Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 19691

by Helen Thomson As you read this, your neurons are firing – that brain activity can now be decoded to reveal the silent words in your head TALKING to yourself used to be a strictly private pastime. That's no longer the case – researchers have eavesdropped on our internal monologue for the first time. The achievement is a step towards helping people who cannot physically speak communicate with the outside world. "If you're reading text in a newspaper or a book, you hear a voice in your own head," says Brian Pasley at the University of California, Berkeley. "We're trying to decode the brain activity related to that voice to create a medical prosthesis that can allow someone who is paralysed or locked in to speak." When you hear someone speak, sound waves activate sensory neurons in your inner ear. These neurons pass information to areas of the brain where different aspects of the sound are extracted and interpreted as words. In a previous study, Pasley and his colleagues recorded brain activity in people who already had electrodes implanted in their brain to treat epilepsy, while they listened to speech. The team found that certain neurons in the brain's temporal lobe were only active in response to certain aspects of sound, such as a specific frequency. One set of neurons might only react to sound waves that had a frequency of 1000 hertz, for example, while another set only cares about those at 2000 hertz. Armed with this knowledge, the team built an algorithm that could decode the words heard based on neural activity aloneMovie Camera (PLoS Biology, doi.org/fzv269). © Copyright Reed Business Information Ltd.

Keyword: Language; Aggression
Link ID: 20267 - Posted: 11.01.2014

BY Laura Sanders The first time Nathan Whitmore zapped his brain, he had a college friend standing by, ready to pull the cord in case he had a seizure. That didn’t happen. Instead, Whitmore started experimenting with the surges of electricity, and he liked the effects. Since that first cautious attempt, he’s become a frequent user of, and advocate for, homemade brain stimulators. Depending on where he puts the electrodes, Whitmore says, he has expanded his memory, improved his math skills and solved previously intractable problems. The 22-year-old, a researcher in a National Institute on Aging neuroscience lab in Baltimore, writes computer programs in his spare time. When he attaches an electrode to a spot on his forehead, his brain goes into a “flow state,” he says, where tricky coding solutions appear effortlessly. “It’s like the computer is programming itself.” Whitmore no longer asks a friend to keep him company while he plugs in, but he is far from alone. The movement to use electricity to change the brain, while still relatively fringe, appears to be growing, as evidenced by a steady increase in active participants in an online brain-hacking message board that Whitmore moderates. This do-it-yourself community, some of whom make their own devices, includes people who want to get better test scores or crush the competition in video games as well as people struggling with depression and chronic pain, Whitmore says. As reckless as it sounds to juice a brain at home with a 9-volt battery and 40 dollars’ worth of spare parts, this technology’s buzz is based on legit science. Small laboratory studies suggest that carefully controlled brain stimulation can boost a person’s memory and math abilities, hone attention and fast-track learning. The U. S. military is interested and is funding studies to test brain stimulation as a way to boost soldiers’ alertness and vigilance. The technique may even be a viable treatment for pernicious mental disorders such as major depression, according to other laboratory-based studies. © Society for Science & the Public 2000 - 2014.

Keyword: Depression; Aggression
Link ID: 20266 - Posted: 11.01.2014

by Helen Thomson Scared of the dark? Terrified of heights? Spiders make you scream? For the first time, a person's lifelong phobia has been completely abolished overnight. Unfortunately, it required removing a tiny bit of the man's brain, so for now, most people will have to find another way to dispel their fears. The phobia was abolished by accident. A 44-year-old business man started having seizures out of the blue. Brain scans showed he had an abnormality in his left amygdala – an area in the temporal lobe involved in emotional reactions, among other things. Further tests showed the cause was sarcoidosis, a rare condition that causes damage to the lungs, skin and, occasionally, the brain. Doctors decided it was necessary to remove the man's damaged left amygdala. The surgery went well, but soon after the man noticed a strange turn of events. Not only did he have a peculiar "stomach-lurching" aversion to music – which was particularly noticeable when he heard the song accompanying a certain TV advert – but he also discovered he was no longer afraid of spiders. While his aversion to music waned over time, his arachnophobia never returned. Before the surgery he would throw tennis balls at spiders, or use hairspray to immobilise them before vacuuming them up. Now he is able to touch and observe the little critters at close distance and says he actually finds them fascinating. He hasn't noticed any changes to other kinds of fears or anxieties. For example, he is equally as anxious about public speaking now as he was prior to surgery. © Copyright Reed Business Information Ltd.

Keyword: Emotions
Link ID: 20265 - Posted: 11.01.2014

By Rachel Feltman Sometimes the process of scientific discovery can be a real headache. In a recent Danish study, scientists were thrilled to give painful migraines to 86 percent of their study subjects. Migraines are a particularly painful mystery for researchers to solve: More than 10 percent of people worldwide are affected by these intense headaches, but no one has been able to pinpoint a specific cause. What makes these headaches, which can cause incapacitating pain and nausea, different from all other headaches? That's why scientists had to make their patients suffer -- researchers keep trying to trigger migraines using different mechanisms. The more successful they are, the more likely it is that the mechanism being tested is actually a common cause of migraines. And once we know what the common causes are, we can try to develop better treatments that target them. In this case the 86 percent "success" rate, which the researchers say is much higher than results with other triggers, was owed to increases of a naturally occurring substance called cyclic AMP, or cAMP. Our bodies use cAMP to dilate blood vessels, so an increase of it can increase the flow of blood. To see if cAMP might cause migraines, the researchers dosed their subjects with cilostazol, a drug that increases cAMP concentrations in the body.

Keyword: Pain & Touch
Link ID: 20264 - Posted: 11.01.2014

by Dan Jones The way your brain reacts to a single disgusting image can be used to predict whether you lean to the left or the right politically. A number of studies have probed the emotions of people along the political spectrum, and found that disgust in particular is tightly linked to political orientation. People who are highly sensitive to disgusting images – of bodily waste, gore or animal remains – are more likely to sit on the political right and show concern for what they see as bodily and spiritual purity, so tend to oppose abortion and gay marriage, for example. A team led by Read Montague, a neuroscientist at Virginia Tech in Roanoke, recruited 83 volunteers and performed fMRI brain scans on them as they looked at a series of 80 images that were either pleasant, disgusting, threatening or neutral. Participants then rated the images for their emotional impact and completed a series of questionnaires that assessed whether they were liberal, moderate or conservative. The brain-imaging results were then fed to a learning algorithm which compared the whole-brain responses of liberals and conservatives when looking at disgusting images versus neutral ones. For both political groups, the algorithm was able to pick out distinct patterns of brain activity triggered by the disgusting images. And even though liberals and conservatives consciously reported similar emotional reactions to the images, the specific brain regions involved and their patterns of activation differed consistently between the two groups – so much so that they represented a neural signature of political leaning, the team concludes. © Copyright Reed Business Information Ltd

Keyword: Emotions
Link ID: 20263 - Posted: 11.01.2014

How Magic Mushrooms Rearrange Your Brain By Brandon Keim A new way of looking at brain activity may give insight into how psychedelic drugs produce their consciousness-altering effects. In recent years, a focus on brain structures and regions has given way to an emphasis on neurological networks: how cells and regions interact, with consciousness shaped not by any given set of brain regions, but by their interplay. Understanding the networks, however, is no easy task, and researchers are developing ever more sophisticated ways of characterizing them. One such approach, described in a new Proceedings of the Royal Society Interface study, involves not simply networks but networks of networks. Perhaps some aspects of consciousness arise from these meta-networks—and to investigate the proposition, the researchers analyzed fMRI scans of 15 people after being injected with psilocybin, the active ingredient in magic mushrooms, and compared them to scans of their brain activity after receiving a placebo. Investigating psychedelia wasn’t the direct purpose of the experiment, said study co-author Giovanni Petri, a mathematician at Italy’s Institute for Scientific Interchange. Rather, psilocybin makes for an ideal test system: It’s a sure-fire way of altering consciousness. “In a normal brain, many things are happening. You don’t know what is going on, or what is responsible for that,” said Petri. “So you try to perturb the state of consciousness a bit, and see what happens.” A representation of that is seen in the image above. Each circle depicts relationships between networks—the dots and colors correspond not to brain regions, but to especially connection-rich networks—with normal-state brains at left, and psilocybin-influenced brains at right. © 2014 Condé Nast.

Keyword: Drug Abuse; Aggression
Link ID: 20262 - Posted: 11.01.2014

Linda Carroll TODAY contributor For years Larry Hester lived in darkness, his sight stolen by a disease that destroyed the photoreceptor cells in his retinas. But last week, through the help of a “bionic eye,” Hester got a chance to once again glimpse a bit of the world around him. Video: Larry Hester has been without sight for decades, but with the help of a new tool called the "bionic eye," researchers at Duke University have found a way to restore some of his sight. Hester is the seventh patient to receive an FDA-approved device that translates video signals into data the optic nerve can process. The images Hester and others “see” will be far from full sight, but experts hope it will be enough to give a little more autonomy to those who had previously been completely blind. Hester’s doctors at Duke University Eye Center believe that as time goes on the 66-year-old tire salesman from Raleigh, N.C., will be able to “see” more and more. After only five days, there has been remarkable progress. “I hope that [after some practice] he will be able to do things he can’t do today: maybe walk around a little more independently, see doorways or the straight line of a curb. We don’t expect him to be able to make out figures on TV. But we hope he’ll be more visually connected.” said Dr. Paul Hahn, an assistant professor of ophthalmology at the university in Durham.

Keyword: Robotics; Aggression
Link ID: 20261 - Posted: 11.01.2014

By Jenna Bilbrey Your starbase is almost complete. All you need is a few more tons of ore. You could take the afternoon to mine it from an asteroid field, but you’ve heard of a Ska’ari who trades ore for cheap. So you message your alliance, use your connections to set up a meeting, and hop in your spacecraft. It’s good to have friends, even if they are virtual. An online science fiction game may not seem like the ideal place to study human behavior, but physicist Stefan Thurner has shown that the way people act in the virtual world isn’t so different from how they act in the real one. Thurner studies all sorts of complex systems at the Medical University of Vienna, so when one of his doctoral students just happened to create one of the most popular free browser-based games in Europe, Thurner suggested using the game, called Pardus, to study the spontaneous organization of people in a closed society. For almost three-and-a-half years, they monitored the interactions of roughly 7000 active players at one time within the game’s virtual world. Unlike in real life, Pardus players’ moves are tracked and their interactions are recorded automatically by the game. “We have information about everything,” Thurner says. “We know who is where at what point in time, … who exchanges things or money with whom, who is friends with whom, … who hates someone else, who collaborates with whom in entrepreneurial activities, who is in a criminal gang with whom, etc. Even though the society is artificial, it’s a human society.” © 2014 American Association for the Advancement of Science.

Keyword: Evolution; Aggression
Link ID: 20260 - Posted: 11.01.2014

By CATHERINE SAINT LOUIS More than 50 children in 23 states have had mysterious episodes of paralysis to their arms or legs, according to data gathered by the Centers for Disease Control and Prevention. The cause is not known, although some doctors suspect the cases may be linked to infection with enterovirus 68, a respiratory virus that has sickened thousands of children in recent months. Concerned by a cluster of cases in Colorado, the C.D.C. last month asked doctors and state health officials nationwide to begin compiling detailed reports about cases of unusual limb weakness in children. Experts convened by the agency plan next week to release interim guidelines on managing the condition. That so many children have had full or partial paralysis in a short period is unusual, but officials said that the cases seemed to be extremely rare. “At the moment, it looks like whatever the chances are of getting this syndrome are less than one in a million,” said Mark A. Pallansch, the director of the division of viral diseases at the C.D.C. Some of the affected children have lost the use of a leg or an arm, and are having physical therapy to keep their muscles conditioned. Others have sustained more extensive damage and require help breathing. Marie, who asked to be identified by her middle name to protect her family’s privacy, said her 4-year-old son used to climb jungle gyms. But in late September, after the whole family had been sick with a respiratory illness, he started having trouble climbing onto the couch. He walked into Boston Children’s Hospital the day he was admitted. But soon his neck grew so weak, it “flopped completely back like he was a newborn,” Marie said. Typically, the time from when weakness begins until it reaches its worst is one to three days. But for her son, eight mornings in a row, he awoke with a "brand new deficit" until he had some degree of weakness in each limb and had trouble breathing. He was eventually transferred to a Spaulding rehabilitation center, where he is now. © 2014 The New York Times Company

Keyword: Movement Disorders; Aggression
Link ID: 20259 - Posted: 10.29.2014

By Elizabeth Pennisi It’s not such a stretch to think that humans can catch the Ebola virus from monkeys and the flu virus from pigs. After all, they are all mammals with fundamentally similar physiologies. But now researchers have discovered that even a virus found in the lowly algae can make mammals its home. The invader doesn’t make people or mice sick, but it does seem to slow specific brain activities. The virus, called ATCV-1, showed up in human brain tissue several years ago, but at the time researchers could not be sure whether it had entered the tissue before or after the people died. Then, it showed up again in a survey of microbes and viruses in the throats of people with psychiatric disease. Pediatric infectious disease expert Robert Yolken from Johns Hopkins University School of Medicine in Baltimore, Maryland, and his colleagues were trying to see if pathogens play a role in these conditions. At first, they didn't know what ATCV-1 was, but a database search revealed its identity as a virus that typically infects a species of green algae found in lakes and rivers. The researchers wanted to find out if the virus was in healthy people as well as sick people. They checked for it in 92 healthy people participating in a study of cognitive function and found it in 43% of them. What’s more, those infected with the virus performed 10% worse than uninfected people on tests requiring visual processing. They were slower in drawing a line connecting a sequence of numbers randomly placed on a page, for example. And they seemed to have shorter attention spans, the researchers report online today in the Proceedings of the National Academy of Sciences. The effects were modest, but significant. © 2014 American Association for the Advancement of Science

Keyword: Neurotoxins
Link ID: 20258 - Posted: 10.29.2014

By ABIGAIL SULLIVAN MOORE The gray matter of the nucleus accumbens, the walnut-shaped pleasure center of the brain, was glowing like a flame, showing a notable increase in density. “It could mean that there’s some sort of drug learning taking place,” speculated Jodi Gilman, at her computer screen at the Massachusetts General Hospital-Harvard Center for Addiction Medicine. Was the brain adapting to marijuana exposure, rewiring the reward system to demand the drug? Dr. Gilman was reviewing a composite scan of the brains of 20 pot smokers, ages 18 to 25. What she and fellow researchers at Harvard and Northwestern University found within those scans surprised them. Even in the seven participants who smoked only once or twice a week, there was evidence of structural differences in two significant regions of the brain. The more the subjects smoked, the greater the differences. Moderate marijuana use by healthy adults seems to pose little risk, and there are potential medical benefits, including easing nausea and pain. But it has long been known that, with the brain developing into the mid-20s, young people who smoke early and often are more likely to have learning and mental health problems. Now researchers suggest existing studies are no longer sufficient. Much of what’s known is based on studies conducted years ago with much less powerful pot. Marijuana samples seized by the federal Drug Enforcement Agency show the concentration of THC, the drug’s psychoactive compound, rising from a mean of 3.75 percent in 1995 to 13 percent in 2013. Potency seesaws depending on the strain and form. Fresh Baked, which sells recreational marijuana in Boulder, Colo., offers “Green Crack,” with a THC content of about 21 percent, and “Phnom Pen,” with about 8 percent. The level in a concentrate called “Bubble Hash” is about 70 percent; cartridges for vaporizers, much like e-cigarettes, range from 15 to 30 percent THC. © 2014 The New York Times Company

Keyword: Drug Abuse; Aggression
Link ID: 20257 - Posted: 10.29.2014

By Erin Allday Stanford researchers have found some striking abnormalities in the brains of people with chronic fatigue syndrome, a frustrating and debilitating condition for which there is no known cause and no treatment that’s widely effective. The findings, published Wednesday in the journal Radiology, could improve diagnosis and spark new scientific understanding of the disease. Perhaps even more noteworthy, the results — if they can be confirmed with larger studies — could provide some of the first objective evidence that chronic fatigue syndrome is a severe illness that causes real physiological damage. That would be a major step for patients and their advocates, who still suffer under the stigma of having a condition that for decades was ignored or not taken seriously. “If this finding holds, it will be exciting because yes, we’ve found something that has never been found before. But there’s this additional layer of looking at a disease that was completely ostracized. So there’s also this component of validation,” said Dr. Jose Montoya, an infectious disease specialist who helped establish a chronic fatigue syndrome team at Stanford School of Medicine a decade ago. Montoya was the senior author of the Stanford study. For patients, Montoya said, “It’s almost like we’re saying, 'You were right all along. Hopefully this will put you where you deserve to be, in a real clinic with treatments.’” There are limitations to the study, Montoya said. Most notably, the sample size is fairly small, with 15 chronic fatigue patients and 14 healthy control subjects.

Keyword: Depression
Link ID: 20256 - Posted: 10.29.2014

GrrlScientist Since today is caturday, that wonderful day when the blogosphere takes a breather from hell-raising to celebrate pets, I thought some of my favourite animals: corvids. I ran across this lovely video created by Cornell University’s Laboratory of Ornithology (more fondly referred to as the “Lab of O”) that discusses the differences between and potential meanings of the sounds made by crows and ravens. If you watch birds, even casually, you might be confused by trying to distinguish these two large black corvid species. However, both species are quite chatty, and these birds’ sounds provide important identifying information. In this video, narrated by Kevin McGowan, an ornithologist at the Cornell Lab of O, you’ll learn how to distinguish crows and ravens on the basis of their voices alone. Both crows and ravens make loud raspy signature calls, described as “caw” and “kraa” respectively, but American crows and common ravens have large repertoires of sounds in addition to these calls. They also can learn to imitate the calls of other birds. As you’ll learn in this video, crows often make a “rattle” sound along with their territorial “caw”. They also communicate using a wide variety of other sounds including clicks and bell-like notes. Ravens, on the other hand, produce deep, throaty kraa calls.

Keyword: Animal Communication
Link ID: 20255 - Posted: 10.29.2014

By Virginia Morell Human fetuses are clever students, able to distinguish male from female voices and the voices of their mothers from those of strangers between 32 and 39 weeks after conception. Now, researchers have demonstrated that the embryos of the superb fairy-wren (Malurus cyaneus, pictured), an Australian songbird, also learn to discriminate among the calls they hear. The scientists played 1-minute recordings to 43 fairy-wren eggs collected from nests in the wild. The eggs were between days 9 and 13 of a 13- to 14-day incubation period. The sounds included white noise, a contact call of a winter wren, or a female fairy-wren’s incubation call. Those embryos that listened to the fairy-wrens’ incubation calls and the contact calls of the winter wrens lowered their heart rates, a sign that they were learning to discriminate between the calls of a different species and those of their own kind, the researchers report online today in the Proceedings of the Royal Society B. (None showed this response to the white noise.) Thus, even before hatching, these small birds’ brains are engaged in tasks requiring attention, learning, and possibly memory—the first time embryonic learning has been seen outside humans, the scientists say. The behavior is key because fairy-wren embryos must learn a password from their mothers’ incubation calls; otherwise, they’re less successful at soliciting food from their parents after hatching. © 2014 American Association for the Advancement of Science.

Keyword: Language; Aggression
Link ID: 20254 - Posted: 10.29.2014

By C. NATHAN DeWALL How many words does it take to know you’re talking to an adult? In “Peter Pan,” J. M. Barrie needed just five: “Do you believe in fairies?” Such belief requires magical thinking. Children suspend disbelief. They trust that events happen with no physical explanation, and they equate an image of something with its existence. Magical thinking was Peter Pan’s key to eternal youth. The ghouls and goblins that will haunt All Hallows’ Eve on Friday also require people to take a leap of faith. Zombies wreak terror because children believe that the once-dead can reappear. At haunted houses, children dip their hands in buckets of cold noodles and spaghetti sauce. Even if you tell them what they touched, they know they felt guts. And children surmise that with the right Halloween makeup, costume and demeanor, they can frighten even the most skeptical adult. We do grow up. We get jobs. We have children of our own. Along the way, we lose our tendencies toward magical thinking. Or at least we think we do. Several streams of research in psychology, neuroscience and philosophy are converging on an uncomfortable truth: We’re more susceptible to magical thinking than we’d like to admit. Consider the quandary facing college students in a clever demonstration of magical thinking. An experimenter hands you several darts and instructs you to throw them at different pictures. Some depict likable objects (for example, a baby), others are neutral (for example, a face-shaped circle). Would your performance differ if you lobbed darts at a baby? It would. Performance plummeted when people threw the darts at the baby. Laura A. King, the psychologist at the University of Missouri who led this investigation, notes that research participants have a “baseless concern that a picture of an object shares an essential relationship with the object itself.” Paul Rozin, a psychology professor at the University of Pennsylvania, argues that these studies demonstrate the magical law of similarity. Our minds subconsciously associate an image with an object. When something happens to the image, we experience a gut-level intuition that the object has changed as well. © 2014 The New York Times Company

Keyword: Attention
Link ID: 20253 - Posted: 10.28.2014

By Melissa Hogenboom Science reporter, BBC News A genetic analysis of almost 900 offenders in Finland has revealed two genes associated with violent crime. Those with the genes were 13 times more likely to have a history of repeated violent behaviour. The authors of the study, published in the journal Molecular Psychiatry, said at least 4-10% of all violent crime in Finland could be attributed to individuals with these genotypes. But they stressed the genes could not be used to screen criminals. Many more genes may be involved in violent behaviour and environmental factors are also known to have a fundamental role. Even if an individual has a "high-risk combination" of these genes the majority will never commit a crime, the lead author of the work Jari Tiihonen of the Karolinska Institutet in Sweden said. "Committing a severe, violent crime is extremely rare in the general population. So even though the relative risk would be increased, the absolute risk is very low," he told the BBC. The study, which involved analysis of almost 900 criminals, is the first to have looked at the genetic make-up of so many violent criminals in this way. Warrior gene Each criminal was given a profile based on their offences, categorising them into violent or non-violent. The association between genes and previous behaviour was strongest for the 78 who fitted the "extremely violent offender" profile. This group had committed a total of 1,154 murders, manslaughters, attempted homicides or batteries. A replication group of 114 criminals had all committed at least one murder. BBC © 2014

Keyword: Aggression; Aggression
Link ID: 20252 - Posted: 10.28.2014

Daniel Duane, Men's Journal For more than half a century, the conventional wisdom among nutritionists and public health officials was that fat is dietary enemy No. 1 — the leading cause of obesity and heart disease. It appears the wisdom was off. And not just off. Almost entirely backward. According to a new study from the National Institutes of Health, a diet that reduces carbohydrates in favor of fat — including the saturated fat in meat and butter — improves nearly every health measurement, from reducing our waistlines to keeping our arteries clear, more than the low-fat diets that have been recommended for generations. "The medical establishment got it wrong," says cardiologist Dennis Goodman, director of Integrative Medicine at New York Medical Associates. "The belief system didn't pan out." It's not the conclusion you would expect given the NIH study's parameters. Lead researcher Lydia Bazanno, of the Tulane University School of Public Health, pitted this high-fat, low-carb diet against a fat-restricted regimen prescribed by the National Cholesterol Education Program. "We told both groups to get carbs from green, leafy vegetables, because those are high in nutrients and fiber to keep you sated," Bazanno says. "We also told everyone to stay away from trans fats." The fat-restricted group continued to eat carbs, including bread and cereals, while keeping saturated fat — common in animal products — below 7 percent of total calories. By contrast, the high-fat group cut carbs in half and did not avoid butter, meat, and cheese. Most important, both groups ate as much as they wanted — no calorie counting, no going hungry.

Keyword: Obesity
Link ID: 20251 - Posted: 10.28.2014

By Paula Span First, an acknowledgment: Insomnia bites. S. Bliss, a reader from Albuquerque, comments that even taking Ativan, he or she awakens at 4:30 a.m., can’t get back to sleep and suffers “a state of sleep deprivation and eventually a kind of walking exhaustion.” Molly from San Diego bemoans “confusion, anxiety, exhaustion, depression, loss of appetite, frankly a loss of will to go on,” all consequences of her sleeplessness. She memorably adds, “Give me Ambien or give me death.” Marciacornute reports that she’s turned to vodka (prompting another reader to wonder if Medicare will cover booze). After several rounds of similar laments here (and not only here; insomnia is prevalent among older adults), I found the results of a study by University of Chicago researchers particularly striking. What if people who report sleep problems are actually getting enough hours of sleep, overall? What if they’re not getting significantly less sleep than people who don’t complain of insomnia? Maybe there’s something else going on. It has always been difficult to ascertain how much people sleep; survey questions are unreliable (how can you tell when you’ve dozed off?), and wiring people with electrodes creates such an abnormal situation that the results may bear little resemblance to ordinary nightlife. Enter the actigraph, a wrist-motion monitor. “The machines have gotten better, smaller, less clunky and more reliable,” said Linda Waite, a sociologist and a co-author of the study. By having 727 older adults across the United States (average age: almost 72) wear actigraphs for three full days, Dr. Waite and her colleagues could tell when subjects were asleep and when they weren’t. Then they could compare their reported insomnia to their actual sleep patterns. Overall, in this random sample, taken from an ongoing national study of older adults, people didn’t appear sleep-deprived. They fell asleep at 10:27 p.m. on average, and awakened at 6:22 a.m. After subtracting wakeful periods during the night, they slept an average seven and a quarter hours. But averages don’t tell us much, so let’s look more closely at their reported insomnia. “What was surprising to us is that there’s very little association between people’s specific sleep problems and what the actigraph shows,” Dr. Waite said. © 2014 The New York Times Company

Keyword: Sleep; Aggression
Link ID: 20250 - Posted: 10.28.2014

By Eric Niiler Has our reliance on iPhones and other instant-info devices harmed our memories? Michael Kahana, a University of Pennsylvania psychology professor who studies memory, says maybe: “We don’t know what the long-lasting impact of this technology will be on our brains and our ability to recall.” Kahana, 45, who has spent the past 20 years looking at how the brain creates memories, is leading an ambitious four-year Pentagon project to build a prosthetic memory device that can be implanted into human brains to help veterans with traumatic brain injuries. He spoke by telephone with The Post about what we can do to preserve or improve memory. Practicing the use of your memory is helpful. The other thing which I find helpful is sleep, which I don’t get enough of. As a general principle, skills that one continues to practice are skills that one will maintain in the face of age-related changes in cognition. [As for all those brain games available], I am not aware of any convincing data that mental exercises have a more general effect other than maintaining the skills for those exercises. I think the jury is out on that. If you practice doing crossword puzzles, you will preserve your ability to do crossword puzzles. If you practice any other cognitive skill, you will get better at that as well. Michael Kahana once could name every student in a class of 100. Now, says the University of Pennsylvania psychology professor who studies memory, “I find it too difficult even with a class of 20.” (From Michael Kahana)

Keyword: Learning & Memory
Link ID: 20249 - Posted: 10.28.2014

With the passing away of Professor Allison Doupe on Friday, October 24, of cancer, UCSF and biomedical science have lost a scholar of extraordinary intelligence and erudition and a campus leader. Allison Doupe was a psychiatrist and systems neuroscientist who became a leader of her field, the study of sensorimotor learning and its neural control. Allison was recruited to the Departments of Psychiatry and Physiology and the Neuroscience Graduate Program in 1993, rising to Professor in 2000. Her academic career has been outstanding at every stage, including First Class Honors at McGill, an MD and PhD in Neurobiology from Harvard, and a prestigious Junior Fellowship from the Harvard University Society of Fellows. Her PhD work with Professor Paul Patterson definitively established the role of particular environmental factors in the development of autonomic neurons and was important in the molecular and cellular investigations of the roles of hormones and growth factors in that system. After internship at the Massachusetts General Hospital and residency in psychiatry at UCLA, she chose to pursue a postdoctoral fellowship at Caltech, studying song learning in birds with Professor Mark Konishi as a way of combining her clinical interests in behavior and development with research in cognitive neuroscience. The development of birdsong is in many important respects similar to language development in humans. The pioneering work of Peter Marler, on song sparrows in Golden Gate Park, showed that each baby songbird learns its father’s dialect but could readily learn the dialect of any singing bird of the same species placed in the role of tutor. Many birds, including the ones studied by Allison Doupe, learn their song by listening to their father sing during a period of life in which they are not themselves singing, and they later practice and perfect their own song by comparison with their memory of the father’s (or tutor’s) song.

Keyword: Animal Communication; Aggression
Link ID: 20248 - Posted: 10.28.2014