Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By Daisy Grewal How good are you at multi-tasking? The way you answer that question may tell you more than you think. According to recent research, the better people think they are at multitasking, the worse they actually are at it. And the more that you think you are good at it, the more likely you are to multi-task when driving. Maybe the problem of distracted driving has less to do with the widespread use of smartphones and more to do with our inability to recognize our own limits. A study by David Sanbonmatsu and his colleagues looked at the relationship between people’s beliefs about their own multi-tasking ability and their likelihood of using a cell phone when driving. Importantly, the study also measured people’s actual multi-tasking abilities. The researchers found that people who thought they were good at multi-tasking were actually the worst at it. They were also the most likely to report frequently using their cell phones when driving. This may help explain why warning people about the dangers of cell phone use when driving hasn’t done much to curb the behavior. The study is another reminder that we are surprisingly poor judges of our own abilities. Research has found that people overestimate their own qualities in a number of areas including intelligence, physical health, and popularity. Furthermore, the worse we are at something, the more likely we may be to judge ourselves as competent at it. Psychologists David Dunning and Justin Kruger have studied how incompetence, ironically, is often the result of not being able to accurately judge one’s own incompetence. In one study, they found that people who scored the lowest on tests of grammar and logic were the most likely to overestimate their own abilities. The reverse was also true: the more competent people were most likely to underestimate their abilities. And multi-tasking may be just yet another area where incompetence breeds over-confidence. © 2013 Scientific American
Keyword: Attention
Link ID: 18880 - Posted: 11.06.2013
by Sarah Zielinski In the United States, you’re rarely far from a road. And as you get closer to one, or other bits of human infrastructure, bird populations decline. But are the birds avoiding our cars or the noises produced by them? Noise might be a big factor, scientists have reasoned, because they’ve seen declines in bird populations near noisy natural gas compressor sites. It turns out that the sound of cars driving down a road is enough to deter many bird species from an area. Researchers from Boise State University in Idaho created a “phantom road” at a site in the Boise Foothills that is a stopover for migratory birds in the fall. They put up 15 speakers in Douglas fir trees and played recorded sounds of a road at intervals of four days — four days on, four days off. They then counted birds at three locations along their phantom road and three locations nearby where the road noises couldn’t be heard. The scientists spotted lots of birds during their study — more than 8,000 detections and 59 species. The birds they saw changed as the fall progressed, which was natural because the various species of migrating birds hit the stopover point at different times. But all that variation was good for the experiment, the researchers say, because it helped even out any fluctuations they might have seen from site to site and from noise-on to noise-off intervals, letting the researchers tease out the effects of the road noise. © Society for Science & the Public 2000 - 2013.
Keyword: Hearing; Animal Migration
Link ID: 18879 - Posted: 11.06.2013
By Joss Fong Sleep is such a large feature of our lives that it’s easy to forget how utterly weird it is. Every night, if we’re lucky, our brain cells switch into a synchronized pattern, putting our lives and minds on hold for hours. Sleep scientists have yet to fully explain why we spend a third of our lives in this state, let alone why we use some of that time wandering through vivid, nonsensical and sometimes upsetting hallucinations. A recent study in Science suggests that sleep may serve to wash the brain of harmful waste products that build up during the day. Medical researchers observed an increased flow of cerebrospinal fluid in mice that were sleeping or anesthetized. This fluid carries away waste proteins, including one linked to Alzheimer’s disease. The findings join other theories on the function of sleep, some of which I discuss above, in our latest Instant Egghead video. © 2013 Scientific American
Keyword: Sleep
Link ID: 18878 - Posted: 11.06.2013
By Brian Switek I’m going to ruin sea otters for you. Or at least I’m going to tarnish their reputation as some of the most charming little beasties in the seas. For as cute as they are while intertwining paws at an aquarium, frolicking among the wafting fronds of California kelp forests, or smashing sea urchins open with stones, some sea otters have developed the disturbing habit of humping and drowning baby seals. When I first heard about the behavior from a marine biologist friend of mine, I didn’t quite believe sea otters could be so diabolical. Maybe the bad behavior was just a rumor. But no, the strange sea otter attacks on baby seals are a reality and have even made their way into the technical literature. In 2010, California Department of Fish and Game biologist Heather Harris and colleagues reported 19 individual cases of male sea otters trying to mate with, and often fatally injuring, harbor seal pups in the Monterey Bay, Calif. area between 2000 and 2002 alone. Delivered in the scientific deadpan required of such papers, the Aquatic Mammals report attributes the incidents to three male sea otters “observed harassing, dragging, guarding, and copulating with harbor seals,” persisting for up to seven days after the otters killed the objects of their misguided advances. The ordeal must have been horrific for the seals. The victims that were necropsied by veterinarians had lesions around the nose, eyes, flippers, and genitals, including perforations in the vaginal and rectal tracts. A painful and confusing end for the poor pups. © 2013 The Slate Group, LLC.
Keyword: Sexual Behavior; Aggression
Link ID: 18877 - Posted: 11.06.2013
Toronto Mayor Rob Ford said Tuesday that he had smoked crack cocaine, probably "in one of my drunken stupors," about a year ago. Here’s a look at the drug that can rapidly produce a high, some of the ways it can affect an individual’s behaviour and health, its legal status and other instances of high-profile use. What is crack cocaine? Crack cocaine is a chemically processed form of cocaine, a stimulant drug made into a white powder from leaves of coca bushes growing in the Andes Mountains of South America. To make crack, the white crystalline cocaine powder — cocaine hydrochloride — is dissolved and boiled in a mixture of water and ammonia or baking soda. When that cools into a solid substance, small pieces, often called "rocks," are formed, according to a 2009 RCMP report on "The Illicit Drug Situation in Canada." How is it used? Cocaine is injected or snorted. Crack cocaine is usually smoked, often in a glass pipe, although it can also be injected. The word "crack" comes from the distinctive sound heard when the substance heats up. When crack is heated and inhaled, the vapours are absorbed through the lungs and into the bloodstream, according to the U.S. National Institute on Drug Abuse. A high from smoking crack could last five to 10 minutes, says the institute, compared to 15 to 30 minutes for a high from snorting cocaine. © CBC 2013
Keyword: Drug Abuse
Link ID: 18876 - Posted: 11.06.2013
By Ferris Jabr When Shirley was in her mid-20s she and some friends road-tripped to Las Vegas on a lark. That was the first time she gambled. Around a decade later, while working as an attorney on the East Coast, she would occasionally sojourn in Atlantic City. By her late 40s, however, she was skipping work four times a week to visit newly opened casinos in Connecticut. She played blackjack almost exclusively, often risking thousands of dollars each round—then scrounging under her car seat for 35 cents to pay the toll on the way home. Ultimately, Shirley bet every dime she earned and maxed out multiple credit cards. “I wanted to gamble all the time,” she says. “I loved it—I loved that high I felt.” In 2001 the law intervened. Shirley was convicted of stealing a great deal of money from her clients and spent two years in prison. Along the way she started attending Gamblers Anonymous meetings, seeing a therapist and remaking her life. “I realized I had become addicted,” she says. “It took me a long time to say I was an addict, but I was, just like any other.” Ten years ago the idea that someone could become addicted to a habit like gambling the way a person gets hooked on a drug was controversial. Back then, Shirley's counselors never told her she was an addict; she decided that for herself. Now researchers agree that in some cases gambling is a true addiction. In the past, the psychiatric community generally regarded pathological gambling as more of a compulsion than an addiction—a behavior primarily motivated by the need to relieve anxiety rather than a craving for intense pleasure. In the 1980s, while updating the Diagnostic and Statistical Manual of Mental Disorders (DSM), the American Psychiatric Association (APA) officially classified pathological gambling as an impulse-control disorder—a fuzzy label for a group of somewhat related illnesses that, at the time, included kleptomania, pyromania and trichotillomania (hairpulling). In what has come to be regarded as a landmark decision, the association moved pathological gambling to the addictions chapter in the manual's latest edition, the DSM-5, published this past May. © 2013 Scientific American
Keyword: Drug Abuse
Link ID: 18875 - Posted: 11.06.2013
By Bradley E. Alger, Ph.D. Cannabis, derived from a plant and one of the oldest known drugs, has remained a source of controversy throughout its history. From debates on its medicinal value and legalization to concerns about dependency and schizophrenia, cannabis (marijuana, pot, hashish, bhang, etc.) is a hot button for politicians and pundits alike. Fundamental to understanding these discussions is how cannabis affects the mind and body, as well as the body’s cells and systems. How can something that stimulates appetite also be great for relieving pain, nausea, seizures, and anxiety? Whether its leaves and buds are smoked, baked into pastries, processed into pills, or steeped as tea and sipped, cannabis affects us in ways that are sometimes hard to define. Not only are its many facets an intrinsically fascinating topic, but because they touch on so many parts of the brain and the body, their medical, ethical, and legal ramifications are vast. The intercellular signaling molecules, their receptors, and synthetic and degradative enzymes from which cannabis gets its powers had been in place for millions of years by the time humans began burning the plants and inhaling the smoke. Despite records going back 4,700 years that document medicinal uses of cannabis, no one knew how it worked until 1964. That was when Yechiel Gaoni and Raphael Mechoulam1 reported that the main active component of cannabis is tetrahydrocannabinol (THC). THC, referred to as a “cannabinoid” (like the dozens of other unique constituents of cannabis), acts on the brain by muscling in on the intrinsic neuronal signaling system, mimicking a key natural player, and basically hijacking it for reasons best known to the plants. Since the time when exogenous cannabinoids revealed their existence, the entire natural complex came to be called the “endogenous cannabinoid system,” or “endocannabinoid system” (ECS). Copyright 2013 The Dana Foundation
Keyword: Drug Abuse
Link ID: 18874 - Posted: 11.06.2013
The generic anticonvulsant medication gabapentin shows promise as an effective treatment for alcohol dependence, based on the results of a 150-patient clinical trial of the medication. Conducted by scientists supported by the National Institute on Alcohol Abuse and Alcoholism (NIAAA), part of the National Institutes of Health, the study found that alcohol dependent patients using gabapentin were more likely to stop drinking or refrain from heavy drinking than those taking placebo. Gabapentin is already widely prescribed to treat pain conditions and epilepsy. “Gabapentin adds to the list of existing medications that have shown promise in treating alcohol dependence,” said Kenneth R. Warren, Ph.D., acting director of the NIAAA. “We will continue to pursue research to expand the menu of treatment options available for alcoholism in the hopes of reaching more people.” A report of the study, led by Barbara J. Mason, Ph.D., of The Scripps Research Institute (TSRI) in La Jolla, Calif., appears in the Nov. 4, 2013 edition of JAMA Internal Medicine. Dr. Mason and her colleagues randomly assigned alcohol dependent patients to receive a moderate or high dose of gabapentin (900 milligrams or 1,800 milligrams) or a placebo. Over the 12-week treatment, patients receiving the 1,800-milligram dose were twice as likely to refrain from heavy drinking (45 percent vs. 23 percent) and four times as likely to stop drinking altogether (17 percent vs. 4 percent), compared to placebo. Participants receiving gabapentin also reported improved sleep and mood and fewer alcohol cravings. The medication appeared to be well tolerated with few side effects.
Keyword: Drug Abuse
Link ID: 18873 - Posted: 11.05.2013
By DONALD G. McNEIL Jr. The World Health Organization has approved a new vaccine for a strain of encephalitis that kills thousands of children and leaves many survivors with permanent brain damage. The move allows United Nations agencies and other donors to buy it. The disease, called Japanese encephalitis or brain fever, is caused by a mosquito-transmitted virus that can live in pigs, birds and humans. Less than 1 percent of those infected get seriously ill, but it kills up to 15,000 children a year and disables many more. Up to four billion people, from southern Russia to the Pacific islands, are at risk; it is more prevalent near rice paddies. There is no cure. The low-cost vaccine, approved last month, is the first authorized by the agency for children and the first Chinese-made vaccine it has approved. It is made by China National Biotec Group and was tested by PATH, a nonprofit group in Seattle with funding from the Bill and Melinda Gates Foundation. Dr. Margaret Chan, W.H.O.’s director-general, said she hoped that approval would encourage other vaccine makers from China and elsewhere to enter the field. China had given the vaccine domestically to 200 million children over many years but had never sought W.H.O. approval. India, which previously bought 88 million doses from China, launched the first locally produced version last month. © 2013 The New York Times Company
Keyword: Miscellaneous
Link ID: 18872 - Posted: 11.05.2013
Guest post by Bruce Bower Among 16- to 22-year-old U.S. males, 7.6 percent report taking various potentially dangerous substances at least monthly to counteract what they regard as an alarming lack of muscularity. Young men whose insecurities inspire them to use growth hormones, steroids and other body-altering chemicals represent the male counterpart of females whose idealization of thinness prompts them to induce vomiting and otherwise purge their bodies of food, proposes a team led by epidemiologist Alison Field of Boston Children’s Hospital. Purging and other eating disorders occur mainly in girls and women. Boys and men so obsessed with muscles that they take substances prohibited in competitive sports are more numerous than researchers and clinicians realized, and have been overlooked, Field and her colleagues conclude November 4 in JAMA Pediatrics. The researchers examined questionnaires that each of 5,527 males completed eight times between 1999 — at ages 12 to 18 — and 2010. Most participants were white and from middle-class families. No information on sports team participation was available. © Society for Science & the Public 2000 - 2013.
Keyword: Anorexia & Bulimia; Hormones & Behavior
Link ID: 18871 - Posted: 11.05.2013
By DAN HURLEY This couldn’t possibly be a good idea. On Friday the 13th of September, in an old brick building on 13th Street in Boston’s Charlestown neighborhood, a pair of electrodes was attached to my forehead, one over my brain’s left prefrontal cortex, the other just above my right eye socket. I was about to undergo transcranial direct-current stimulation, or tDCS, an experimental technique for delivering extremely low dose electrical stimulation to the brain. Using less than 1 percent of the electrical energy necessary for electroconvulsive therapy, powered by an ordinary nine-volt battery, tDCS has been shown in hundreds of studies to enhance an astonishing, seemingly implausible variety of intellectual, emotional and movement-related brain functions. And its side effects appear limited to a mild tingling at the site of the electrode, sometimes a slight reddening of the skin, very rarely a headache and certainly no seizures or memory loss. Still, I felt more than a bit apprehensive as I prepared to find out if a little bit of juice could amp up my cognitive reserves and make me, in a word, smarter. With the electrodes in place, J. León Morales-Quezada, senior research associate at Harvard’s Laboratory of Neuromodulation, pressed a button on his computer and I felt . . . absolutely nothing. No pain. No tingling. Not even a little muscle twitching. “Is it on?” I asked. Morales-Quezada assured me it was. For proof, he pointed to a flat-screen on the wall, displaying signals from six electroencephalogram (EEG) monitors also attached to my head. After 10 minutes of charging my brain, he turned on a computerized exercise I was supposed to practice while the current continued flowing. Called an attention-switching task, it’s used by psychologists as a measure of “executive function” or “cognitive control”: the ability to overrule your urges, to ignore distractions and to quickly shift your focus. Young adults generally do better than older people; people with greater overall cognitive abilities generally perform better than those with less. © 2013 The New York Times Company
Keyword: Depression; Attention
Link ID: 18870 - Posted: 11.04.2013
Why do some people feel as though one of their body parts is not truly part of them and go to crazy lengths to get rid of it? Paul D. McGeochanswers: Certain people hold a deep desire to amputate a healthy limb. They are not psychotic, and they fully realize that what they want is abnormal. Nevertheless, they have felt from childhood that the presence of a specific limb, usually a leg, somehow makes their body “overcomplete.” Ultimately, many will achieve their desired amputation through self-inflicted damage or surgery. During the past few years my work with neuroscientists Vilayanur S. Ramachandran of U.C.S.D. and David Brang of Northwestern University, along with research by neuroscientist Peter Brugger of University Hospital Zurich in Switzerland, has transformed our understanding of this condition. Our findings suggest that a dysfunction of specific brain areas on the right side of the brain, which are involved in generating our body image, may explain the desire. Bizarre disorders of body image have long been known to arise after a stroke or other incident inflicts damage to the right side of the brain, particularly in the parietal lobe. The right posterior parietal cortex seems to combine several incoming streams of information—touch, joint position sense, vision and balance—to form a dynamic body image that changes as we interact with the world around us. In brain scans, we have found this exact part of the right parietal lobe to activate abnormally in individuals desiring limb removal. Because the primary sensory areas of the brain still function normally, sufferers are able to see and feel the limb in question. Yet they do not experience it as part of their body because the right posterior parietal lobe fails to adequately represent it. The mismatch between a person's actual physical body and his or her body image seems to cause ongoing arousal in the sympathetic nervous system, which may intensify the desire to remove the limb. Given that sufferers date these feelings to childhood, the right parietal dysfunction most likely is congenital or arises in early development. © 2013 Scientific American
Keyword: Attention
Link ID: 18869 - Posted: 11.04.2013
By JOHN RUDOLF GUATEMALA CITY — DONALD RODAS, a baby-faced man in his late 20s with paranoid schizophrenia, arrived at Guatemala’s only public psychiatric hospital last year after being charged with murdering his parents. He says he often wanders freely through the sprawling facility of dilapidated one-story buildings and wooded courtyards, where detainees charged with crimes mingle with ordinary patients and the developmentally disabled. He sees ugly things. Those who refuse their medication are beaten and put in the “little room,” a barren isolation cell, he said. Desperate women sell their bodies for as little as 5 quetzales, or less than a dollar, to afford basic necessities. “I see when they have sex for money,” Mr. Rodas said in halting English. “To buy food. All they have is beans.” The United States began emptying out its vast asylum system in the 1960s, spurred by scathing reports of abuse and neglect, like a 1946 Life magazine exposé that described many institutions as “little more than concentration camps.” The transition to community-based care cut the institutionalized population by more than 90 percent by 1994. But community care resources failed to match demand in the United States, leading to widespread homelessness and an influx of the mentally ill into jails and prisons. Even so, deinstitutionalization is widely credited with ending the abuse and neglect that made mental institutions synonymous with a nightmarish netherworld. Yet this asylum-based model of mental health care remains the standard across much of the globe. In many poor and developing countries, thousands of mentally ill people are warehoused in dirty and dangerous institutions. Health experts and advocates who monitor such facilities say the picture varies little from country to country: overcrowded wards lacking in privacy; poor sanitation; physical and sexual abuse; routine use of restraints and long-term solitary confinement; and forced treatment, including electroshock without consent. The rights of patients judged to be mentally ill are easily stripped by the courts and are difficult if not impossible to regain. © 2013 The New York Times Company
Keyword: Schizophrenia
Link ID: 18868 - Posted: 11.04.2013
JoNel Aleccia NBC News Obesity may be a factor in early puberty in U.S. girls, a new study finds. About 17 percent of American kids ages 2 to 17 are obese, according to the CDC. There’s yet another reason to worry about the obesity epidemic among America’s kids: Extra weight may be sending U.S. girls into puberty earlier than ever. Researchers have found that girls with higher body mass index, a ratio of height and weight, may start developing breasts more than a year before their thinner friends — perhaps as early as second grade. The change is spawning a whole new market of child-sized sanitary pads — decorated with hearts and stars — and deodorants aimed at 8- to 10-year-olds, according to a new study and an editorial published Monday in the journal Pediatrics. “The girls who are obese are clearly maturing earlier,” said Dr. Frank Biro, a pediatrics professor at Cincinnati Children’s Hospital Medical Center. “BMI is, we found, the biggest single factor for the onset of puberty.” In addition, white girls are maturing about four months earlier than in a landmark 1997 study that shocked parents with the news that their daughters who played with My Little Pony could be entering puberty. Biro’s team followed more than 1,200 girls ages 6 to 8 in three cities — San Francisco, Cincinnati and New York — from 2004 to 2011, carefully documenting their BMI and their maturation process.
Keyword: Obesity; Hormones & Behavior
Link ID: 18867 - Posted: 11.04.2013
By JANE E. BRODY Marijuana has been used medically, recreationally and spiritually for about 5,000 years. Known botanically as cannabis, it has been called a “crude drug”: marijuana contains more than 400 chemicals from 18 chemical families. More than 2,000 compounds are released when it is smoked, and as with tobacco, there are dangers in smoking it. Medical marijuana clinics operate in 20 states and the District of Columbia, and its recreational use is now legal in Colorado and Washington. A Gallup poll conducted last month found that 58 percent of Americans support the legalization of marijuana. Yet researchers have been able to do relatively little to test its most promising ingredients for biological activity, safety and side effects. The main reason is marijuana’s classification by Congress in 1970 as an illegal Schedule I drug, defined as having a potential for abuse and addiction and no medical value. American scientists seeking clarification of marijuana’s medical usefulness have long been stymied by this draconian classification, usually reserved for street drugs like heroin with a high potential for abuse. Dr. J. Michael Bostwick, a psychiatrist at the Mayo Clinic in Rochester, Minn., said the classification was primarily political and ignored more than 40 years of scientific research, which has shown that cellular receptors for marijuana’s active ingredients are present throughout the body. Natural substances called cannabinoids bind to them to influence a wide range of body processes. In a lengthy report entitled “Blurred Boundaries: The Therapeutics and Politics of Medical Marijuana,” published last year in Mayo Clinic Proceedings, Dr. Bostwick noted that the so-called endocannabinoid system has an impact on the “autonomic nervous system, immune system, gastrointestinal tract, reproductive system, cardiovascular system and endocrine network.” Copyright 2013 The New York Times Company
Keyword: Drug Abuse; Pain & Touch
Link ID: 18866 - Posted: 11.04.2013
Elizabeth Pennisi Speak easy. The language gene FOXP2 may work through a protein partner that stimulates the formation of excitatory connections (green) in nerve cells (magenta). Few genes have made the headlines as much as FOXP2. The first gene associated with language disorders, it was later implicated in the evolution of human speech. Girls make more of the FOXP2 protein, which may help explain their precociousness in learning to talk. Now, neuroscientists have figured out how one of its molecular partners helps Foxp2 exert its effects. The findings may eventually lead to new therapies for inherited speech disorders, says Richard Huganir, the neurobiologist at Johns Hopkins University School of Medicine in Baltimore, Maryland, who led the work. Foxp2 controls the activity of a gene called Srpx2, he notes, which helps some of the brain's nerve cells beef up their connections to other nerve cells. By establishing what SRPX2 does, researchers can look for defective copies of it in people suffering from problems talking or learning to talk. Until 2001, scientists were not sure how genes influenced language. Then Simon Fisher, a neurogeneticist now at the Max Planck Institute for Psycholinguistics in Nijmegen, the Netherlands, and his colleagues fingered FOXP2 as the culprit in a family with several members who had trouble with pronunciation, putting words together, and understanding speech. These people cannot move their tongue and lips precisely enough to talk clearly, so even family members often can’t figure out what they are saying. It “opened a molecular window on the neural basis of speech and language,” Fisher says. © 2013 American Association for the Advancement of Science
Keyword: Language; Genes & Behavior
Link ID: 18865 - Posted: 11.02.2013
by Bethany Brookshire Most of us see a wagging dog’s tail and think it’s got to be a good sign. Wagging = welcome, right? Especially if it’s the kind of wag that’s knocking over small items. But it turns out that not all wags are equal, and some are a lot more welcoming than others. When I walked into my college biology course freshman year, we started out with a discussion of symmetry. Most animal are built with some symmetry, either radial or bilateral — radial like a starfish, bilateral like a human. Symmetry means things, like health or attractiveness. But it turns out that asymmetry can mean things too. And an asymmetrical behavior might mean some important things for dogs. Marcello Siniscalchi of the University of Bari Aldo Moro in Italy and colleagues decided to look at asymmetry in dog wags. They noticed that sometimes, dogs wag more to the right, usually when seeing their owner or something else happy. They wag more to the left when they see something like a dominant or unfamiliar dog. So the wag itself could represent the emotional state of the dog doing the wagging. But can the dogs seeing the wagging (the wagees) tell the difference? In a paper published October 31 in Current Biology, the authors found that they can. They used videos of a real dog or the silhouette of a dog wagging to the right (the wagging dog’s right, by the way) or to the left, and examined 43 other dogs as they watched (OK, they started with 56, but 13 didn’t pay attention), to see how the wagee reacted. The observing dogs wore a vest to monitor their heart rate, and were videotaped so behaviorists could look at their behaviors afterward. © Society for Science & the Public 2000 - 2013.
Keyword: Animal Communication; Laterality
Link ID: 18864 - Posted: 11.02.2013
by Anil Ananthaswamy THE first clinical trial aimed at boosting social skills in people with autism using magnetic brain stimulation has been completed – and the results are encouraging. "As a first clinical trial, this is an excellent start," says Lindsay Oberman of the Beth Israel Deaconess Medical Centre in Boston, who was not part of the study. People diagnosed with autism spectrum disorder often find social interactions difficult. Previous studies have shown that a region of the brain called the dorsomedial prefrontal cortex (dmPFC) is underactive in people with autism. "It's also the part of the brain linked with understanding others' thoughts, beliefs and intentions," says Peter Enticott of Monash University in Melbourne, Australia. Enticott and his colleagues wondered whether boosting the activity of the dmPFC using repetitive transcranial magnetic stimulation (rTMS), which involves delivering brief but strong magnetic pulses through the scalp, could help individuals with autism deal with social situations. So the team carried out a randomised, double-blind clinical trial – the first of its kind – involving 28 adults diagnosed with either high-functioning autism or Asperger's syndrome. Some participants received 15 minutes of rTMS for 10 days, while others had none, but experienced all other aspects, such as having coils placed on their heads and being subjected to the same sounds and vibrations. © Copyright Reed Business Information Ltd.
Keyword: Autism
Link ID: 18863 - Posted: 11.02.2013
By Lindsey Konkel and Environmental Health News Insecticides commonly used in households may be associated with behavior problems in children, according to a new study by researchers in Quebec. The study is one of the first to investigate potential human health effects of pyrethroids, which are used in more than 3,500 commercial products, including flea bombs and roach sprays. The findings raise some questions about the safety of the compounds, which have replaced other insecticides with known risks to children’s brain development. Exposure to pyrethroids, which kill insects by interfering with their nervous systems, is widespread because they are used inside homes and schools, in municipal mosquito control and on farms. In the study, the urine of 779 Canadian children between the ages of 6 and 11 was tested, and their parents answered questions about each child’s behavior. Ninety-seven percent of the children had traces of pyrethroid breakdown products in their urine, and 91 percent had traces of organophosphates, another class of pesticides. A 10-fold increase in urinary levels of one pyrethroid breakdown product, cis-DCCA, was associated with a doubling in the odds of a child scoring high for parent-reported behavioral problems, such as inattention and hyperactivity. Another breakdown product, trans-DCCA, was also associated with more behavior problems, although the association was not statistically significant, meaning the finding could be due to chance. The breakdown product, trans- and cis-DCCA, is specific to certain pyrethroids – namely permethrin, cypermethrin and cyfluthrin. © 2013 Scientific American
Keyword: ADHD; Neurotoxins
Link ID: 18862 - Posted: 11.02.2013
/ by Charles Choi, LiveScience Using lasers, scientists can now surgically blast holes thinner than a human hair in the heads of live fruit flies, allowing researchers to see how the flies' brains work. Microscopically peering into living animals can help scientists learn more about key details of these animals' biology. For instance, tiny glass windows surgically implanted into the sides of living mice can help researchers study how cancers develop in real time and evaluate the effectiveness of potential medicines. Surgically preparing small live animals for such "intravital microscopy" is often time-consuming and requires considerable skill and dexterity. Now, Supriyo Sinha, a systems engineer at Stanford University in California, and his colleagues have developed a way to prepare live animals for such microscopy that is both fast -- taking less than a second -- and largely automated. To conduct this procedure, scientists first cooled fruit flies to anesthetize them. Then, the researchers carefully picked up the insects with tweezers and glued them to the tops of glass fibers in order to immobilize the flies' bodies and heads. Then, using a high-energy pulsed ultraviolet laser, the researchers blasted holes measuring 12 to 350 microns wide in the flies' heads. (In comparison, the average human hair is about 100 microns wide.) They then applied a saline solution to exposed tissue to help keep the fly brains healthy. © 2013 Discovery Communications, LLC.
Keyword: Miscellaneous
Link ID: 18861 - Posted: 11.02.2013