Links for Keyword: Hormones & Behavior

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 395

by Chloe Williams A new wireless device activates a mouse’s neurons as it navigates a cage with food, hiding places and other mice, allowing researchers to study social behavior in a realistic environment1. Experiments using this setup suggest that oxytocin has distinct effects in different contexts — which may be particularly important as researchers explore the hormone’s value as a potential treatment for autism. The device makes use of optogenetics, a technique in which researchers use pulses of light to activate or silence neurons. Autism researchers have used the approach to manipulate neural circuits in mice, but traditional optogenetic devices involve a fiber-optic cable, which tethers the animal and interferes with social interactions. Other wireless devices have been able to activate neurons without a tether, but researchers have mostly used them to study social behavior involving just two mice interacting for only about 15 minutes in an otherwise empty cage — a scenario that fails to capture a full range of mouse behaviors2. The new wireless device, powered by two watch batteries, consists of a light-emitting diode attached to an optical fiber that is implanted into the brain. It has an on-off switch that allows researchers to control it remotely using a magnet placed inside the cage. Using this setup, researchers can modulate brain activity in a group of mice as they roam for days through a cage that has hiding places, platforms, a nest, food and water. The device’s designers tested it in mice engineered to express light-sensitive proteins in part of the hypothalamus. This region produces the hormone oxytocin, generally thought to reduce aggression and enhance social bonds. When delivered as a nasal spray, it improves social skills in some people with autism. © 2020 Simons Foundation

Related chapters from BN: Chapter 5: Hormones and the Brain; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 27369 - Posted: 07.16.2020

By Gretchen Reynolds Exercise may help change exercisers’ brains in surprising ways, according to a new study of physical activity and brain health. The study, which included both mice and people, found that exercise prompts the liver to pump out a little-known protein, and that chemically upping the levels of that protein in out-of-shape, elderly animals rejuvenates their brains and memories. The findings raise provocative questions about whether the brain benefits of exercise might someday be available in a capsule or syringe form — essentially “exercise in a pill.” We already have considerable evidence, of course, that physical activity protects brains and minds from some of the declines that otherwise accompany aging. In past rodent studies, animals that ran on wheels or treadmills produced more new neurons and learned and remembered better than sedentary mice or rats. Similarly, older people who took up walking for the sake of science added tissue volume in portions of their brains associated with memory. Even among younger people, those who were more fit than their peers tended to perform better on cognitive tests. But many questions remain unanswered about how, at a cellular level, exercise remodels the brain and alters its function. Most researchers suspect that the process involves the release of a cascade of substances inside the brain and elsewhere in the body during and after exercise. These substances interact and ignite other biochemical reactions that ultimately change how the brain looks and works. But what the substances are, where they originate and how they meet and mingle has remained unclear. So, for the new study, which was published this month in Science, researchers at the University of California, San Francisco, and other institutions decided to look inside the minds and bloodstreams of mice. In past research from the same lab, the scientists had infused blood from young mice into older ones and seen improvements in the aging animals’ thinking. It was like “transferring a memory of youth through blood,” says Saul Villeda, a professor at U.C.S.F., who conducted the study with his colleagues Alana Horowitz, Xuelai Fan and others. © 2020 The New York Times Company

Related chapters from BN: Chapter 5: Hormones and the Brain; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 5: The Sensorimotor System
Link ID: 27368 - Posted: 07.16.2020

By Meredith Wadman In January, one of the first publications on those sickened by the novel coronavirus in Wuhan, China, reported that three out of every four hospitalized patients were male. Data from around the world have since confirmed that men face a greater risk of severe illness and death from COVID-19 than women and that children are largely spared. Now, scientists investigating how the virus does its deadly work have zeroed in on a possible reason: Androgens—male hormones such as testosterone—appear to boost the virus’ ability to get inside cells. A constellation of emerging data supports this idea, including COVID-19 outcomes in men with prostate cancer and lab studies of how androgens regulate key genes. And preliminary observations from Spain suggest that a disproportionate number of men with male pattern baldness—which is linked to a powerful androgen—end up in hospitals with COVID-19. Researchers are rushing to test already approved drugs that block androgens’ effects, deploying them early in infection in hopes of slowing the virus and buying time for the immune system to beat it back. “Everybody is chasing a link between androgens … and the outcome of COVID-19,” says Howard Soule, executive vice president at the Prostate Cancer Foundation, who on 13 May ran a Zoom call presenting the newest research that drew 600 scientists and physicians. A second call scheduled for today will discuss incipient clinical trials. Epidemiological data from around the world have confirmed the early reports of male vulnerability. In Lombardy in Italy, for example, men comprised 82% of 1591 patients admitted to intensive care units (ICUs) from 20 February to 18 March, according to a JAMA paper. And male mortality exceeded that of women in every adult age group in another JAMA study of 5700 New York City patients hospitalized with COVID-19. © 2020 American Association for the Advancement of Science.

Related chapters from BN: Chapter 5: Hormones and the Brain; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 27284 - Posted: 06.04.2020

Ruth Williams Experiments in mice and observations in humans have suggested the bone protein osteocalcin acts as a hormone regulating, among other things, metabolism, fertility, exercise capacity and acute stress. That interpretation is now partially in doubt. Two independent papers published yesterday (May 28) in PLOS Genetics, each of which presents a new osteocalcin knockout mouse strain, report that glucose metabolism and fertility were unaffected in the animals. While some researchers praise the studies, others highlight weaknesses. “I thought they were very good papers. I think the authors should be congratulated for very comprehensive studies of both skeletal and extraskeletal functions of osteocalcin,” says emeritus bone researcher Caren Gundberg of Yale School of Medicine who was not involved in the research. Skeletal biologist Gerard Karsenty of Columbia University disagrees. “There have been 25 laboratories in the world . . . that have shown osteocalcin is a hormone,” says Karsenty. These two papers “do not affect the work of [those] groups,” he adds, “because they are . . . technically flawed.” This tiny protein, one of the most abundant in the body, is produced and secreted by bone-forming osteoblast cells. In the 40 or so years since osteocalcin’s discovery, its precise function, or functions—whether in the bone or endocrine system—have not been fully pinned down. Studies from Karsenty’s lab more than 10 years ago were the first to indicate that osteocalcin could act as a hormone, regulating glucose metabolism. But the suggested hormonal function has been questioned for its relevance to humans. For example, while studies in people have shown that levels of osteocalcin in the blood are correlated with diabetes, whether this is a cause or effect is unclear. © 1986–2020 The Scientist.

Related chapters from BN: Chapter 5: Hormones and the Brain; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 27275 - Posted: 06.03.2020

Nell Greenfieldboyce Shepherds in Christmas Nativity scenes that were painted, carved or sculpted hundreds of years ago sometimes have throats with large, abnormal growths. These are realistic depictions of goiter, an enlargement of the thyroid gland caused by iodine deficiency. The condition was common in those days in northern Italy, where the soil and water are depleted of iodine. "Goiter is more often seen in poor people," says retired surgeon Renzo Dionigi of the University of Insubria in Varese, Italy, who notes that the working classes in this region would historically not have a varied diet that might supply this vital nutrient. "That's why, probably, the poor shepherds are depicted with goiters," he says. He and his son, an endocrine surgeon named Gianlorenzo Dionigi, have for years enjoyed studying art and looking for signs of medical conditions. In the Sacri Monti ("Sacred Mountains") of Piedmont and Lombardy, they have visited chapels and churches created in the 16th and 17th centuries. "In all the Sacri Monti that I and my son visited, we have been able to observe representations of goiters very, very often," says the elder Dionigi. In one Nativity tableau from 1694, for example, a young horn player with a large goiter plays for the Holy Family. And in one fresco over the main door of the Aosta Cathedral, a shepherd with goiter plays his bagpipe for the newborn Jesus. © 2019 npr

Related chapters from BN: Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 26913 - Posted: 12.26.2019

By Rachel E. Gross In the 1960s, manufacturers of the new birth-control pill imagined their ideal user as feminine, maternal and forgetful. She wanted discretion. She was married. And she wanted visible proof that her monthly cycle was normal and that she wasn’t pregnant. In 2019, the user of the pill is perceived as an altogether different person. She’s unwed, probably would prefer to skip her period and is more forthright about when it’s that time of the month. As such, many birth-control brands now come in brightly colored rectangular packs that make no effort to be concealed. But one part of the equation remains: the week of placebo pills, in which hormones are abruptly withdrawn and a woman experiences what looks and feels a lot like her regular period — blood, cramps and all — but isn’t. Physicians have widely described this pseudoperiod as medically unnecessary. So why do millions still endure it? That’s largely the legacy of two men: John Rock and David Wagner. First there’s Rock, a Harvard fertility expert and a developer of the pill. There’s a longstanding myth that Rock, a Catholic, designed the pill in the 1950s with the church in mind and included a week of hormonal withdrawal — and therefore bleeding — to make his invention seem more natural. In fact, the thought never crossed his mind, the Rutgers University historian Margaret Marsh says. Instead, it was Gregory (Goody) Pincus, the other developer of the pill, who suggested that the pill be given as a 20-days-on, 5-days-off regimen. Pincus wanted to provide women in his trials with reassurance that they weren’t pregnant, and to know himself that the pill was working as a contraceptive. Rock agreed. After the F.D.A. approved the pill in 1960, however, those few days of light bleeding took on a new significance. Anticipating the church’s opposition, Rock became not just a researcher but also an advocate. In his 1963 book “The Time Has Come: A Catholic Doctor’s Proposals to End the Battle Over Birth Control,” he argued that the pill was merely a scientific extension of the church-sanctioned “rhythm method.” It “completely mimics” the body’s own hormones, he wrote, to extend the “safe period” in which a woman could have intercourse and not become pregnant. © 2019 The New York Times Company

Related chapters from BN: Chapter 5: Hormones and the Brain; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 26892 - Posted: 12.12.2019

Andrew Anthony Katrina Karkazis, a senior research fellow at Yale University, is a cultural anthropologist working at the intersection of science, technology, gender studies and bioethics. With Rebecca Jordan-Young, a sociomedical scientist, she has written Testosterone: An Unauthorised Biography. It is a critique of both popular and scientific understandings of the hormone, and how they have been used to explain, or even defend, inequalities of power. You suggest that testosterone is understood as an exclusively male hormone, even though it’s also found in women. But surely no scientist believes this. No, what we’re saying is that the hormone has a century-long biography and identity that continues to be that of a male sex hormone. That language is used by authoritative sources in the US like the National Library of Medicine, but also in many media articles. It’s an argument that has to do with how the hormone is understood, which then shapes the kinds of research questions that get asked, what kinds of research get done or not done. There’s actually almost no research on the relationship between testosterone and aggression in women. That is a consequence of the framing of the hormone as having to do with men, masculinity, behaviours understood and framed as masculine. It’s the idea that because men generally have more testosterone, somehow that makes it more relevant in men. But the truth is we know very little about it. You write that testosterone’s authorised biography is about libido, aggression and masculinity. Does this mean that testosterone is not about these things? I think that it’s still very widely understood as the driver of all things masculine. When people think about testosterone, aggression is one of the first things that comes to mind. But when you look at the evidence, there’s not good evidence at all. In fact, it’s very weak regarding the relationship between endogenous testosterone [ie testosterone that originates within an organism] and aggression. So it’s an artefact of the ideology of testosterone that we continue to believe that it drives aggression, because aggression has been framed as a masculine behaviour and testosterone has been framed as a masculine hormone. © 2019 Guardian News & Media Limited

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 26883 - Posted: 12.09.2019

By Lisa Sanders, M.D. “Please find something wrong with me,” the 28-year-old woman pleaded. For nearly a year, she’d been looking for a reason for the strange symptoms that now dominated her life. Dr. Raphael Sung, a cardiologist specializing in finding and fixing abnormal heart rhythms at National Jewish Health hospital in Denver, was surprised by her reaction to the news that her heart was normal. Most patients are happy to get that report. For this patient, it seemed like just one more dead end. The patient’s symptoms started right after her baby was born 10 months earlier. Out of nowhere, her heart would start beating like crazy. At first, she assumed that these were anxiety attacks, triggered by the stress of bringing her premature daughter home. Her baby spent her first week of life in the newborn intensive care unit. When she was big enough to come home, she still weighed only four pounds, nine ounces. The new mother worried that without the doctors and nurses and equipment that had kept her alive, her tiny baby might die. But she didn’t. She seemed to thrive at home. Despite that, her mother’s heart continued to take off like a spooked horse several times a day. After a couple of weeks, her symptoms worsened. Sometimes her racing heart would set off terrible headaches, the worst she’d ever had. It was as if someone had thrust a sharp stick deep into her brain. The knife of pain quickly turned into a sense of pressure so intense it felt as if the back of her skull would blow off. Minutes later, she would feel the blood drain from her face; she’d be suddenly drenched in sweat. Her hands would curl into tight fists, and vomit would shoot out of her mouth like a geyser. Her husband joked (though only once) that she looked like the girl in “The Exorcist.” © 2019 The New York Times Company

Related chapters from BN: Chapter 5: Hormones and the Brain; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 11: Emotions, Aggression, and Stress
Link ID: 26767 - Posted: 10.30.2019

Zoë Corbyn At a time when women’s reproductive freedoms are under attack, any suggestion that the birth control pill could be problematic feels explosive. But Sarah E Hill, a professor of social psychology at the Texas Christian University in Fort Worth, Texas argues we need to talk about how oral contraceptives are affecting women’s thinking, emotions and behaviour. How the Pill Changes Everything: Your Brain on Birth Control is her new book about the science behind a delicate subject. Some US states have recently made it harder to get an abortion and the Trump administration is doing its best to chisel away at access to birth control. Is your book trying to dissuade women from using the pill? My institution was founded as a Christian school, but it doesn’t have a particular religious bent now. My goal with this book is not to take the pill away or alarm women. It is to give them information they haven’t had up until now so they can make informed decisions. The pill, along with safe, legalised abortions, are the two biggest keys to women’s rights. But we also have a blind spot when it comes to thinking about how changing women’s sex hormones – which is what the pill does – influences their brains. For a long time, women have been experiencing “psychological” side-effects on the pill but nobody was telling them why. The backlash we are seeing against the pill, particularly with millennial women walking away from it, I think is because women haven’t felt right on it and have grown weary of doctors patting them on their heads and telling them they are wrong. The more information women have, the more it will bring them back to the pill. © 2019 Guardian News & Media Limited

Related chapters from BN: Chapter 5: Hormones and the Brain; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 26723 - Posted: 10.19.2019

Hannah Devlin Science correspondent Boosting testosterone levels significantly improves female athletic performance, according to one of the first randomised controlled trials. The findings come as the International Association of Athletics Federations (IAAF) announced on Monday it would impose an upper limit for testosterone levels on trans female athletes competing in middle-distance events. Testosterone was assumed to be performance-enhancing and a factor in explaining differences in strength and endurance between men and women. However, there was a surprising lack of evidence on the impact of testosterone in women and the question had become mired in controversy following a series of rulings in professional sport. The latest research confirmed that testosterone significantly increases endurance and lean muscle mass among young women, even when given for a relatively short period. Angelica Hirschberg, a gynaecologist for the Swedish Olympic Committee based at Karolinska University Hospital and the study’s first author, said the results were the first to show a causal effect of testosterone on physical performance in women. “This has not been demonstrated previously because most studies have been performed in men,” she said. “Furthermore, the study shows the magnitude of performance enhancement by testosterone. Testosterone levels increased more than four times but were still much below the male range. The improvement in endurance performance by the increased testosterone levels was more than 8% – this is a huge effect in sports.” © 2019 Guardian News & Media Limited

Related chapters from BN: Chapter 5: Hormones and the Brain; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 26706 - Posted: 10.16.2019

By Emily Underwood Adrenaline. The word is synonymous with any activity that gets our blood racing, whether it be encountering a rattlesnake or watching the latest horror movie. But a new study reveals that when it comes with our body’s stress response, adrenaline may be less important than another hormone, one that seeps out of our bones. Our skeleton is much more than a rigid scaffold for the body, says geneticist Gérard Karsenty of Columbia University. Our bones secrete a protein called osteocalcin, discovered in the 1970s, that rebuilds the skeleton. In 2007, Karsenty and colleagues discovered that this protein acts as a hormone to keep blood sugar levels in check and burn fat. Later, his group showed that the hormone is important for maintaining brain function and physical fitness, restoring memory in aged mice and boosting performance during exercise in old mice and people. The findings led Karsenty to hypothesize that animals evolved bony skeletons to escape danger. The new study furthers that argument. Karsenty and colleagues exposed mice to several stressors, including a mild electric shock to the foot and a whiff of fox urine, a scent that triggers an innate fear response. Then, the researchers measured the osteocalcin in the animals’ blood. Within 2 to 3 minutes of being exposed to a stressor, levels of osteocalcin in the mice quadrupled, the team reports today in Cell Metabolism. A classic stressor in people had a similar effect: When the researchers asked volunteers to speak in front of an audience, osteocalcin levels also spiked. © 2019 American Association for the Advancement of Science

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 26609 - Posted: 09.13.2019

By Roni Dengler | Testosterone often gets a bad rap. The hormone responsible for male sexual development has been linked in studies to aggression and a lack of empathy. People with autism – a developmental condition that can lead to anxiety and trouble interacting with others – also have a hard time empathizing. Since the condition is four times more common in boys than girls, scientists once thought testosterone might reduce our ability to tell how others are feeling. But now, researchers find that’s not the case. “Of course, the primary suspect when we have something that is sharply differentiated by sex is testosterone,” University of Pennsylvania marketing professor Gideon Nave, who led the work, said in a press release. In the new study, Nave and colleagues report men given extra testosterone were able to read emotions just as well as those with typical hormone levels. The findings contrast a prevailing hypothesis that testosterone challenges men’s ability to empathize. Emotional Eyes In previous studies, other scientists tested whether testosterone influences empathy. They gave a few dozen women testosterone and then tested their ability to infer emotions by looking at pictures of people’s eyes. The studies concluded the testosterone lowered the women’s ability to empathize. The findings lent support for what’s known as the “extreme male brain hypothesis.” The hypothesis posits that men and women process and experience the world differently – women empathize and men systemize. Another study linking prenatal testosterone levels to autism added weight to the hypothesis.

Related chapters from BN: Chapter 5: Hormones and the Brain; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 11: Emotions, Aggression, and Stress
Link ID: 26603 - Posted: 09.12.2019

By Brooke N. Dulka As you read this article, your brain has begun a series of complicated chemical steps in order to form a memory. How long you keep this memory may well depend on whether you are a man or a woman. Some scientists think that the reason for this difference may be estrogens. Women are disproportionately affected by Alzheimer’s disease, dementia and memory loss. In fact, almost two thirds of Americans living with Alzheimer’s are women. While researchers across the globe are still working to uncover the basic mechanisms of learning and memory, it is now known that estrogens help to regulate memory formation in both males and females. From a cultural and societal standpoint, when people think of estrogen they probably imagine pregnancy, periods and woman-fueled rage. Most people probably don’t consider memory; but maybe it’s time we all start thinking about estrogens’ role in memory a little more. Karyn Frick, a professor of psychology at the University of Wisconsin-Milwaukee, studies the connection between estrogens and memory. She and her students are among the scientists working to uncover the basic cellular and molecular mechanisms underlying memory formation. Part of Frick’s research focuses on how estrogens enhance memory, particularly through their action in the hippocampus. © 2019 Scientific American

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 8: Hormones and Sex
Link ID: 26470 - Posted: 07.31.2019

Briar Stewart · A Canadian-born researcher is helping to launch the first substantial study of transgender athletes in a bid to better understand how transitioning and hormone therapy affects athletic performance. The issue of how to include transgender women in competition is centred around rules, rights and biological differences. And the debate about what constitutes an unfair advantage is heated, which is why medical physicist Joanna Harper hopes science can steer the conversation. "Until we have several of these larger-scale studies done worldwide, it's hard to be truly definitive on anything," she said. Harper, who is also an adviser to the International Olympic Committee (IOC), will be moving to the U.K. this fall to help lead the research into transgender athletes. The work will be carried out at Loughborough University, through its School of Sport, Exercise and Health Sciences. Personal motivation It was Harper's own experience that motivated her to try and track transgender athletes both before and after a gender transition. Harper, who is originally from Parry Sound, Ont, but is now based in Portland, Ore., has been a competitive runner for decades. When she was younger and racing as a male, her marathon time was a very quick two hours and 23 minutes. But once she started her transition in 2004 and began taking testosterone blockers and estrogen, her pace slowed. "Within nine months of hormone therapy, I was running 12 per cent slower," she said. "That's the difference between serious male distance runners and serious female distance runners." Harper, now in her 60s, still competes, racing alongside women. She wins some events and loses others, which is why she asserts that if trans women can become hormonally like other women, competition can be "equitable and meaningful." ©2019 CBC/Radio-Canada.

Related chapters from BN: Chapter 5: Hormones and the Brain; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 26444 - Posted: 07.24.2019

By Lisa Feldman Barrett My husband found me sobbing on the kitchen floor. My job was in upheaval, my travel schedule was grueling, and with two hours left before my next departure, I’d discovered that my laptop was dead. This was the moment my husband walked in to console me, and in an impressive feat of bad timing, he also asked whether I was premenstrual. I went from sobbing to supernova in about two seconds, enraged by his presumption that surging female hormones were responsible for my emotional distress. The only thing that saved him was that, a few days later, I discovered that he’d been right. I am a scientist who studies the nature of emotions. For most of my scientific career, I didn’t believe that women systematically had emotional eruptions right before their period, even though I experienced them occasionally. Studies suggested that women who believe in premenstrual syndrome, when asked about it in retrospect, tend to misremember the symptoms as more severe than they were. The evidence for PMS overall was inconsistent. Certainly, I knew of no neurological reason that women should feel, just before their period, that the world was crashing down on them. My doubt was also political in nature. During my clinical internship over 20 years ago, my boss, a psychiatrist, asked me to research how PMS prevents women from thinking clearly. I told him he was a relic of the Stone Age. Women were as consistently clearheaded as men, if not more so. But recently, a researcher in my lab, Joe Andreano, an expert on female hormones, showed me some surprising data. As a woman’s levels of progesterone and estrogen vary, so does the connectivity between two brain networks: the default mode network and the salience network. These networks play key roles in creating your emotional life. If I hadn’t seen the data with my own eyes, I wouldn’t have believed it. © 2019 The New York Times Company

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 26317 - Posted: 06.10.2019

Wency Leung A new Canadian study on how the birth control pill affects a woman’s ability to think is the latest to address a decades-old knowledge gap researchers say needs to be fixed: How oral contraceptives impact the brain. The study aims to test the working memory of around 60 young women who use oral contraceptives, says researcher Laura Gravelsins, a PhD student with the Einstein Lab on cognitive neuroscience, gender and health at the University of Toronto. Gravelsins is among a number of researchers exploring an area that has historically been overlooked. Since the introduction of the pill in the 1960s, hormonal contraceptives – which contain estrogen, progestin, or a combination of both – have become a preferred option for many women. Yet, due, in part, to past assumptions that the brain operates separately from the rest of body and a general lack of research into women’s health, scientists are only now investigating how they may influence mood and cognition. Another area that needs exploration is how sex hormones, including those naturally produced by the body, influence developing brains. At the University of British Columbia, researchers are currently recruiting 300 girls, ages 13 to 15, to study what role sex hormones may play in their emotional development. “We need more research,” says Dr. Gillian Einstein, a professor of psychology at University of Toronto and the Wilfred and Joyce Posluns Chair in Women’s Brain Health and Aging. “Women should demand more research on this.”

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 26110 - Posted: 04.03.2019

By Jane E. Brody Dr. Gayatri Devi’s patient, a 55-year-old former headmistress, had good reason to be distraught. The woman had a yearlong history of progressive memory loss and behavioral problems and was referred to Dr. Devi, a neurologist, with a possible diagnosis of frontotemporal dementia. As Dr. Devi recounted in the journal Obstetrics & Gynecology, the woman’s once prodigious memory had seriously deteriorated and she’d become increasingly irritable. She had difficulty organizing tasks, keeping track of belongings, setting goals, making plans and seeing them through. Yet the results of medical and neurological tests and brain scans were normal. Noting that the woman had gone through menopause a year earlier, Dr. Devi traced her symptoms to the decline in estrogen stimulation of the brain that occurs in all women at menopause with varying effects. Some are more sensitive to falling estrogen levels than others. With a likely diagnosis of menopause-related cognitive impairment, the doctor prescribed hormone-replacement therapy. Within 15 months, the woman’s behavioral symptoms had disappeared and her learning ability and memory were back to normal. She was able to complete a demanding graduate program and assume a new leadership position in education. This woman’s case was admittedly extreme, but Dr. Devi told me that “60 percent of women go through menopause-related cognitive impairment” that, when serious enough to be brought to medical attention, is too often misdiagnosed as “mild cognitive impairment,” a precursor to dementia. © 2018 The New York Times Company

Related chapters from BN: Chapter 5: Hormones and the Brain; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 14: Attention and Higher Cognition
Link ID: 25793 - Posted: 12.17.2018

by Lena Simon Four limbs. Warm blood. A love for cheese. And a hatred for infidelity. Although this may sound characteristic of the average Wisconsinite, the previous is actually also true for the California mouse. A recent University of Wisconsin news release revealed research that shows California pair-bonded mice become increasingly vocal after infidelity experiences. Experiments were designed to test how communication changes after mice have been given the opportunity to be “unfaithful” to their bonded mate. The California deer mouse, or Peromyscus californicus, is part of only 3 to 5 percent of mammal species that practice any kind of monogamy, per research from the National Science Foundation. At UW, research on the California mouse is ongoing. Josh Pultorak, a biology instructor at Madison Area Technical College and UW’s Wisconsin Institute for Discovery, led this research. He and his collaborators identified several types of sounds that the California mouse makes, all of which are ultrasonic — unable to be heard by the human ear unless slowed down to about 5 percent of their original speed. These include chirps — or “sweeps,” which are usually more peaceful sounds — and barks, which indicate aggression. Microbes in your gut could hold cure to diabetesThere are millions of microbes living in your gut. They help you digest and access nutrients your own organs would Read… The Badger Herald, 1995 - 2018

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 25637 - Posted: 11.02.2018

Sukanya Charuchandra R. Liu et al., “Perception of social interaction compresses subjective duration in an oxytocin-dependent manner,” eLife, 7:e32100, 2018. External stimuli can affect our perception of time. Researchers in China set out to test whether a person’s social skills and perception of social interactions alters their sense of time. Subjects viewed two motion sequences depicting two humans composed of dots of light. The first video clip showed sociable behavior between the figures, such as passing an object, while the second showed no interaction—the figures moved independently of each other. The subjects had to indicate which clip appeared to last longer. Overall, volunteers found the clips with communicative behavior to be shorter, even when that wasn’t true. This “temporal compression effect” was not as pronounced in less sociable test subjects, as measured by their Autism Spectrum Quotient, a questionnaire-based assessment that determines where people fall on the neurotypical or autistic scale. “It not only highlights the idiosyncrasy of subjective time but also demonstrates that our perception of the world (something as basic as time) is ingrained with our personality traits,” writes coauthor Wen Zhou of the Chinese Academy of Sciences’ Institute of Psychology in an email to The Scientist. © 1986 - 2018 The Scientist

Related chapters from BN: Chapter 5: Hormones and the Brain; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 15: Language and Lateralization
Link ID: 25306 - Posted: 08.08.2018

By Daniela Lamas Incompletely understood at best, after more than a century of false starts and research gains. So we learn in “Aroused,” an eye-opening new book that traces the history of endocrinology through a sequence of crisp, meticulously researched, and often surprisingly funny tales from the turn of the 20th century to today. Though hormones have entered common parlance — we have growth hormone and sex hormones and hormone replacement therapy — it was not always this way. Randi Hutter Epstein, an accomplished author who has a medical degree and a master’s of public health, illuminates more than a century of false starts and research gains as she explains the ways these chemical messengers control the daily work of our bodies. At the same time, she leaves us wondering how much of our current understanding of hormones is in fact “true” and how much may ultimately be disproved. This is a novel contribution. While most of the literature on hormones has been confined to medical text or limited to a single hormone (estrogen, for example), Epstein’s approach is wide-ranging. Consider this story. The year was 1924, and two teenagers in Chicago bludgeoned a younger boy to death. The new field of endocrinology was exploding at the time, and their lawyers proposed a provocative theory to avoid the death penalty: Hormones were at fault. After extensive X-rays, interviews, and measures of metabolism, doctors testified that the teenagers had severely impaired hormonal glands and had committed the grisly murder under the influence of hormones gone awry. They were sentenced to life in prison. Copyright 2018 Undark

Related chapters from BN: Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 25262 - Posted: 07.28.2018