick the device to their forehead and toggle a switch to activate it. Electrodes within the patch generate transcranial alternating current stimulation (tACS), a method of noninvasively zapping the brain with oscillating waves of electricity. The company recommends 15 minutes of stimulation to give users up to “90 minutes of boosted learning” immediately after using the device. The product is set for public release in 2021. Over the last year or so, Humm has generated much excitement among investors, consumers, and some members of the scientific community. In addition to raising several million dollars in venture capital funding, the company has drawn interest both from academic research labs and from the United States military. According to Humm cofounder and CEO Iain McIntyre, the US Air Force has ordered approximately 1,000 patches to use in a study at their training academy that is set to start later this year. © 1986–2020 The Scientist

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 27269 - Posted: 05.29.2020

Alejandra Manjarrez The brain is a master of forming patterns, even when it involves events occurring at different times. Take the phenomenon of trace fear conditioning—scientists can get an animal to notice the relationship between a neutral stimulus and an aversive stimulus separated by a temporal chasm (the trace) of a few or even tens of seconds. While it’s a well-established protocol in neuroscience and psychology labs, the mechanism for how the brain bridges the time gap between two related stimuli in order to associate them is “one of the most enigmatic and highly investigated” questions, says Columbia University neuroscientist Attila Losonczy. If the first stimulus is finished, the information about its presence and identity “should be somehow maintained through some neuronal mechanism,” he explains, so it can be associated with the second stimulus coming later. Losonczy and his colleagues have recently investigated how this might occur in a study published May 8 in Neuron. They measured the neural activity in the hippocampal CA1 region of the brain—known to be crucial for the formation of memories—of mice exposed to trace fear conditioning. The team found that associating the two events separated by time involved the activation of a subset of neurons that fired sparsely every time mice received the first stimulus and during the time gap that followed. The pattern emerged only after mice had learned to associate both stimuli. The study highlights “the important question of how we link memories across time,” says Denise Cai, a neuroscientist at the Icahn School of Medicine at Mount Sinai who was not involved in the work. Studying the basic mechanisms of temporal association is critical for understanding how it goes wrong in disorders such as post-traumatic stress disorder (PTSD) or Alzheimer’s disease, she says. © 1986–2020 The Scientist

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 27254 - Posted: 05.18.2020

Sukanya Charuchandra Even for Darold Treffert, an expert in the study of savants who has met around 300 people with conditions such as autism who possess extraordinary mental abilities, Kim Peek stood out from the pack. Treffert first spoke with Peek on the phone in the 1980s. Peek asked Treffert for his date of birth and then proceeded to recount historical events that had taken place on that day and during that week, Treffert says. This display of recall left Treffert with no doubt that Peek was a savant. Peek’s abilities dazzled screenwriter Barry Morrow when the two men met in 1984 at a committee meeting of the Association for Retarded Citizens. Morrow went on to pen the script for the 1988 film Rain Man, basing Dustin Hoffman’s character on Peek. The concept of savant syndrome dates back to 1887, when physician J. Langdon Down coined the term “idiot savant” for persons who showed low IQ but superlative artistic, musical, mathematical, or other skills. (At the time, the word “idiot” denoted low IQ and was not considered insulting.) Nine months after Peek was born in 1951, a doctor told his family “that Kim was retarded, and they should put him in an institution and forget about him,” says Treffert. “Another doctor suggested a lobotomy, which fortunately they didn’t carry out.” Instead, his parents raised him at home in Utah where he raced through books, memorizing them. Despite his feats of memory and other abilities, such as performing impressive calculations in his head, Peek never learned to carry out many everyday tasks, such as dressing himself. MRIs would later reveal that Peek had abnormalities in the left hemisphere of his brain and was missing a corpus callosum, which controls communication between the two cerebral hemispheres. © 1986–2020 The Scientist

Related chapters from BN: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 27251 - Posted: 05.18.2020

Diana Kwon As Earth rotates around its axis, the organisms that inhabit its surface are exposed to daily cycles of darkness and light. In animals, light has a powerful influence on sleep, hormone release, and metabolism. Work by Takaomi Sakai, a neuroscientist at Tokyo Metropolitan University, and his team suggests that light may also be crucial for forming and maintaining long-term memories. The puzzle of how memories persist in the brain has long been of interest to Sakai. Researchers had previously demonstrated, in both rodents and flies, that the production of new proteins is necessary for maintaining long-term memories, but Sakai wondered how this process persisted over several days given cells’ molecular turnover. Maybe, he thought, an environmental stimulus, such as the light-dark cycles, periodically triggered protein production to enable memory formation and storage. Sakai and his colleagues conducted a series of experiments to see how constant darkness would affect the ability of Drosophila melanogaster to form long-term memories. Male flies exposed to light after interacting with an unreceptive female showed reduced courtship behaviors toward new female mates several days later, indicating they had remembered the initial rejection. Flies kept in constant darkness, however, continued their attempts to copulate. The team then probed the molecular mechanisms of these behaviors and discovered a pathway by which light activates cAMP response element-binding protein (CREB)—a transcription factor previously identified as important for forming long-term memories—within certain neurons found in the mushroom bodies, the memory center in fly brains. © 1986–2020 The Scientist.

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 10: Biological Rhythms and Sleep
Link ID: 27248 - Posted: 05.16.2020

Ashley Yeager Nearly seven years ago, Sheena Josselyn and her husband Paul Frankland were talking with their two-year-old daughter and started to wonder why she could easily remember what happened over the last day or two but couldn’t recall events that had happened a few months before. Josselyn and Frankland, both neuroscientists at the Hospital for Sick Children Research Institute in Toronto, suspected that maybe neurogenesis, the creation of new neurons, could be involved in this sort of forgetfulness. In humans and other mammals, neurogenesis happens in the hippocampus, a region of the brain involved in learning and memory, tying the generation of new neurons to the process of making memories. Josselyn and Frankland knew that in infancy, the brain makes a lot of new neurons, but that neurogenesis slows with age. Yet youngsters have more trouble making long-term memories than adults do, a notion that doesn’t quite jibe with the idea that the principal function of neurogenesis is memory formation. To test the connection between neurogenesis and forgetting, the researchers put mice in a box and shocked their feet with an electric current, then returned the animals to their home cages and either let them stay sedentary or had them run on a wheel, an activity that boosts neurogenesis. Six weeks later, the researchers put the mice back in the box where they had received the shocks. There, the sedentary mice froze in fear, anticipating a shock, but the mice that had run on a wheel didn’t show signs of anxiety. It was as if the wheel-running mice had forgotten they’d been shocked before. © 1986–2020 The Scientist.

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 11: Emotions, Aggression, and Stress
Link ID: 27245 - Posted: 05.14.2020

Catherine Offord No matter how he looked at the data, Albert Tsao couldn’t see a pattern. Over several weeks in 2007 and again in 2008, the 19-year-old undergrad trained rats to explore a small trial arena, chucking them pieces of tasty chocolate cereal by way of encouragement. He then recorded the activity of individual neurons in the animals’ brains as they scampered, one at a time, about that same arena. He hoped that the experiment would offer clues as to how the rats’ brains were forming memories, but “the data that it gave us was confusing,” he says. There wasn’t any obvious pattern to the animals’ neural output at all. Then enrolled at Harvey Mudd College in California, Tsao was doing the project as part of a summer internship at the Kavli Institute for Systems Neuroscience in Norway, in a lab that focused on episodic memory—the type of long-term memory that allows humans and other mammals to recall personal experiences (or episodes), such as going on a first date or spending several minutes searching for chocolate. Neuroscientists suspected that the brain organizes these millions of episodes partly according to where they took place. The Kavli Institute’s Edvard Moser and May-Britt Moser had recently made a breakthrough with the discovery of “grid cells,” neurons that generate a virtual spatial map of an area, firing whenever the animal crosses the part of the map that that cell represents. These cells, the Mosers reported, were situated in a region of rats’ brains called the medial entorhinal cortex (MEC) that projects many of its neurons into the hippocampus, the center of episodic memory formation. Inspired by the findings, Tsao had opted to study a region right next to the MEC called the lateral entorhinal cortex (LEC), which also feeds into the hippocampus. © 1986–2020 The Scientist

Related chapters from BN: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 27232 - Posted: 05.05.2020